
ar
X

iv
:0

81
0.

23
61

v2
  [

m
at

h.
Q

A
] 

 1
5 

Ja
n 

20
10

2-VECTOR SPACES AND GROUPOIDS

JEFFREY C. MORTON

Abstract. This paper describes a relationship between essentially finite groupoids
and 2-vector spaces. In particular, we show to construct 2-vector spaces of
Vect-valued presheaves on such groupoids. We define 2-linear maps corre-
sponding to functors between groupoids in both a covariant and contravariant
way, which are ambidextrous adjoints. This is used to construct a representation—
a weak functor—from Span(FinGpd) (the bicategory of essentially finite groupoids
and spans of groupoids) into 2Vect. In this paper we prove this and give the
construction in detail.

1. Introduction

In this paper, I will describe an extension of the groupoidification program of
Baez and Dolan [2]. Groupoidification refers to the program of treating parts
of linear algebra as arising from spans of groupoids (categories whose morphisms
are all invertible) by a process of “degroupoidification”, which produces complex
vector spaces associated to groupoids, and linear maps associated to spans. The
extension described here shows a connection of the setting of groupoids and spans
with 2-vector spaces and 2-linear maps, a categorical analog of linear algebra. (We
will assume that all groupoids are essentially finite - that is, equivalent to finite
groupoids - although there is work in progress on how to extend these results to
infinite groupoids, and in particular Lie groupoids.)

A simple example of the groupoidification program can be seen in terms of
spans of finite sets (i.e. finite trivial groupoids). In that program, groupoids give
corresponding vector spaces and spans of groupoids give corresponding linear maps.
In particular, the special case of trivial groupoids (equivalently, sets) gives a useful
illustration. Given a finite set S, there is a finite dimensional vector space L(S)
consisting of all complex linear combinations of elements of S. Now, consider a
span in FinSet: that is, a diagram of the form:

