Skip to main content
Log in

Galois Groups, Abstract Commutators, and Hopf Formula

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

A general description of the Galois group of a “pointed” normal extension in categorical Galois theory is examined under the presence of a suitable commutator operation. In particular, using the Hopf formula for the second homology group of a group, the connection between Galois theory and group homology is clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barr, M., Diaconescu, R.: On locally simply connected toposes and their fundamental groups. Cahiers Topologie Géom. Différentielle Catég. 22–3, 301–314 (1980)

    Google Scholar 

  2. Borceux, F., Janelidze, G.: Galois Theories. Cambridge Studies in Advanced Mathematics 72, Cambridge University Press (2001)

  3. Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Structures 4, 307–327 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brown, R., Ellis, G.J.: Hopf formulae for the higher homology of a group. Bull. London Math. Soc 20, 124–128 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bunge, M.: Galois groupoids and covering morphisms in topos theory. Fields Inst. Commun. 43, 131–161 (2004)

    MathSciNet  Google Scholar 

  6. Donadze, G., Inassaridze, N., Porter, T.: n-Fold C̆ech derived functors and generalized Hopf formulas. K-Theory 35(3–4), 341–373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eilenberg, S., Mac Lane, S.: Relation between homology and homotopy groups. Proc. Natl. Acad. Sci. 29(5), 155–158 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  8. Everaert, T.: Relative commutator theory in varieties of omega-groups. J. Pure Appl. Algebra 210(1), 1–10 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Everaert, T., Gran, M., Van der Linden, T.: Higher Hopf formulae for homology via Galois theory. (arXiv:math.AT/0701815 29.01.2007)

  10. Freeze, R., McKenzie, R.: Commutator Theory for Congruence Modular Varieties. London Mathematical Society Lecture Note Series, vol. 125. Cambridge University Press (1987)

  11. Gran, M.: Applications of categorical Galois theory in universal algebra. Fields Inst. Commun. 43, 243–280 (2004)

    MathSciNet  Google Scholar 

  12. Gran, M., Rossi, V.: Galois theory and double central extensions. Homology, Homotopy and Applications 6(1), 283–298 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Gumm, H.P.: Geometrical methods in congruence modular algebra. Mem. Amer. Math. Soc. 45, 286 (1983)

    MathSciNet  Google Scholar 

  14. Hagemann, J., Hermann, C.: A concrete ideal multiplication for algebraic systems and its relationship to congruence distributivity. Arch. Math. 32, 234–245 (1979)

    Article  MATH  Google Scholar 

  15. Janelidze, G.: The fundamental theorem of Galois theory. Math. USSR Sbornik 64(2), 359–384 (1989)

    Article  MathSciNet  Google Scholar 

  16. Janelidze, G.: Pure Galois theory in categories. J. Algebra 132, 270–286 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Janelidze, G.: What is a double central extension? (the question was asked by Ronald Brown). Cahiers Topologie Géom. Différentielle Catég. XXXII-3, 191–202 (1991)

    MathSciNet  Google Scholar 

  18. Janelidze, G.: Precategories and Galois theory. Lecture Notes in Math. 1488, 157–173 (1991)

    Article  MathSciNet  Google Scholar 

  19. Janelidze, G.: A note on Barr-Diaconescu covering theory. Contemp. Math. 131(3), 121–124 (1992)

    MathSciNet  Google Scholar 

  20. Janelidze, G.: Higher dimensional central extensions and the Brown–Ellis–Hopf formula. International Meeting in Category Theory, Halifax, Canada (1995)

  21. Janelidze, G., Kelly, G.M.: Galois theory and a general notion of a central extension. J. Pure Appl. Algebra 97, 135–161 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Janelidze, G., Kelly, G.M.: The reflectiveness of covering morphisms in algebra and geometry. Theory Appl. Categ. 3, 132–159 (1997)

    MATH  MathSciNet  Google Scholar 

  23. Janelidze, G., Kelly, G.M.: Central extensions in universal algebra: a unification of three notions. Algebra Universalis 44, 123–128 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Janelidze, G., Kelly, G.M.: Central extensions in Mal’tsev varieties. Theory Appl. Categ. 7(10), 219–226 (2000)

    MATH  MathSciNet  Google Scholar 

  25. Janelidze, G., Marki, L., Tholen, W.: Semi-abelian categories. J. Pure Appl. Algebra 168, 367–386 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Janelidze, G., Pedicchio, M.C.: Pseudogroupoids and commutators. Theory Appl. Categ. 8(15), 408–456 (2001)

    MATH  MathSciNet  Google Scholar 

  27. Janelidze, Z.: Subtractive categories. Appl. Categ. Structures 13(4), 343–350 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rossi, V.: Galois structures and coverings in universal and topological algebra. Ph.D. Thesis, Udine University (2005)

  29. Smith, J.D.H.: Mal’tsev varieties. Lecture Notes in Mathematics, vol. 554. Springer (1976)

  30. Ursini, A.: On subtractive varieties. I. Algebra Universalis 31, 204–222 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Janelidze.

Additional information

Partially supported by South African NRF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janelidze, G. Galois Groups, Abstract Commutators, and Hopf Formula. Appl Categor Struct 16, 653–668 (2008). https://doi.org/10.1007/s10485-007-9107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-007-9107-2

Keywords

Mathematics Subject Classifications (2000)

Navigation