(1) X

s

~~~~
~~

~~
~

t

  @
@@

@@
@@

Y Z

To the span, there is a corresponding to a linear map L(X) : L(Y ) → L(Z),
represented by a matrix T whose (i, j)-component is |(s, t)−1(yi, zj)

So the set in Figure 1 gives rise to the linear transformation:

y1 7→ z1

y2 7→ z1 + z2(2)

y3 7→ z2

1

http://arxiv.org/abs/0810.2361v2


2 JEFFREY C. MORTON

Figure 1. A Span of Sets

This makes sense for spans of finite sets. Similarly, we will be considering an
analogous construction for spans of essentially finite groupoids.

There is a physical motivation here in quantum mechanics. If Y is the (discrete)
set of classical (pure) states of a system, then L(Y ) = C[Y ], the space of linear
combinations of states in Y , is the Hilbert space of the corresponding quantum
mechanical system. (More generally, if Y is a measure space, one takes L2(Y )). In
the span, we think of X as a set of “processes” x, each with a designated “source”
or starting state s(x) ∈ Y and “target” or ending state t(x) ∈ Z. Then the linear
transformation described by the matrix T can be seen in the following way, which
we shall generalize later on:

Given a linear combination of elements of Y (that is, a function f : Y → C),
transport f to X by “pulling back” along s. That is, s∗f(x) = f(s(x)). Then
“push forward” to Z by taking the sum over all elements of X mapping down to a
chosen one in Z:

(3) t∗s
∗f(z) =

∑

t(x)=z

s∗f(x)

This precisely gives matrix multiplication by the matrix described above, and can
clearly also be seen as a “sum over histories”: the value of t∗s

∗f(z) is a sum, over
all histories x ending at z, of the value of f at the source s(x). This illustrates
a contrast between classical and quantum processes. Classically, states succeed
each other by exactly one process. In the quantum picture, every possible process
contributes to evolution of a state. In particular, there is an interpretation of
quantum processes in terms of “matrix mechanics”, which takes a sum (in the form
of matrix multiplication) over all histories joining fixed start and end states. This
is exactly what is shown in our example.

It is not too difficult to check that the linearization of spans of sets gets along
with composition, so that the composite of spans (by pullback, giving a set of
composite paths) agrees with composition of linear maps. That is, that the process
is functorial. This fact makes it possible to think of categorifying this process, in
order to explicitly include symmetries of both states and histories as fundamental
concepts. A categorified version of this process should be a 2-functor.

One way to generalize spans of sets, which is seen in [2], uses groupoids (cate-
gories whose morphisms are all invertible) instead of sets. One reason to consider
this is that it often happens that the configuration space can naturally be thought
of not as a set but as a groupoid. This happens particularly when there are sym-
metry operations acting on the set of configurations, and we explicitly represent



2-VECTOR SPACES AND GROUPOIDS 3

such symmetries as morphisms of the groupoid. The existence of a group action on
the set would be one example. In such a categorified picture, X has objects which
represent states of a system, and morphisms denoting symmetries of states. Then L

gives vector spaces which are linear combinations of isomorphism classes of objects
of the groupoids. The components of the linear maps uses groupoid cardinality
instead of set cardinality:

L(X)[yi],[zk] =
∑

x∈(s,t)−1(yi,zk)

#(Aut(yi))

#(Aut(x))
(4)

= |̂(yi, zk)| ·#(Aut(yi))

where ̂(yi, zk) is the essential preimage of yi and zk, and its cardinality is the
groupoid cardinality described by Baez and Dolan [4] (the other cardinality is the
order of the group). This uses a weighting of contributions from intermediate
elements depending on the size of their symmetry group. The groupoid cardinality
of a finite groupoid X is:

(5) |X | =
∑

[x]∈X

1

#Aut(x)

where the cardinality in the sum denotes the order of the group.
Here, however, we want to do something a little different: this process is still a

functor, and we wanted a 2-functor. Since we want to think of X as a category,
rather than look at functions from the objects of X into C, we should look at
functors from X into some category which plays the role of C. In particular, this
category will beVect, whose objects are vector spaces overC, and whose morphisms
are linear maps. When categorifying, therefore, we will want to find an analogous
2-functor, which requires specifying more data.

Then there will be a “free 2-vector space” Λ(X) of all functors from X into
Vect. We think of the objects as “2-linear combinations” of classical states, each
with an internal state space which carries a representation of the symmetry group
of that state. For most physically realistic systems, X would be an infinite set
with a measure, and in fact a symplectic manifold. In general, to deal with L2

spaces involves some issues in analysis, such as the measure on X . Then instead of
L(X) we consider L2(X). A similar caveat should apply in the categorified setting.
Restricting to the situation of a finite groupoid helps to more clearly illustrate some
of the purely category-theoretic aspects of the “free 2-vector space” construction.
We do expect that for well-behaved smooth groupoids, for example, similar results
to those considered in this paper will hold, involving infinite dimensional 2-vector
spaces one could denote 2L2(X). But this will be addressed in a companion paper.

Finally, we remark that this construction is used in the construction of an Ex-
tended Topological Quantum Field Theory (ETQFT) in the author’s Ph.D. thesis
[15], where the groupoids in question are topological invariants of manifolds. By
analogy, it could be used to give “extended quantum theories” in other settings
where spans of groupoids appear.

Another view of a related process involves the 2-functor into additive categories
(which, in the C-linear case, are the KV 2-vector spaces) from a 2-category Bim,
whose objects are rings, morphisms in homBim(R,S) are (R,S)-bimodules, and
whose 2-morphisms are bimodule homomorphisms. This is a dual picture to that of



4 JEFFREY C. MORTON

spans. Indeed, the type of “pull-push” construction given here is ubiquitous (as its
appearance in linear algebra suggests), due to the universal properties of categories
of spans (see [7]). Similar notions also appear in the theory of Mackey functors (see
[16]), and in the study of “correspondences” in noncommutative geometry, algebraic
geometry, and elsewhere.

In this paper, we will begin by describing the source and target categories,
Span(FinGpd) in section 2, and 2Vect in section 3. In particular, to categorify
the functor L, we need a 2-category to correspond to Vect, and this will be the
2-category of all Kapranov-Voevodsky 2-vector spaces. A KV 2-vector space is an
abelian category with some extra structure, just as a vector space is a special type
of abelian group. In section 3 we give some background and collect some fundamen-
tal results about them which are widely known, but whose proofs are seldom given.
For example, we show that 2-vector spaces, understood as a semisimple C-linear
additive category, are all equivalent to Vectk for some nonnegative integer k.

In section 4, we give the object level of our construction for a 2-functor Λ, which,
to (essentially finite) groupoids assigns KV 2-vector spaces. Analogously with sets,
we obtain 2-linear maps for spans of groupoids. In fact, just as with sets, this is
a consequence of an even simpler correspondence. Namely, there is the “pullback”
and “push-forward” of a function mentioned in the description of the linear map
from a span of sets as a sum over histories (the sum occurs in the “push-forward”
operation, and corresponds to the sum in matrix multiplication). The groupoid
situation is more complicated than that for sets, however, because of the existence
of automorphisms of the objects, and the condition that maps between groupoids
are functors. This means, in particular, that for each object x in a groupoid, the
functor determines a homomorphism from the automorphism group of x to that of
its image. The push-forward operation can be interpreted as a Kan extension and
has both an object and a morphism level.

Section 5 describes how these results define 2-linear maps associated to spans
of groupoids. It begins with a brief discussion of the bicategory whose objects are
groupoids, whose morphisms are spans of groupoids, and whose 2-morphisms are
span maps. This is followed by an explicit construction of the morphism level of the
2-functor Λ : Span(FinGpd)→ 2Vect and shows that it preserves composition of
spans in the weak sense: that is, up to a specified isomorphism. (Technical details
of this proof are reserved for appendix A). Finally, using Frobenius reciprocity, it
describes a simple explicit matrix representation for the 2-functor constructed.

Section 6 then continues by describing how this representation works at the level
of 2-morphisms. This is analogous to the 1-morphism level, in that it consists of a
“pullback and pushforward” process. This is most easily described in terms of the
linear maps between corresponding vector spaces which appear in the matrix rep-
resentation of the 2-linear maps associated to a pair of spans from A to B. We give
this construction and show it preserves both vertical and horizontal composition of
2-morphisms in the appropriate ways.

The results shown in sections 5 and 6 do much of the work involved in showing
that our representation is really a 2-functor. The remainder of this proof is given
in section 7.

Now we begin to describe the 2-linearization process by collecting some key facts
about the bicategory of 2-vector spaces, including a canonical construction of one
for each (essentially finite) groupoid.



2-VECTOR SPACES AND GROUPOIDS 5

2. The Bicategory Span(FinGpd)

The main purpose of this paper is to describe a weak 2-functor

(6) Λ : Span(FinGpd)→2Vect

In this section, we will describe the source bicategory, Span(FinGpd).
First, the objects of Span(FinGpd).

Definition 2.0.1. An essentially finite groupoid is one which is equivalent to a
finite groupoid. A finitely generated groupoid is one with a finite set of objects,
and all of whose morphisms are generated under composition by a finite set of
morphisms. An essentially finitely generated groupoid is one which is equivalent
to a finitely generated one.

Note that, in particular, essentially finitely generated groupoids must be essen-
tially finite, since every object has an identity morphism. We will use the term
“essentially finite” to mean both of these conditions. Next we describe the mor-
phisms of Span(FinGpd).

In any category C, a span is a diagram of the form:

(7) X

s
~~}}

}}
}}

}}

t
  A

AA
AA

AA
A

A1 A2

In particular, we want to reproduce the “linearization” associated to spans of sets
which we discussed in the introduction. The idea is that given a span of groupoids,
as in Figure 2 (which suppresses the homomorphisms labelling the strands in the
span, but should be compared with Figure 1), there will be a “transfer” 2-linear
map from the KV 2-vector space associated to the source of the span, to that
associated to the target.

Figure 2. A Span of Groupoids



6 JEFFREY C. MORTON

If C has pullbacks, we can define composition of spans using them:

(8) X ′ ◦X
S

{{ww
ww

ww
ww

w
T

##H
HH

HH
HH

HH

X

s

~~}}
}}

}}
}} t

##G
GG

GG
GG

GG X ′

s′

{{ww
ww

ww
ww

w
t′

!!B
BB

BB
BB

B

A1 A2 A3

where we define X ′ ◦X to be the object, unique up to isomorphism, which makes
the central square a pullback square. That is, it is a terminal occupant of this
niche. If C is, in addition, a concrete category, the pullback is a subobject of the
product X ×X ′.

(9) X ′ ◦X = X ×A2 X
′ =

⋃

a∈A2

t−1(a)× (s′)−1(a)

the fibred product of X ′ and X over A2. (Indeed, if C is Cartesian, any span can
be factored through a product.)

Now, for any category C with pullbacks, there is a category Span(C) whose
objects are the objects of C, and whose morphisms are isomorphism classes spans
in C composed by pullback. Here we are taking spans up to isomorphisms α :
X1 → X2 which are commuting diagrams of the form:

(10) X1

s1

}}||
||

||
||

α

��

t1

!!B
BB

BB
BB

B

A1 X2s2
oo

t2

// A2

However, we will do something slightly different. We will be interested in spans
of groupoids. Since groupoids naturally form a 2-category, we should weaken the
notion of composition, and give an appropriate notion of 2-morphism, for a bicat-
egory Span(FinGpd).

Given any 2-category C with weak pullbacks, one can again form a bicategory
Span(C) with the same objects as C and with spans for morphisms. T composite

of spans A1
s
←X

t
→A2 and A2

s′

←X ′ t′

→A3 is an object X ′ ◦ X together with a
2-morphism α making this diagram commute, and terminal for such choices:

(11) X ′ ◦X
S

{{ww
ww

ww
ww

w
T

##H
HH

HH
HH

HH
s◦S

��

t′◦T

��

X

s
~~}}

}}
}}

}}

t
##G

GG
GG

GG
GG

α

∼
+3 X ′

s′
{{ww

ww
ww

ww
w

t′ !!B
BB

BB
BB

B

A1 A2 A3

A 2-morphism in Span(C) will be an isomorphism class of spans of span maps.
That is, consider a span of 2-morphisms in the usual Span(C). This is a diagram



2-VECTOR SPACES AND GROUPOIDS 7

of the form:

(12) X1

s1
}}||

||
||

||

t1
!!B

BB
BB

BB
B

A1 Yoo //

t

��

s

OO

A2

X2

s2

aaBBBBBBBB

t2

==||||||||

In principle we need only require this diagram commute weakly: that is, there
are isomorphisms ζs : s1 ◦ s→ s2 ◦ t and ζt : t1 ◦ s→ t2 ◦ t. For the most part, since
the construction we mean to give is invariant under equivalence of groupoids, and
taking the Ai to be skeletal makes this strict, we will assume strict commutativity,
though we shall indicate where the argument must be changed to accommodate the
weak case.

We are considering such diagrams only up to isomorphism: that is, the inner
span X1←Y →X2 in the 2-morphism 12 is only considered up to an isomorphism
of spans in the sense of 10.

The reason for considering these is as follows. First, taking a category C and
passing to Span(C) amounts to formally adjoining duals for morphisms in C. The
dual of any span is the span which has the same maps, considered in the reverse
orientation, exchanging the role of source and target object. When we apply Λ,
these duals will in fact become adjoints, as we shall see.

Now, we are interested in the case C = FinGpd, so the diagram for the com-
posite of spans between groupoids contains a weak pullback square: composition
is only preserved up to isomorphism. In particular, the objects are now groupoids,
which are themselves categories with objects and morphisms. Since it makes sense
to speak of two objects of a groupoid being isomorphic, the weakest meaningful
condition is that objects of groupoids X and X ′ should need only project to iso-
morphic objects on A2. But there are potentially different isomorphisms between
those objects. So the weak pullback is a larger groupoid than a strict pullback,
since its objects come with a specified isomorphism between the two restrictions.

That this is a weak pullback square of functors between groupoids means that
this diagram commutes up to the natural isomorphism α : t◦S −→ s′◦T . (The fact
that α is iso is what makes this a weak pullback rather than a lax pullback, where
α is only a natural transformation.) This is an example of a comma category (the
concept, though not the name, was introduced by Lawvere in his doctoral thesis
[12]). We recall some background about this construction in Appendix A.1.

Now, the process of finding higher morphisms by taking spans of span maps
could obviously be continued: each new level of span naturally gives maps of spans
as morphisms. We could repeat the process of adjoining duals by passing to spans
of such span maps, and so on recursively as far as we wish. For our purposes here,
however, we will stop at 2-morphisms for two reasons. First, we want to describe a
representation into 2Vect, which is a 2-category. This in turn is since the objects
of FinGpd are themselves categories, and our 2-functor Λ will represent them as
categories - so a 2-category is the natural setting for them.

Collecting the definition together, we then have the following.

Definition 2.0.2. The bicategory Span(FinGpd) has:



8 JEFFREY C. MORTON

• Objects: Essentially finite groupoids
• Morphisms: Spans of groupoids, composed by weak pullback
• 2-Morphisms: Isomorphism classes of spans of span maps, composed by
weak pullback both horizontally and vertically

Having defined Span(FinGpd), the source bicategory of the 2-functor Λ we aim
to describe here, we next describe its target, 2Vect.

3. Kapranov-Voevodsky 2-Vector Spaces

There are two major philosophies regarding how to categorify the concept “vector
space”. A Baez-Crans (BC) 2-vector space is a category object in Vect—that is, a
category having a vector space of objects and of morphisms, where source, target,
composition, etc. are linear maps. This is a useful concept for some purposes—it
was developed to give a categorification of Lie algebras. The reader may refer to
the paper of Baez and Crans [3] for more details. However, a BC 2-vector space
turns out to be equivalent to a 2-term chain complex and for many purposes this
is too strict. This is not the concept of 2-vector space which concerns us here.

The other, earlier, approach is to define a 2-vector space as a category having
operations such as a monoidal structure analogous to the addition on a vector space.
In particular, we will restrict our attention to complex 2-vector spaces.

This ambiguity about the correct notion of “2-vector space” is typical of the
problem of categorification. Since the categorified setting has more layers of struc-
ture, there is a choice of level to which the structure in the concept of a vector
space should be lifted. Thus in the BC 2-vector spaces, we have literal vector ad-
dition and scalar multiplication within the objects and morphisms. In KV 2-vector
spaces and their cousins, we only have this for morphisms, and for objects there
is a categorified analog of addition, in the sense that they are additive categories.
The key difference between the two notions of 2-vector space lies in which category
plays the role of the “base field”: in the BC definition, this is the ring category
C[0] whose objects are complex numbers, whereas for the KV definition it is Vect,
whose objects are complex vector spaces. This is discussed by Josep Elgueta [8].

Indeed, Elgueta [8] shows several different types of “generalized” 2-vector spaces,
and relationships among them. In particular, while KV 2-vector spaces can be
thought of as having a set of basis elements, a generalized 2-vector space may
have a general category of basis elements. The free generalized 2-vector space on a
category is denoted Vect[C]. Then KV 2-vector spaces arise when C is a discrete
category with only identity morphisms. This is essentially a set S of objects. Thus
it should not be surprising that KV 2-vector spaces have a structure analogous to
free vector spaces generated by some finite set - which are isomorphic to Ck.

3.1. Definition. The standard example of this approach is the Kapranov-Voevodsky
(KV) definition of a 2-vector space [10], which is the form we shall use (at least
when the situation is finite-dimensional). To motivate the KV definition, consider
the idea that, in categorifying, one should replace the base field C with a monoidal
category. Specifically, it turns out, with Vect, the category of finite dimensional
complex vector spaces. This leads to the following replacements for concepts in
elementary linear algebra:

• Vectors = k-tuples of scalars 7→ 2-vectors = k-tuples of vector spaces
• Addition 7→ Direct Sum



2-VECTOR SPACES AND GROUPOIDS 9

• Multiplication 7→ Tensor Product

So just as Ck is the standard example of a complex vector space, Vectk will be the
standard example of a 2-vector space. But we should define these precisely.

To begin with, a KV 2-vector space is a C-linear additive category with some
properties, so we begin by explaining this. The property of additivity for categories,
is here seen as the analog of the group structure of a vector space, though additivity
in a category is somewhat different. The motivating example for us is the direct
sum operation in Vect. Such an operation plays the role in a 2-vector space which
vector addition plays in a vector space.

Definition 3.1.1. If a category C is enriched in abelian groups, a biproduct is
an operation giving, for any objects x and y in C an object x ⊕ y equipped with
morphisms ιx, ιy from x and y respectively into x⊕ y; and morphisms πx, πy from
x⊕ y into x and y respectively, which satisfy the biproduct relations:

(13) πx ◦ ιx = idx and πy ◦ ιy = idy

and

(14) ιx ◦ πx + ιy ◦ πy = idx⊕y

Whenever biproducts exist, they are always both products and coproducts.

Definition 3.1.2. A C-linear additive category is a category V enriched in
Vect(i.e. ∀x, y ∈ V, hom(x, y) is a vector space over C), such that composition is
a bilinear map, and such that V has a zero object (i.e. 0 which is both initial and
terminal). A C-linear functor between C-linear categories is one where morphism
maps are C-linear. A simple object in V is x ∈ V such that hom(x, x) ∼= C.

As important fact about KV 2-vector spaces is that they have (finite) bases:
they are generated by finitely many simple objects.

Definition 3.1.3. A Kapranov–Voevodsky 2-vector space is a C-linear addi-
tive category which is semisimple (every object can be written as a finite biproduct
of simple objects). A 2-linear map between 2-vector spaces is a C-linear functor.

Remark 3.1.4. It is a consequence of C-linearity that a 2-linear map also pre-
serves biproducts, since the images of the π and ι maps still satisfy the definition
of a biproduct (and the universal properties for product and coproduct follow au-
tomatically). The above definition of a 2-linear map is sometimes given in the
equivalent form requiring that the functor preserve exact sequences. Indeed, since
every object is a finite biproduct of simple objects, a 2-vector space is an abelian
category. (See e.g. Freyd [9].)

Example 3.1.5. The standard example [10] of a KV 2-vector space highlights the

analogy with the familiar vector space Ck. The 2-vector space Vectk is a category
whose objects are k-tuples of vector spaces, maps are k-tuples of linear maps. The
additive structure of the 2-vector space Vectk comes from applying the direct sum
in Vect component-wise.

Note that there is an equivalent of scalar multiplication, using the tensor product:

(15) V ⊗







V1

...
Vk






=







V ⊗ V1

...
V ⊗ Vk









10 JEFFREY C. MORTON

and

(16)







V1

...
Vk






⊕







W1

...
Wk






=







V1 ⊕W1

...
Vk ⊕Wk







As the correspondence with linear algebra would suggest, 2-linear maps T :
Vectk→Vectl amount to k × l matrices of vector spaces, acting by matrix multi-
plication using the direct sum and tensor product instead of operations in C:

(17)







T1,1 . . . T1,k

...
...

Tl,1 . . . Tl,k













V1

...
Vk






=







⊕k
i=1 T1,i ⊗ Vi

...
⊕k

i=1 Tl,i ⊗ Vi







The natural transformations between these are matrices of linear transforma-
tions:

(18) α =







α1,1 . . . α1,k

...
...

αl,1 . . . αl,k






:







T1,1 . . . T1,k

...
...

Tl,1 . . . Tl,k






−→







T ′
1,1 . . . T ′

1,k
...

...
T ′
l,1 . . . T ′

l,k







where each αi,j : Ti,j→T ′
i,j is a linear map in the usual sense.

These natural transformations give 2-morphisms between 2-linear maps, so that
Vectk is a bicategory with these as 2-cells:

(19) Vectk

F
&&

G

88Vectlα

��

In our example above, the finite set of simple objects of which every object is a
sum is the set of 2-vectors of the form

(20)

















0
...
C

...
0

















which have the zero vector space in all components except one (which can be arbi-

trary). We can call these standard basis 2-vectors. Clearly every object of Vectk

is a finite biproduct of these objects, and each is simple (its vector space of endo-
morphisms is 1-dimensional).

3.2. Classification Theorems. The most immediately useful fact about KV 2-
vector spaces is the following well known characterization:

Theorem 3.2.1. Every KV 2-vector space is equivalent as a category to Vectk for
some k ∈ N.

Proof. Suppose K is a KV 2-vector space with a basis of simple objects X1 . . . Xk.
Then we construct an equivalence E : K→Vectk as follows:



2-VECTOR SPACES AND GROUPOIDS 11

E should be an additive functor with E(Xi) = Vi, where Vi is the k-tuple of
vector spaces having the zero vector space in every position except the ith, which
has a copy of C. But any object X , is a sum

⊕

iX
ni

i , so by linearity (i.e. the
fact that E preserves biproducts) X will be sent to the sum of the same number of
copies of the Vi, which is just a k-tuple of vector spaces whose ith component is Cni .
So every object in K is sent to an k-tuple of vector spaces. By C-linearity, and the
fact that hom-vector spaces of simple objects are one-dimensional, this determines
the images of all morphisms.

But then the weak inverse of E is easy to construct, since sending Vi to Xi gives
an inverse at the level of objects, by the same linearity argument as above. At the
level of morphisms, the same argument holds again. �

This is a higher analog of the fact that every finite dimensional complex vector
space is isomorphic to Ck for some k ∈ N. So, indeed, the characterization of 2-
vector spaces in our example above is generic: every KV 2-vector space is equivalent
to one of the form given. Moreover, our picture of 2-linear maps is also generic, as
shown by this argument, analogous to the linear algebra argument for representation
of linear maps by matrices:

Lemma 3.2.2. Any 2-linear map T : Vectn→Vectm is naturally isomorphic to
a map of the form (17).

Proof. Any 2-linear map T is a C-linear additive functor between 2-vector spaces.
Since any object in a 2-vector space can be represented as a biproduct of simple
objects—and morphisms likewise—such a functor is completely determined by its
effect on the basis of simple objects and morphisms between them.

But then note that since the automorphism group of a simple object is by defini-
tion just all (complex) multiples of the identity morphism, there is no choice about
where to send any such morphism. So a functor is completely determined by the
images of the basis objects, namely the 2-vectors Vi = (0, . . . ,C, . . . , 0) ∈ Vectn,
where Vi has only the ith entry non-zero.

On the other hand, for any i, T (Vi) is a direct sum of some simple objects in
Vectm, which is just some 2-vector, namely a k-tuple of vector spaces. Then the
fact that the functor is additive means that it has exactly the form given. �

And finally, the analogous fact holds for natural transformations between 2-linear
maps:

Lemma 3.2.3. Any natural transformation α : T →T ′ from a 2-linear map T :
Vectn→Vectm to a 2-linear map T ′ : Vectn→Vectm, both in the form (17) is
of the form (18).

Proof. By Lemma 3.2.2, the 2-linear maps T and T ′ can be represented as matrices
of vector spaces, which act on an object in Vectn as in (17). A natural transfor-
mation α between these should assign, to every object X ∈ Vectn, a morphism
αX : T (X)→T ′(X) in Vectm, such that the usual naturality square commutes for
every morphism f : X→Y in Vectn.

Suppose X is the n-tuple (X1, . . . , Xn), where the Xi are finite dimensional
vector spaces. Then

(21) T (X) = (⊕n
k=1V1,k ⊗Xk, . . . ,⊕

n
k=1Vm,k ⊗Xk)



12 JEFFREY C. MORTON

where the Vi,j are the components of T , and similarly

(22) T ′(X) = (⊕n
k=1V

′
1,k ⊗Xk, . . . ,⊕

n
k=1V

′
m,k ⊗Xk)

where the V ′
i,j are the components of T ′.

Then a morphism αX : T (X)→T ′(X) consists of an m-tuple of linear maps:

(23) αj : ⊕
n
k=1Vj,k ⊗Xk→⊕

n
k=1V

′
j,k ⊗Xk

but by the universal property of the biproduct, this is the same as having an
(n×m)-indexed set of maps

(24) αjk : Vj,k ⊗Xk→⊕
n
r=1V

′
j,r ⊗Xr

and by the dual universal property, this is the same as having (n×n×m)-indexed
maps

(25) αjkr : Vj,k ⊗Xk→V ′
j,r ⊗Xr

However, we must have the naturality condition for every morphism f : X→X ′:

(26) T (X)

αX

��

T (f)
// T (X ′)

αX′

��

T ′(X)
T ′(f)

// T ′(X ′)

Note that each of the arrows in this diagram is a morphism in Vectm, which are
linear maps in each component—so in fact we have a separate naturality square for
each component.

Also, since T and T ′ act on X and X ′ by tensoring with fixed vector spaces as
in (21), one has T (f)i = ⊕j1Vij

⊗ fj, having no effect on the Vij . We want to show
that the components of α affect only the Vij .

Additivity of all the functors involved implies that the assignment α of maps to
objects in Vectn is additive. So consider the case when X is one of the standard
basis 2-vectors, having C in one position (say, the kth), and the zero vector space in
every other position. Then, restricting to the naturality square in the kth position,
the above condition amounts to having m maps (indexed by j):

(27) αj,k : Vj,k→V ′
j,k

So by linearity, a natural transformation is determined by an n×m matrix of maps
as in (18). �

The fact that 2-linear maps between 2-vector spaces are functors between cat-
egories recalls the analogy between linear algebra and category theory in the con-
cept of an adjoint. If V and W are inner product spaces, the adjoint of a linear
map F : V →W is a map F † for which 〈Fx, y〉 =

〈

x, F †y
〉

for all x ∈ V1 and
y ∈ V2. A (right) adjoint of a functor F : C→D is a functor G : D→C for which
homD(Fx, y) ∼= homC(x,Gy) (and then F is a left adjoint of G).

In the situation of a KV 2-vector space, the categorified analog of the adjoint of
a linear map is indeed an adjoint functor. (Note that since a KV 2-vector space has
a specified basis of simple objects, it makes sense to compare it to an inner product
space.) Moreover, the adjoint of a functor has a matrix representation which is
much like the matrix representation of the adjoint of a linear map. We summarize



2-VECTOR SPACES AND GROUPOIDS 13

this in the following (a variant of proposition 25 in [1], shown there for 2-Hilbert
spaces):

Theorem 3.2.4. Given any 2-linear map F : V →W , there is a 2-linear map
F † : W →V which is both a left and right adjoint to F .

Proof. By Theorem 3.2.1, we have V ≃ Vectn and W ≃ Vectm for some n and m.
By composition with these equivalences, we can restrict to this case. But then we
have by Lemma 3.2.2 that F is naturally isomorphic to some 2-linear map given by
matrix multiplication by some matrix of vector spaces [Fi,j ]:

(28)







F1,1 . . . F1,n

...
...

Fm,1 . . . Fm,n







We claim that a (two-sided) adjoint functor F † is given by the “dual transpose
matrix” of vector spaces [Fi,j ]

†:

(29)







F
†
1,1 . . . F

†
1,m

...
...

F
†
n,1 . . . F †

n,m







where F
†
i,j is the vector space dual (Fj,i)

∗ (note the transposition of the matrix).

We note that this prescription is symmetric, since [T ]†† = [T ], so if F † is always
a left adjoint of F , then F is also a left-adjoint of F †, hence F † a right adjoint of
F . So if this prescription gives a left adjoint, it gives a two-sided adjoint. Next we
check that it does.

Suppose x = (Xi) ∈ Vectn is the 2-vector with vector space Xi in the ith

component, and y = (Yj) ∈ Vectm has vector space Yj in the jth component.
Then F (x) ∈ Vectm has jth component ⊕n

i=1Fi,j ⊗ Xi. Now, a map in Vectm

from F (x) to y consists of a linear map in each component, so it is an m-tuple of
maps:

(30) fj :

n
⊕

i=1

Fi,j ⊗Xi→Yj

for j = 1 . . .m. But since the direct sum (biproduct) is a categorical coproduct,
this is the same as an m× n matrix of maps:

(31) fij : Vi,j ⊗Xi→Yj

for k = 1 . . . n and j = 1 . . .m, and hom(F (x), y) is the vector space of all such
maps.

By the same argument, a map in Vectn from x to F †(y) consists of an n ×m

matrix of maps:

(32) gji : Xi→V ∗
j,i ⊗ Yj

∼= hom(Vj,i, Yj)

for i = 1 . . . n and j = 1 . . .m, and hom(x, F †(y)) is the vector space of all such
maps.

But then we have a natural isomorphism hom(F (x), y) ∼= hom(x, F †(y)) by the
duality of hom and ⊗, so in fact F † is a right adjoint for F , and by the above
argument, also a left adjoint.



14 JEFFREY C. MORTON

Moreover, no other non-isomorphic matrix defines a 2-linear map with these
properties, and since any functor is naturally isomorphic to some matrix, this is
the sole F † which works. �

3.3. Example: Group 2-Algebra. We conclude this section by giving an exam-
ple of a 2-vector space:

Example 3.3.1. As an example of a KV 2-vector space, consider the group 2-
algebra on a finite group G, defined by analogy with the group algebra:

The group algebra C[G] consists of the set of elements formed as formal linear
combinations elements of G:

(33) b =
∑

g∈G

bg · g

where all but finitely many bg are zero. We can think of these as complex functions
on G. The algebra multiplication on C[G] is given by the multiplication in G:

(34) b ⋆ b′ =
∑

g,g′∈G

(bgb
′
g′) · gg′

This does not correspond to the multiplication of functions onG, but to convolution:

(35) (b ⋆ b′)g =
∑

h·h′=g

bhb
′
h′

Similarly, the group 2-algebra A = Vect[G] is the category of G-graded vector
spaces. That is, direct sums of vector spaces associated to elements of G:

(36) V =
⊕

g∈G

Vg

where Vg ∈ Vect is a vector space. This is a G-graded vector space. We can take
direct sums of these pointwise, so that (V ⊕V ′)g = Vg⊕V ′

g), and there is a “scalar”
product with elements of Vect given by (W ⊗V )g = W ⊗Vg. There is also a group
2-algebra product of G-graded vector spaces, involving a convolution on G:

(37) (V ⋆ V ′)h =
⊕

g·g′=h

Vg ⊗ V ′
g′

The category of G-graded vector spaces is clearly a KV 2-vector space, since it
is equivalent to Vectk where k = |G|. However, it has the additional structure of
a 2-algebra because of the group operation on the finite set G.

Example 3.3.2. Given a finite group G, the category Rep(G) has:

• Objects: Complex representations of G (i.e. functors ρ : G→Vect, where
G is seen as a one-object groupoid)
• Morphisms: Intertwining operators between reps (i.e. natural transfor-
mations)

This is clearly a 2-vector space generated by the irreducible representations of
G.

In the next section, we will see that a similar construction shows that the rep-
resentation categories of finite groupoids are KV 2-vector spaces. This will be the
beginning of our definition of Λ.

This highlights one motivation for thinking of 2-vector spaces: the fact that, in
quantum mechanics, one often “quantizes” a classical system by taking the Hilbert



2-VECTOR SPACES AND GROUPOIDS 15

space of (square integrable) C-valued functions on its phase space. Similarly, one
approach to finding a higher-categorical version of a quantum theory is to take
Vect-valued functors, as we discuss in more detail in Section 4.

By restricting our attention to the (essentially) finite case, we avoid here the
analytical issues involved in finding an analog for L2(X).

4. KV 2-Vector Spaces and Finite Groupoids

We have now seen that we can get a 2-vector space as a category of functions
from some finite set S into Vect, and this may have extra structure if S does.
However, this is somewhat unnatural, since Vect is a category and S a mere set.
It seems more natural to consider functor categories into Vect from some category
C. These are examples of the generalized 2-vector spaces described by Elgueta
[8]. Then the above way of looking at a KV 2-vector space can be reduced to the
situation when C is a discrete category with a finite set of objects. However, there
are interesting cases where C is not of this form, and the result is still a KV vector
space. A relevant class of examples, as we shall show, come from special kinds of
groupoids.

4.1. Free 2-Vector Space on a Finite Groupoid. Since we want our 2-vector
spaces to have finitely many generators, we need a condition on the sorts of groupoids
we are talking about here. Of course, since often one works with topological
groupoids which may be uncountable, the kind of finiteness condition we will have
to apply seems restrictive. A full treatment of, for example, Lie groupoids, would
require much more consideration of infinite dimensional 2-vector spaces (and in-
deed 2-Hilbert spaces). In the meantime, we can only consider groupoids which are
essentially finite.

We first show that essentially finite groupoids are among the special categories
C we want to consider:

Lemma 4.1.1. If X is an essentially finite groupoid, Rep(X) = [X,Vect] is a
2-vector space

Proof. The groupoid X is equivalent its skeleton, X, which contains a single object
in each isomorphism class. Since X is essentially finite, this is a finite set of objects,
and each object has a finite group of endomorphisms. So

(38) X ≃
∐

x∈X

Aut(x)

where the groups Aut(x) are seen as one-object groupoids.
Then

[X,Vect] ≃
∏

x∈X

[Aut(x),Vect](39)

=
∏

x∈X

Rep(Aut(x))(40)

This inherits the biproducts from the categories Rep(Aut(x)). An irreducible
representation of an essentially finite groupoid amounts to a choice of isomorphism
class of objects [x], and an irreducible representation of the group Aut(x). By
Schur’s Lemma, these are indeed simple objects, since irreducible representations
of a group are simple.



16 JEFFREY C. MORTON

�

We notice that we are speaking here of groupoids, and any groupoid X is equiv-
alent to its opposite category Xop, by an equivalence that leaves objects intact
and replaces each morphism by its inverse. So there is no real difference between
[X,Vect], the category of Vect-valued functors from X, and [Xop,Vect], the cate-
gory of Vect-valued presheaves (or just “Vect-presheaves”) on X. (We also should
note that, since our groupoids are discrete, there is no distinction here between
sheaves and presheaves).

Figure 3 is an illustration of an object in [X,Vect].

Figure 3. A Vect-valued Presheaf on X

We will use the terminology of “presheaves” for objects of [X,Vect] for the
sake of highlighting the connection between these results and the usual facts about
presheaves of sets in topos theory - which again raises questions about topologically
interesting groupoids. This will be addressed in later work, but for now we consider
the algebraic aspect of the 2-linearization construction by itself.

4.2. The Ambidextrous Adjunction. Now we want to highlight a result analo-
gous to a standard result for set-valued presheaves (see, e.g. MacLane and Moerdijk
[14], Theorem 1.9.2). This is that functors between groupoids induce 2-linear maps
between the 2-vector spaces of Vect-presheaves on them. For Set-presheaves, there
will be a left and a right adjoint to this functor. For Vect-presheaves, these coin-
cide, as we have seen in Theorem 3.2.4 (an inspection of the proof shows that this
is essentially because a finite dimensional vector space V is naturally isomorphic
to its double dual V ††, while the analogous statement is false for sets). Thus, one
says that the “pushforward” map is an ambidextrous adjoint for the pullback. For
much more on ambidextrous adjunctions and their relation to TQFTs, see Lauda
[11]). This is one important motivation for the present work. We summarize the
statement as follows.

Proposition 4.2.1. If X and Y are essentially finite groupoids, a functor f :
Y→X gives two 2-linear maps between KV 2-vector spaces:

(41) f∗ : [X,Vect]→[Y,Vect]



2-VECTOR SPACES AND GROUPOIDS 17

called “pullback along f” and

(42) f∗ : [Y,Vect]→[X,Vect]

the (two-sided) adjoint to f∗, called “pushforward along f”

Proof. For any functor F : X→Vect,

(43) f∗(F ) = F ◦ f

which is a functor from Y to Vect, the pullback of F along f .
To see that this is a 2-linear map, we recall that it is enough to show it is C-linear,

since then biproducts will automatically be preserved. But a linear combination of
maps in some hom-category in [X,Vect] is taken by f∗ to the corresponding linear
combination in the hom-category in [Y,Vect], where maps are now between vector
spaces thought of over y ∈ Y.

So indeed there is a 2-linear map f∗. But then by Theorem 3.2.4, there is a
two-sided adjoint of f∗, denoted f∗. �

Figure 4. A Functor F : Y → X Between Groupoids

In Figure 4, we see the essential information contained in a functor of groupoids.
Any groupoid is equivalent to a skeletal one (that is, one with just one object in
each isomorphism class), so we illustrate this case. A skeletal groupoid can be seen
as a set of objects, each labelled by a group. A functor between groupoids is a
set map, where each “strand” of the set map (i.e. each pair (yi, xj) of source and
image under the map) is labelled by a homomorphism fi. This takes the group Gi

of automorphisms of the source yi to the group Hj of automorphisms of the target
xj .

It will be useful to have another, more explicit, way to describe the “pushfor-
ward” map than the matrix-dependent view of Theorem 3.2.4. Fortunately, there
is a more intrinsic way to describe the 2-linear map f∗, the adjoint of f∗.

Definition 4.2.2. For a given x ∈ X, the comma category (f ↓ x) has objects
which are objects y ∈ Y equipped with maps f(y)→x in X, and morphisms which



18 JEFFREY C. MORTON

are morphisms a : y→ y′ whose images make the triangles

(44) f(y)

��

f(a)
// f(y′)

{{ww
ww

ww
ww

w

x

in X commute. Given a Vect-presheaf G on Y, define f∗(G)(x) = colimG(f ↓ x)—
a colimit in Vect.

The pushforward of a morphism b : x→x′ in X, f∗(G)(b) : f∗(G)(x)→ f∗(G)(x′)
is the induced morphism.

The comma category is the appropriate categorical equivalent of a preimage—
rather than requiring f(y) = x, one accepts that they may be isomorphic, in dif-
ferent ways. So this colimit is a categorified equivalent of taking a sum over a
preimage. The result is the Kan extension of G along f .

Consider the effect of f∗ on a 2-vector G : Y→Vect by describing f∗G :
X→Vect. If F : X→Vect is as above, there should be a canonical isomor-
phism between [G, f∗(F )] (a hom-set in [Y,Vect]) and [p∗(G), F ] (a hom-set in
[X,Vect]).

The hom-set [G, f∗(F )] is found by first taking the pullback of F along f . This
gives a presheaf on Y, namely F (f(−)). The hom-set is then the set of natural
transformations α : G→ f∗F . Given an object y in Y, α picks a linear map
αy : F (f(y))→G(y) subject to the naturality condition.

Now, we have seen that, given f : Y → X, this f∗ : [Y,Vect] → [X,Vect]
is a 2-linear map, and an ambidextrous adjoint for f∗. We would like to describe
f∗ more explicitly. We shall want to make use of the units and counits from both
the adjunction in which f∗ is a left adjoint, and that in which it is a right adjoint.
These are described in the next section.

To describe f∗ in more detail, we use the fact that both Y and X are equivalent
to unions of finite groups, and so a Vect-presheaf on Y is a functor which assigns
a representation of Aut(y) to each object y ∈ Y. Furthermore, if Y and X are
skeletal, then f : Y→X on objects can be any set map, taking objects in Y to
objects in X. For morphisms, f gives, for each object y ∈ Y, a homomorphism
from the group Aut(y) = hom(y, y) to the group Aut(f(y)).

So the pullback f∗ is fairly straightforward: given F : X→Vect, the pullback
f∗F = F ◦ f : Y→Vect assigns to each y ∈ Y the vector space F (f(y)), and
gives a representation of Aut(y) on this vector space where g : y→ y acts by f(g).
This is the pullback representation. If f is an inclusion, this is usually called the
restricted representation. The pushforward, or adjoint of pullback, for an inclusion
is generally called finding the induced representation. We remark that for the case
where f is an inclusion, Sternberg [17] gives some classical discussion of this for
complex representations, as does Benson [6] for more modules over the group ring
with a more general base ring R. Here we use the same term for the more general
case when f is any homomorphism.

For any presheaf F , the pushforward f∗F is determined by the colimit for each
component of that essential preimage. Then for each x ∈ X, we first get:

(45)
⊕

g:f(y)→ x

F (y)



2-VECTOR SPACES AND GROUPOIDS 19

Which is just the direct sum (i.e. biproduct) over the isomorphism classes in the
essential preimage of the corresponding vector spaces. However, this is not the
colimit: an object in the essential preimage is a pair (y, g), but we note that if y
and y′ are isomorphic in Y, such isomorphisms induce isomorphisms of the spaces
F (y), and the colimit will be a quotient which identifies these spaces. In general, the
colimit will be a direct sum over isomorphism classes [y] in the essential preimage.
Each term of the sum is isomorphic to the induced representation of F (y) under
the homomorphism determined by f .

Now, consider what the induced representations are for each isomorphism class.
Any isomorphism class [y] of objects in Y determines a group G = Aut(y), and sim-
ilarly [x] ∈ X determines H = Aut(x). So this reduces to the case where Y and X
are just groups (seen as one-object categories), so we have a group homomorphism
f : G→H . Using the induced algebra homomorphism f : C[G]→C[H ], one can
directly construct the induced homomorphism as a quotient: f∗V = C[H ]⊗C[G] V .

So for general groupoids, with V = F (y), we have the direct sum:

(46) (f∗F )(x) =
⊕

f(y)∼=x

C[Aut(x)] ⊗C[Aut(y)] F (y)

Figure 5 illustrates the induced representation schematically, for a single object.

Figure 5. Induced Representation from Homomorphism

4.3. Units and Counits. We have observed that the pullback and pushforward
maps f∗ and f∗ are both left and right adjoints. Thus there are two adjunctions
to consider: f∗ ⊣ f∗, where pushforward is right adjoint to pullback; and f∗ ⊣ f∗

where pushforward is left adjoint to pullback. For convenience, we refer to these
as the “right adjunction” and “left adjunction” respectively, after the position of
the pushforward. Each adjunction has unit and counit, so there are four natural
transformations to describe. We will identify them as “right” and “left” unit and
counit following the convention above. Thus, we have:

ηL : Id[Y,Vect] =⇒ f∗f∗(47)

ǫL :f∗f
∗ =⇒ Id[X,Vect](48)

ηR : Id[X,Vect] =⇒ f∗f
∗(49)

ǫR :f∗f∗ =⇒ Id[Y,Vect](50)



20 JEFFREY C. MORTON

Once again, it is useful for practical calculations to have a coordinate-dependent
form for these maps, but there is a convenient intrinsic definition which we shall
describe first. Here again, we note that Benson [6] describes the case where f is an
inclusion, in a more general setting than the complex representations we consider
here.

To begin with, we should describe the functors f∗f∗ (“push-pull”), which is
an endofunctor on [Y,Vect], and f∗f

∗ (“pull-push”), which is an endofunctor on
[X,Vect].

For the “push-pull”, f∗f∗, we first push a Vect-presheaf F on Y to one on X,
then pull back to Y. On each object y ∈ Y, this gives a new presheaf where the
vector space F (y) is replaced by the pullback (i.e. induced representation of Aut(y))
of f∗F (f(y)). But f∗F is a presheaf onX, which, at each x ∈ X, gives a colimit over
the essential preimage of x in Y, namely

⊕

[y′]|f(y′)∼=xC[Aut(x)] ⊗C[Aut(y′)] F (y′).

In the case where x = f(y), this means we get:

(51) f∗f∗F (x) =
⊕

[y′]|f(y′)∼=f(y)

C[Aut(f(y))]⊗C[Aut(y′)] F (y′)

thought of as a (left) representation of Aut(y) in the obvious way (i.e. g ∈ Aut(y)
acts on this space as f(g)).

For the “pull-push”, f∗f
∗, we first pull a Vect-presheaf G on X back to f∗G

on Y. At each y ∈ Y, this assigns the vector space f∗G(y) = G(f(y)) as a
representation of Aut(y). We then push forward to X to get, at each x ∈ X, that:

(52) f∗f
∗G(x) =

⊕

[y]|f(y)∼=x

C[Aut(x)]⊗C[Aut(y)] G(x)

Note that a priori the last space would be G(f(y)), but since f(y) ∼= x, we have also
that G(f(y)) ∼= G(x) as representations of Aut(y). Here we are implicitly taking
a colimit over the essential preimage of x, whose objects are not just y such that
f(y) ∼= x, but rather such y equipped with a specific isomorphism. These therefore
induce specific isomorphisms of G(f(y)) and G(x), and the quotient implied by the
colimit identifies these spaces.

Now, the description above accords with the usual description of these functors
in the left adjunction. Since the adjunction is ambidextrous, it applies in both
cases, but to describe the unit and counit properly, we should note that in general
the canonical description of the left and right adjunctions are different. (Here again
we note that Benson [6] shows this for modules over general rings, which in our
case are the group algebras C[Aut(y)] etc., in the case of inclusion) We need to take
account of the specific isomorphism between the form we have presented (natural
for the left adjunction), and the form which is natural for the right adjunction.

The right adjoint is given as:

(53) f∗F (y) =
⊕

[y]|f(y)∼=x

homC[Aut(x)](C[Aut(y)], F (y))

(Note that the case for groups, namely whenY andX have only one object, appears
in each term of this direct sum). The Nakayama isomorphism gives the duality
between the two descriptions of f∗, in terms of homC[Aut(x)] and ⊗C[Aut(x)], by
means of the exterior trace map. The groupoid case is just the direct sum of group



2-VECTOR SPACES AND GROUPOIDS 21

cases, which looks like:
(54)

N :
⊕

[y]|f(y)∼=x

homC[Aut(y)](C[Aut(x)], F (y))→
⊕

[y]|f(y)∼=x

C[Aut(x)] ⊗C[Aut(y)] F (y)

given by the exterior trace map in each factor of the sum:

(55) N :
⊕

[y]|f(y)∼=x

φy 7→
⊕

[y]|f(y)∼=x

1

#Aut(y)

∑

g∈Aut(x)

g−1 ⊗ φy(g)

Note that the exterior trace map gives an Aut(x)-invariant vector, but the normal-
ization is by the size of Aut(y). In the case where the homomorphism is an inclusion,
this is interpreted as trace given by a sum over cosets of Aut(y) in Aut(x), (which is
the situation usually presented in the group case). We remark here that this factor
will be important in interpreting our 2-functor Λ as a form of groupoidification.

We can now write down the units and counits explicitly for both adjunctions in
our preferred notation.

The left and right units are natural transformations which, for each Vect-
presheaf on Y or X respectively, gives a morphism which is itself a natural trans-
formation. So, in particular the left unit

(56) ηL(F )(y) : F (y)→
⊕

[y′]|f(y′)∼=f(y)

C[Aut(f(y))]⊗C[Aut(y′)] F (y′)

is given by the natural map into the counit:

(57) v 7→
⊕

[y]

(1⊗ v)

Notice the unit map has no contribution in the image from any y′ which is not
in the isomorphism class [y]. (It is a canonical map out of the limit which gives the
usual form for f∗.)

The right unit map

(58) ηR(G)(x) : G(x)→
⊕

[y]|f(y)∼=x

C[Aut(x)]⊗C[Aut(y)] f
∗G(x)

is found by composing the Nakayama isomorphism (55) with the groupoid form of
the canonical map for the right adjoint. This is a direct sum, in which each factor
is given by the multiplication map:

(59) v 7→
(

g 7→ g(v)
)

Thus, the composite is:

(60) ηR(G)(x) : v 7→
⊕

[y]|f(y)∼=x

1

#Aut(y)

∑

g∈Aut(x)

g−1 ⊗ g(v)

The left and right counits are natural transformations which, for each Vect-
presheaf on X or Y respectively, gives a morphism which is itself a natural trans-
formation. So in particular, the left counit

(61) ǫL(G)(x) :
⊕

[y]|f(y)∼=x

C[Aut(x)]⊗C[Aut(y)] f
∗G(x)→G(x)



22 JEFFREY C. MORTON

is given by summing multiplication maps:

(62)
⊕

[y]|f(y)∼=x

gy ⊗ v 7→
∑

[y]|f(y)∼=x

f(gy)v

The right counit map

(63) ǫR(F )(y) :
⊕

[y′]|f(y′)∼=f(y)

C[Aut(f(y))]⊗C[Aut(y′)] F (y′)→F (y)

is given by composing the inverse of the Nakayama isomorphism (55) with the
evaluation map from the canonical form of the right adjoint. Again, the only factor
which contributes is y′ ∼= y, and so we have:

(64)
⊕

[y′]|f(y′)∼=f(y)

φy′ 7→ φy(1)

So finally, (by using that C[Aut(f(y))] is canonically isomorphic to its dual using
the canonical inner product on the group algebra) the composite is:

(65) ǫR(F )(y) :
⊕

[y′]|f(y′)∼=f(y)

gy′ ⊗ vy′ 7→
#Aut(y)

#Aut(f(y))
gy(vy)

Here we are implicitly using the fact that the objects y′ in the essential preim-
age come equipped with isomorphisms f(y′)→ f(y) which induce specified isomor-
phisms Aut(f(y′)) ∼= Aut(f(y)). In the colimit which gave the direct sum over
isomorphism classes, these are all naturally identified.

A straightforward check (cancelling the Nakayama isomorphisms) verifies the
unit and counit identities:

(ǫL · Idf∗) ◦ (Idf∗ · ηL) = Idf∗(66)

(Idf∗ · ǫL) ◦ (ηL · Idf∗) = Idf∗(67)

(ǫR · Idf∗) ◦ (Idf∗ · ηR) = Idf∗(68)

(Idf∗ · ǫR) ◦ (ηR · Idf∗) = Idf∗(69)

5. Spans of Groupoids

We have already seen how essentially finite groupoids give rise to 2-vector spaces.
In this section, we will show the weak functoriality of these assignments. In partic-
ular, we first must describe how our 2-functor Λ will produce 2-linear maps from
spans of groupoids.

5.1. 2-Linear Maps from Spans of Groupoids. Given a span of groupoids as
in Figure 2, we can apply the functor [−,Vect] to the span diagram (7). This
functor is contravariant, so we get a cospan:

(70) [X,Vect]

[A1,Vect]

s∗
88qqqqqqqqqqq

[A2,Vect]

t∗
ffMMMMMMMMMMM

We now recall that the pullbacks s∗ and t∗ have adjoints: this is a direct con-
sequence of Theorem 4.2.1. This reveals how to transport a Vect-presheaf on A1

along this cospan. In fact, it gives two 2-linear maps, which are adjoint. Thinking



2-VECTOR SPACES AND GROUPOIDS 23

of the span as a morphism in Span(FinGpd) from A1 to A2, we find a correspond-
ing 2-linear map (though the adjoint is equally well defined). We first do a pullback
along s, giving a Vect-presheaf on X . Then we use the adjoint map t∗. So we have
the following:

Definition 5.1.1. For a span of groupoids X : A1→A2 in Span(FinGpd) define
the 2-linear map:

(71) t∗ ◦ s
∗ : [A1,Vect] −→ [A2,Vect]

Now, by Theorem 4.2.1, both s∗ and t∗ are 2-linear maps, so the composite t∗◦s
∗

is also a 2-linear map.

Remark 5.1.2. We can think of the pullback-pushforward construction as giving—
in the language of quantum field theory—a “sum over histories” for evolving a 2-
vector. Each 2-vector in [A1,Vect] picks out a vector space for each object of A1.
The 2-linear map we have described tells us how to evolve this 2-vector along a span.
First we consider the pullback to [X,Vect], which gives us a 2-vector consisting of
all assignments of vector spaces to objects of X which project to the chosen one
in A1. Each of these objects could be considered a “history” of the 2-vector along
the span. We then “push forward” this assignment to A2, which involves a colimit.
This is more general than a sum, though so one could describe this as a “colimit
of histories”. It takes into account the symmetries between individual “histories”
(i.e. morphisms in X).

So, given a span X : A1→A2, we can write Λ(X) in terms of its effect on a
Vect-presheaf G on A1, which, at any object a2 ∈ A2 gives:

(72) Λ(X)(G)(a2) = (
⊕

[x]|t(x)∼=a2

C[Aut(a2)]⊗C[Aut(x)] G(s(x)))

by exactly the same reasoning as in Section 4.3.
It is sometimes useful—particularly when we look at composition of spans—to

break up the direct sum into the contributions from different objects of A1, like
this:

(73) Λ(X)(G)(a2) =
⊕

[a1]∈A1

(
⊕

[x]

s(x)∼=a1

t(x)∼=a2

C[Aut(a2)]⊗C[Aut(x)] G(a1))

Moreover, there is a convenient way to write down the components of the 2-linear
map associated to a span, which is given by Frobenius reciprocity.

Proposition 5.1.3. Given basis elements (a1,W1) ∈ Λ(A1) and (a2,W2) ∈ Λ(A2),
the matrix elements are:

(74) Λ(X)(a1,W1),(a2,W2) ≃
⊕

[x]

homRep(Aut(x))[s
∗(W1), t

∗(W2)]

Here, the direct sum is taken over equivalence classes [x] in the essential preimage
of (a1, a2): that is, objects of X mapping to a1 and a2. For each [x], the functors
s and t define homomorphisms

(75) sx : Aut(x)→Aut(s(x))

and

(76) tx : Aut(x)→Aut(t(x))



24 JEFFREY C. MORTON

, which define the induced representations. We think of the terms of the direct sum
as “lying over” the objects x.

So using the adjoint 2-linear map

(77) t∗ : Λ(X)→Λ(A2)

to push forward a 2-vector s∗F : X→Vect to one on A2, the above is also, by
Frobenius reciprocity:

(78)
⊕

[x]

homRep(Aut(a2))[(tx)∗ ◦ (sx)
∗W1,W2]

By Schur’s lemma, this says:

(79) Λ(X)(a1,W1) =
⊕

[x]

(tx)∗ ◦ (sx)
∗(a1,W1)

since the components of Λ(X)(a1,W1) count the number of copies of W2 in the
pushforward of W1. (In the remainder of this paper, we will suppress the subscripts
and denote sx by s and tx by t when the context makes clear that we mean the
induced group homomorphism.)

So in fact, Λ(X)(a1,W1) is a direct sum of irreducible 2-vectors in Λ(A2), given
as a sum over x ∈ X restricting to a1, a2 of the induced representations along each
restriction map.

5.2. Λ and Composition. Next we show that Λ preserves horizontal composition
of functors weakly—that is, up to a natural isomorphism. That is, the composition
of the 2-linear maps must be compatible, in a weak sense, with composition of spans
of groupoids.

To construct the isomorphism explicitly, we look at the weak pullback square
in the middle of (11), since the two 2-linear maps being compared differ only by
arrows in this square. The square as given is a weak pullback, with the natural
isomorphism α “horizontally” across the square. When considering a corresponding
square of categories of Vect-presheaves, the arrows are reversed. So, including the
adjoints of t∗ and T ∗, namely t∗ and T∗, we have the square:

(80) [X ′ ◦X,Vect]
T∗

''PPPPPPPPPPPP

[X,Vect]

S∗

77ooooooooooo

t∗

''OOOOOOOOOOO [X ′,Vect]
T∗

ggPPPPPPPPPPPP

[A2,Vect]

(s′)∗

77nnnnnnnnnnnnt∗

ggOOOOOOOOOOO

Note that there are two squares here—one by taking only the “pull” morphisms
(−)∗ from the indicated adjunctions, and the other by taking only the “push”
morphisms (−)∗. The first is just the square of pullbacks along morphisms from
the weak pullback square of groupoids. Comparing these is the core of the following
theorem, which gives one of the necessary properties for Λ to be a weak 2-functor.

We give a more explicit description of the functors Λ(X ′ ◦X) and Λ(X ′) ◦Λ(X)
below, but remark that this general result is discussed by Panchadcharam [16]
(Proposition 0.0.1), and the general theory behind this elaborated on by Street
[18].



2-VECTOR SPACES AND GROUPOIDS 25

Theorem 5.2.1. The process Λ weakly preserves composition. In particular, there
is a natural isomorphism

(81) βX′,X : Λ(X ′ ◦X)→Λ(X ′) ◦ Λ(X)

Proof. Recall that, given the composite of two spans of groupoids in (11), we have
2-linear maps:

(82) Λ(X ′ ◦X) = (t′ ◦ T )∗ ◦ (s ◦ S)
∗

and

(83) Λ(X ′) ◦ Λ(X) = (t′)∗ ◦ (s
′)∗ ◦ t∗ ◦ (s)

∗

So we want to show there is a natural isomorphism:

(84) βX′,X : (t′ ◦ T )∗ ◦ (s ◦ S)
∗→(t′)∗ ◦ (s

′)∗ ◦ t∗ ◦ (s)
∗

It suffices to show that there is an isomorphism:

(85) γ : T∗ ◦ S
∗→(s′)∗ ◦ t∗

between the upper and lower halves of the square in the middle of (11) since then
βX′,X is obtained by tensoring with identities.

So first taking a Vect-presheaf F on X , we get that S∗F is a Vect-presheaf on
X ′ ◦X. Now over any fixed object x ∈ X , we have a set of objects in X ′ ◦X which
restrict to it: there is one for each choice (g, x′) which is compatible with x in the
sense that (x, g, x′) is an object in the weak pullback - that is, g : t(x)→ s′(x′).
Each object of this form is assigned

S∗F (x, g, x′) = F (x)

Further, there are isomorphisms between such objects, namely pairs (h, k) as
above. There are thus no isomorphisms except between objects (x, g1, x

′) and
(x, g2, x

′) for some fixed x and x′. For any such fixed x and x′, objects corresponding
to g1 and g2 are isomorphic if

(86) g2t(h) = p′1(k)g1

. Denote the isomorphism class of any g by [g].
Then we get:

(87) T∗ ◦ S
∗F (x′) =

⊕

x∈X

(

⊕

[x′]:t(x)∼=s′(x′)

C[Aut(x′)]⊗C[Aut(x)×Aut(t(x))Aut(x′)] F (x)
)

since Aut(x)×Aut(t(x)) Aut(x
′) is the automorphism group of the object in X ′ ◦X

which restricts to x and x′. Notice that although outside direct sum here is written
over all objects x on S, the only ones which contribute any factor are those for
which g : t(x)→ s′(x′) for some g. The inside direct sum is over all isomorphism
classes of elements g for which this occurs: in the colimit, vector spaces over objects
with isomorphisms between them are identified.

Note that in the direct sum over [g], there is a tensor product term for each class
[g] : t(x)→ s′(x′). By the definition of the tensor product over an algebra, we can
pass elements of C[Aut(x) ×Aut(t(x)) Aut(x

′)] through the tensor product. These
are generated by pairs (h, k) ∈ Aut(x) × Aut(x′) where the images of h and k are
conjugate by g so that t(h)g = gs′(k). These are just automorphisms of g: so this
says we are considering objects only up to these isomorphisms.



26 JEFFREY C. MORTON

This is the result of the “pull-push” side of the square applied to F . Now consider
the “push-pull” side: (s′)∗ ◦ t∗.

First, pushing down to A2, we get, on any object a ∈ A2

(88) t∗F (a) =
⊕

[x]|t(x)∼=a

C[Aut(a)]⊗C[Aut(x)] F (x)

Then, pulling this back up to X ′, we find:

(89) (s′)∗ ◦ t∗F (x′) =
⊕

[x]|t(x)∼=s′(x′)

(

C[Aut(t(x))] ⊗C[Aut(x)] F (x)
)

Now we define a natural isomorphism

(90) γX,X′ : T∗ ◦ S
∗→(s′)∗ ◦ t∗

as follows. For each x′, this must be an isomorphism between the above vector
spaces. The first step is to observe that there is a 1-1 correspondence between the
terms of the first direct sums, and then secondly to note that the corresponding
terms are isomorphic.

Since the outside direct sums are over all objects x ∈ X for which t(x) ∼= s′(x′),
it suffices to get an isomorphism between each term. That is, between

(91) C[Aut(x′)]⊗C[Aut(x)×Aut(t(x))Aut(x′)] F (x)

and

(92) C[Aut(t(x))] ⊗C[Aut(x)] F (x)

In order to define this isomorphism, first note that both of these vector spaces are
in fact C[Aut(x′)]-modules. An element of Aut(x′) acts on (91) in each component
by the standard group algebra multiplication, giving an action of C[Aut(x′)] by
extending linearly. An element l ∈ Aut(x′) acts on (92) by the action of s′(l)
on C[Aut(t(x))]. Two elements l1, l2 ∈ [l] in the same equivalence class have the
same action on this tensor product, since they differ precisely by (h, k) ∈ Aut(x)×
Aut(x′), so that l2t(h) = s′(k)l1.

Also, we notice that, in (91), for each g ∈ Aut(t(x)), the corresponding term of
the form C[Aut(x′)] ⊗C[Aut(x)×Aut(t(x))Aut(x′)] F (x) is generated by elements of the

form k ⊗ v, for k ∈ C[Aut(x′)]. and v ∈ F (x). These are subject to the relations
that, for any (h, k1) ∈ C[Aut(x)]× C[Aut(x′)] such that t(h) = g−1s′(k1)g:

(93) kk1 ⊗ v = k(h, k1)⊗ v = k ⊗ (h, k1)v = k ⊗ hv

since elements of C[Aut(x)]×C[Aut(x′)] act on F (x) and C[Aut(x′)] by their pro-
jections into the first and second components respectively.

Now, we define the map γx,x′ . First, for any element of the form k ⊗ v ∈
C[Aut(x′)]⊗C[Aut(x)×Aut(t(x))Aut(x′)]F (x) in the g component of the direct sum (91):

(94) γx,x′(k ⊗ v) = s′(k)g−1 ⊗ v

which we claim is in C[Aut(t(x))]⊗C[Aut(x)] F (x). This map extends linearly to the
whole space.

To check this is well-defined, suppose we have two representatives k1 ⊗ v1 and
k2⊗v2 of the class k⊗v. So these differ by an element of C[Aut(x)×Aut(t(x))Aut(x

′)],
say (h, k), so that

(95) k1 = k2k



2-VECTOR SPACES AND GROUPOIDS 27

, and

(96) hv1 = v2

where

(97) t(h) = gs′(k)g−1

But then

γx,x′(k1 ⊗ v1) = s′(k1)g
−1 ⊗ v1(98)

= s′(k2k)g
−1 ⊗ v1

= s′(k2)g
−1gs′(k)g−1 ⊗ v1

= s′(k2)g
−1t(h)⊗ v1

= s′(k2)g
−1 ⊗ hv1

while on the other hand,

γx,x′(k2 ⊗ v2) = s′(k2)g
−1 ⊗ v2(99)

= s′(k2)g
−1 ⊗ hv1

But these are representatives of the same class in C[Aut(t(x))] ⊗C[Aut(x)] F (x), so
γ is well defined on generators, and thus extends linearly to give a well-defined
function on the whole space.

Now, to see that γ is invertible, note that given an elementm⊗v ∈ C[Aut(t(x))]⊗C[Aut(x)]

F (x), we can define

(100) γ−1(m⊗ v) = 1⊗ v ∈
⊕

t(x)→ s′(x′)

C[Aut(x′)]⊗C[Aut(x)×Aut(t(x))Aut(x′)] F (x)

in the component coming from the isomorphism class of g = m−1 (we will denote
this by (1 ⊗ v)m−1 to make this explicit, and in general an element in the class of
g will be denoted with subscript g whenever we need to refer to g).

Now we check that this is well-defined. Given m1⊗ v1 and m2⊗ v2 representing
the same element m⊗ v of C[Aut(t(x)] ⊗C[Aut(x)] F (x), we must have h1 ∈ Aut(x)
with

(101) m1t(h1) = m2

and

(102) h1v2 = v1

But then applying γ−1, we get:

(103) γ−1(m1 ⊗ v1) = (1⊗ v1)m−1
1

= (1 ⊗ h1v2)m−1
1

and

(104) γ−1(m2 ⊗ v2) = (1⊗ v2)m−1
2

= (1⊗ v2)t(h1)−1m−1
1

but these are in the same component, since g ∼ g′ when g′s′(k) = t(h)g for some
h ∈ Aut(x) and k ∈ Aut(x′). But then, taking k = 1 and h = h−1

1 , we get that

m−1
1 ∼ m−1

2 , and hence the component of γ(m⊗ v) is well defined.
But then, consider m⊗ v = γ((k ⊗ v)g) = s′(k)g−1 ⊗ v. Applying γ−1 we get:

(105) γ−1 ◦ γ(k ⊗ v)g = (1⊗ v)gs′(k)−1



28 JEFFREY C. MORTON

so we hope that these determine the same element. But in fact, notice that the
morphism in the weak pullback which gives that g−1 and s′(k)g−1 are isomorphic
is just labelled by (h, k) = (1, k), which indeed takes k to 1 and leaves v intact. So
these are the corresponding elements under this isomorphism.

So γ is invertible, hence an isomorphism. Thus we define

(106) βX,X′ = 1⊗ γ ⊗ 1

This is the isomorphism we wanted. �

So the βX,X′ can now be seen as natural transformations explicitly. First consider
Λ(X ′) ◦ Λ(X), which acts on a presheaf G on A1 as follows.

Λ(X)(G)(a2) =
⊕

[x]|t(x)∼=a2

C[Aut(a2)]⊗C[Aut(x)] G(s(x)))(107)

=
⊕

[a1]∈A1

(
⊕

[x]

s(x)∼=a1

t(x)∼=a2

C[Aut(a2)]⊗C[Aut(x)] (Λ(X)(G)(a1))

and then applying Λ(X ′) to this, we get, rearranging direct sums suitably:

(Λ(X ′) ◦ Λ(X))(G)(a3)

(108)

=
⊕

[a2]∈A2

(
⊕

[x′]

s′(x′)∼=a2

t′(x′)∼=a3

C[Aut(a3)]⊗C[Aut(x′)] (Λ(X)(G)(a2))

=
⊕

[a1]∈A1

(

⊕

[a2]∈A2

⊕

[x]

s(x)∼=a1

t(x)∼=a2

⊕

[x′]

s′(x′)∼=a2

t′(x′)∼=a3

C[Aut(a3)]⊗C[Aut(x′)] C[Aut(a2)]⊗C[Aut(x)] G(a1)
)

We similarly have:
(109)

(Λ(X ′) ◦ Λ(X))(G)(a3) =
⊕

[a1]∈A1

(
⊕

[(x,f,x′)]

((s◦S)(x,f,x′)∼=a1

(t′◦T (x,f,x′)∼=a3

C[Aut(a3)]⊗C[Aut(x,f,x′)] G(a1))

The isomorphisms βX,X′ allow us to identify (108) and (109).

Remark 5.2.2. We can also describe the effect of β in coordinates - that is, in the
matrix form for a natural transformation of a 2-linear map. This illustrates the fact
that C[Aut(a2)] ∼=

⊕

W W ⊗W ⋆, where the sum is over irreducible representations
of Aut(a2). For suppose we have a composite of spans, X ′ ◦X . By Lemma 3.2.2,
we have that the functors T∗ ◦ S

∗ and (s′)∗ ◦ t∗ can be written in the form of a
matrix of vector spaces as in (17).

First, Λ(X ′ ◦ X) is given by a matrix indexed by classes of objects and rep-
resentations ([a1],W1) from A1 and ([a3],W3) from A3. In the form (74), we see



2-VECTOR SPACES AND GROUPOIDS 29

that

Λ(X ′ ◦X)([a1],W1),([a3],W3)(110)

≃
⊕

[(x,f,x′)]

homRep(Aut(x,f,x′))[(s ◦ S)
∗(W1), (t

′ ◦ T )∗(W3)]

where [(x, f, x′)] represents an equivalence class of objects in the weak pullback.
The isomorphisms βX,X′ take this to the matrix product of Λ(X ′) with Λ(X),

which has components given by a direct sum over classes and representations
([a2],W2) from A2:

[Λ(X ′ ◦X)]([a1],W1),([a3],W3)(111)

βX,X′

→
⊕

([a2],W )

[Λ(X)]([a1],W1),([a2],W2) ⊗ [Λ(X ′)]([a2],W2),([a3],W3)

Recall that [Λ(X)]([a1],W1),([a2],W2), is a direct sum over isomorphism classes of
objects of X which restrict to [a1] and [a2], with each component being

(112) homRep(Aut(x))(s
∗W1, t

∗W2)

The component [Λ(X ′)]([a2],W2),([a3],W3), is a similar sum over classes of objects of
X ′ which restrict to [a2] and [a3].

The isomorphism βX′,X identifies the composite, whose components are sums
over objects of X ′ ◦X , with this product. This β consists of isomorphisms in each
component. So in fact, the β are described by their components:

⊕

[(x,f,x′)]

[

hom((s ◦ S)∗(W1), (t
′ ◦ T )∗(W3)

]

(113)

βX,X′

−→
⊕

([a2],W2)

[

hom(s∗(W1), t
∗(W2))⊗ hom((s′)∗(W2), (t

′)∗(W3))
]

Where the second sum is over equivalence classes of (x, f, x′) such that f : t(x)→ s′(x′),
and for which s(x) = a1 and t′(x′) = a3.

Since the choice of [x] and [x′] amounts to the same thing as the choice of [a2],
this isomorphism turns a sum over representations W2 of tensor products of space
(of intertwiners), into a sum over isomorphism (conjugacy) classes of f ∈ Aut([a2]).
This isomorphism is describing how the representations in the big pullback decom-
pose.

6. Spans of Spans

The situation we are interested in can be represented as an equivalence class of
spans of spans of the following sort:

(114) X1

s1

}}||
||

||
|| t1

!!B
BB

BB
BB

B

A1 Y

s

OO

t

��

A2

X2

s2

aaBBBBBBBB

t2

==||||||||



30 JEFFREY C. MORTON

Recall that we assume weak commutativity here - that is, that there are isomor-
phisms ζs : s1 ◦ s→ s2 ◦ t and ζt : t1 ◦ s→ t2 ◦ t.

Given this situation, which is a 2-morphism for the associated bicategory of
spans, we want to get a 2-morphism in the bicategory 2Vect. That is to say, a
natural transformation α = Λ(Y ) between a pair of 2-linear maps. In this section,
we show how to construct Λ(Y ).

6.1. 2-Morphisms from Spans of Spans. We begin by noting that the diagram
(114), which weakly commutes up to isomorphisms ζs and ζt, gives rise to a diagram
of pullback functors:

(115) [X1,Vect]

s∗

��

[A1,Vect]

s2
∗

&&NNNNNNNNNNN

s1
∗

88ppppppppppp
[Y,Vect] [A2,Vect]

t1
∗

ffNNNNNNNNNNN

t2
∗

xxppppppppppp

[X2,Vect]

t∗

OO

which commutes up to isomorphisms:

(116) ζ∗s : s∗ ◦ s∗1(V )→̃t∗ ◦ s∗2(V )

and similarly

(117) ζ∗t : s∗ ◦ t∗1(V )→̃t∗ ◦ t∗2(V )

We want to get a natural transformation from Λ(X1) and Λ(X2) from this dia-
gram. In section 6.2 we show how this can be described as a “pull-push” process,
similar to the one used to define the 2-linear maps, but first it can be defined in
terms of the unit and counit maps we have already defined.

Definition 6.1.1. Given a span between spans, Y : X1→X2, for X1, X2 : A1→A2,
then

(118) Λ(Y ) : Λ(X1)→Λ(X2)

is the natural transformation given as

(119) Λ(Y ) = ǫL,t ◦ ((ζt)∗ ⊗ ((ζs)
∗)−1) ◦ ηR,s : (t1)∗s

∗
1 =⇒ (t2)∗s

∗
2

where ǫL,t is the counit (61) for the left adjunction associated to t, and ηR,s is the
unit (58) for the right adjunction associated to s.

We comment here that this composition of left unit followed by right counit can
be interpreted as a “pull-push” in a sense that can be seen more precisely when
we consider this natural transformation in coordinates. In the special case where
Ai = 1, this recovers groupoidification in the sense of Baez and Dolan, as shown in
Theorem 6.2.1.

Remark 6.1.2. Henceforth, we will assume that the diagram (114) commutes
strictly - that is, ζs and ζt are identity 2-morphisms. This is a mild assumption,
since the diagram can always be “strictified” by taking equivalent groupoids for
source and target which are skeletal. Similar arguments will follow through if not,
but in this simpler case, we simply have:

(120) Λ(Y ) = ǫL,t ◦ ηR,s : (t1)∗s
∗
1 =⇒ (t2)∗s

∗
2



2-VECTOR SPACES AND GROUPOIDS 31

For our construction to give a 2-functor, this must agree with composition in two
ways. The first is strict preservation of vertical composition; the second is preser-
vation of horizontal composition as strictly as possible (i.e. up to the isomorphisms
β which make comparison possible - as we will see). We will show in

Lemma 6.1.3. The assignment Λ(Y ) to spans of spans given in Definition 6.1.1
preserves vertical composition strictly: Λ(Y ′ ◦ Y ) = Λ(Y ′) ◦ Λ(Y ).

Proof. Suppose we have a vertical composite of two spans between spans, here
written as 2-cells:

(121) A1

X1

��X2 //

X3

BB
A2

Y
��

Y ′

��

The composition is given by a weak pullback (taken up to isomorphism) - that
is, a diagram of the form (11), with the Y and Y ′ in place of X and X ′, and the Xi

in place of the Ai. We use the same notation for the maps in all these spans. Of
course, each object in (121) comes equipped with (commuting) maps into A1 and
A2, but we can ignore these here.

So the source and target maps for Y are s and t, and those for Y ′ are s′ and t′,
and we can easily write:

(122) Λ(Y ′) ◦ Λ(Y ) = ǫL,t′ ◦ ηR,s′ ◦ ǫL,t ◦ ηR,s

Now, to write Λ(Y ′ ◦Y ), we recall that the vertical composite is formed by weak
pullback of spans, with the resulting source and target maps s ◦S and t′ ◦T , where
the groupoid in the span Y ′◦Y is the comma category whose objects are of the form
(y′, g2, y), with g2 : t(y)→ s′(y′) in X2, and S and T are the natural projections
onto Y and Y ′. Then of course

(123) Λ(Y ′ ◦ Y ) = ǫL,(t′◦T ) ◦ ηR,(s◦S)

Now, a composite of adjunctions is an adjunction (see for instance MacLane [13]
IV.8), and the unit and counit of the composite is given in a standard way, so we
have:

(124) ǫL,(t′◦T ) = ǫL,t′ ◦ (Id(t′)∗ ⊗ǫL,T ⊗ Id(t′)∗)

and

(125) ηR,(s◦S) = (Ids∗ ⊗ηR,S ⊗ Ids∗) ◦ ηR,s

So we get

(126) Λ(Y ′ ◦ Y ) = ǫL,t′ ◦ (Id(t′)∗ ⊗ǫL,T ⊗ Id(t′)∗) ◦ (Ids∗ ⊗ηR,S ⊗ Ids∗) ◦ ηR,s

So to get strict composition, we just need that

(127) (Id(t′)∗ ⊗ǫL,T ⊗ Id(t′)∗) ◦ (Ids∗ ⊗ηR,S ⊗ Ids∗) = ηR,s′ ◦ ǫL,t

This follows the same pattern as the proof for the fact that Λ weakly preserves
composition of morphisms. Note that the two sides of this expression are the top
and bottom of a (weak) pullback square. So in particular, the argument for weak



32 JEFFREY C. MORTON

preservation of composition of spans shows that we also have a pullback square for
the induced functors.

In particular (ignoring the identity maps), we first get the right unit for S :
Y ′ ◦ Y →Y , which at y ∈ G(y) ∼= G(a1) gives:

(128) ηR,S : v 7→
⊕

[(y,f,y′)]

1

#Aut(y, f, y′)

∑

g∈Aut(y)

(g−1)⊗ g(v)

and the left counit for T : Y ′ ◦ Y →Y ′ takes this to. So this gives

(129) ǫL,T ◦ ηR,S : v 7→
∑

[(y,f,y′)]

1

#Aut(y, f, y′)

∑

g∈Aut(y)

(g−1)⊗ g(v)

since the target space is now already a tensor product over C[Aut(x2)]. Similarly,
on the other side we have first the left counit for t : Y →X2, then the right unit for
s′ : Y ′→X2, giving:

(130) ηR,s′ ◦ ǫL,t : v 7→
∑

[y′]|s′(y′)∼=t(y)

1

#Aut(t(y))

∑

g∈Aut(x2)

g−1 ⊗ g(v)

Since the sources and targets of the maps (61) and (58) are in a pullback square,
the coefficients arising from the Nakayama isomorphisms will yield the same group
averages, and the terms of the implied direct sum correspond pairwise. So these
maps are indeed equal. �

We also must show that Λ respects horizontal composition weakly. To make this
clear, it will be convenient to write source and target 2-linear maps in the form
(108) and (109).

Lemma 6.1.4. The assignment Λ(Y ) to spans of spans given by Definition 6.1.1
preserves horizontal composition strictly, up to the isomorphism weakly preserving
composition of the source and target morphisms:
(131)

Λ(A1)

Λ(X′

1◦X1)

##

Λ(X′

2◦X2)

;;

Λ(X1)

**

Λ(X2)

44
Λ(A′

2)

Λ(X′

1)

**

Λ(X′

2)

44
Λ(A3)Λ(Y )

��
Λ(Y ′)

��

βX1,X′
1

��

β
−1

X2,X′
2

��

= Λ(A1)

Λ(X′

1◦X1)

&&

Λ(X′

2◦X2)

88
Λ(A3)Λ(Y ′◦Y )

��

Proof. (Elsewhere, we have used the same notation for horizontal and vertical com-
position of all kinds, to simplify notation and because context made this unambigu-
ous. In this proof it will be helpful to distinguish the two, so we write vertical com-
position with no symbol, concatenating natural transformations between 2-linear
maps.)



2-VECTOR SPACES AND GROUPOIDS 33

Begin by writing the spans explicitly. The situation for a horizontal composite
of 2-morphisms in Span(FinGpd) looks like:

(132) X ′
1 ◦X1

S1

zzvvvvvvvvv
T1

$$H
HHHHHHHH

X1
α1

∼
+3

s1

~~}}
}}

}}
}} t1

$$I
II

II
II

II
I X ′

1

s′1

zzvv
vv

vv
vv

vv t′1

  A
AA

AA
AA

A

A1 Y

s

OO

t

��

σoo_ _ _ τ //____ A2 Y ′

s′

OO

t′

��

σ′

oo_ _ _ _ τ ′

//___ A3

X2
α2

∼
+3

s2

``AAAAAAAA t2

::vvvvvvvvvv
X ′

2

s′2

ddIIIIIIIIII t′2

>>}}}}}}}}

X ′
2 ◦X2

S2

ddHHHHHHHHH T2

::vvvvvvvvv

(Note that here again we are assuming the 2-morphisms Y and Y ′ are strict, so
that s1 ◦ s = s2 ◦ t and similarly for the other composites. We represent these by
the dotted arrows σ, τ , σ′ and τ ′. As before, a similar argument would go through
if these spans of span maps were only weakly commuting, but we would need the ζ

natural transformations as discussed for (12)).
Now, the functor Λ assigns 2-linear maps to the spans X1, X2, X

′
1, and X ′

2, and
their composites, and natural transformations to Y and Y ′. Then the horizontal
composite is a natural transformation between 2-linear maps:

(133) Λ(Y ′) ◦ Λ(Y ) : Λ(X ′
1) ◦ Λ(X1)→Λ(X ′

2) ◦ Λ(X2)

And we can calculate as in the proof of Theorem 6.1.3 that:

(134) Λ(Y ′)(a1) = ǫL,t′ηR,s′ : v 7→
⊕

[y]|s′(y′)∼=x1

#Aut(y)

#Aut(y, f, y′)
v

and

(135) Λ(Y ) = ǫL,tηR,s

So the composite is just

(136) Λ(Y ′) ◦ Λ(Y ) = (ǫL,t′ηR,s′) ◦ (ǫL,tηR,s)

We recall that Λ(X ′) ◦ Λ(X) is described explicitly in (108) and Λ(X ′ ◦ X) in
(109). Finding these for the Xi gives a total of four functors here. We next describe
natural transformations between these.

As shown in Theorem 5.2.1, there are comparison isomorphisms

(137) βXi,X′
i
: Λ(X ′

i) ◦ Λ(Xi)→Λ(X ′
i ◦Xi)

which will necessarily be involved in the isomorphism we are looking for. These
derive from the α isomorphisms in the weak pullback in X ′

i ◦Xi.
Composing with these comparison isomorphisms as in (131) gives:

(138) (Ids∗1 ◦βX1,X′
1 ◦ Id(t′1)∗)(ǫL,t′ηR,s′ )(ǫL,tηR,s)(Ids2∗ ◦(βX2,X′

2)
−1 ◦ Id(t′2)∗)



34 JEFFREY C. MORTON

Now, the β isomorphisms simply allow us to identify the spaces here, so it suffices
to describe the maps, and in particular the coefficients which arise. At any presheaf
G on A1, in the summand for [a1] ∈ A1 and [x′

1] ∈ X ′
1:

(139) (ǫL,tηR,s) : v 7→
∑

[y]|s(y)∼=x1

1

#Aut(y)

∑

g∈Aut(x1)

g−1 ⊗ g(v)

which is a map between spaces of the form (107) associated to X1 and X2. Now
this becomes the v′ when we take the full map between spaces like (108), where we
have:

(140) (ǫL,t′ηR,s′) : v
′ 7→

∑

[y′]|s′(y)∼=x′
1

1

#Aut(y′)

∑

h∈Aut(x′
1)

h−1 ⊗ h(v′)

so finally we get:
(141)

v 7→
∑

[y′]|s′(y)∼=x′
1

1

#Aut(y′)

∑

h∈Aut(x′
1)

h−1⊗h
(

∑

[y]|s(y)∼=x1

1

#Aut(y)

∑

g∈Aut(x1)

g−1⊗g(v)
)

which we want to show is the same as the natural transformation associated to
Λ(Y ′ ◦ Y ):

(142) Λ(Y ′ ◦ Y ) = ǫL,(t,t′) ◦ ηR,(s,s′) : Λ(X
′
1 ◦X1)→Λ(X ′

2 ◦X2)

which is a map between two spaces of the form (109).
This Y ′◦Y : X ′

1◦X1→X ′
2◦X2 is a span of span maps which is given as follows.

We take the horizontal composite of the spans A1
σ
← Y

τ
→ A2 and A2

σ′

← Y ′ τ ′

→ A3.
This is a weak pullback taken up to isomorphism. The pullback square commutes
weakly, say up to ξ. Then the groupoid Y ′◦Y has maps into Y and Y ′, and therefore
by composition with s and s′, it has maps into X1 and X ′

1. By the universal
property of the weak pullback X ′

1 ◦ X1, there is a map S : Y ′ ◦ Y →X ′
1 ◦ X1.

Similarly, there is T : Y ′ ◦ Y →X ′
2 ◦X2.

We can see what this is by taking the weak pullback giving Y ′ ◦ Y , which we
take to be the comma category whose objects are of the form (y, f, y′) where f :
τ(y)→σ′(y′) in A2. Then the S and T given by the universal property are just S =
(s, s′) giving objects like (x1, f, x

′
1) and T = (t, t′) giving objects like (x2, f, x

′
2).

In particular, the morphism f ∈ A2 is left intact. (Different isomorphic choices for
weak pullback could of course change f).

Given this, we have, in the summand for a given [a1] ∈ A1: and a particular
[(x1, f, x

′
1)] ∈ X ′

1 ◦X1, we have:

(143) ηR,(s,s′) : v 7→
⊕

[y,f,y′ ]

s(y)∼=x1

s′(y′)∼=x′

1

1

#Aut(y, f, y′)

∑

(g,h)∈Aut(x,f,x′)

(g, h)−1 ⊗ (g, h)(v)

and then
(144)

ǫL,(t,t′)ηR,(s,s′) : v 7→
∑

[y,f,y′ ]

s(y)∼=x1

s′(y′)∼=x′

1

1

#Aut(y, f, y′)

∑

(g,g′)∈Aut(x,f,x′)

(g, h)−1 ⊗ (g, h)(v)



2-VECTOR SPACES AND GROUPOIDS 35

So in fact, since we are in a weak pullback square, the size of the automorphism
groups in the two expressions we have found will be in the same ratios, and so it
becomes clear that, using the β isomorphisms as seen in the proof of Theorem 5.2.1:

(145) Λ(Y ′ ◦ Y ) = βX1,X′
1(Λ(Y

′)Λ(Y ))(βX2,X′
2)

−1

as required. �

6.2. Coordinate Description of 2-Morphisms. In this section, we discuss the
behaviour of Λ on 2-morphisms, namely the assignment of a natural transformation
to a span of span maps. As discussed in Section 4, any natural transformation
between a pair of 2-linear maps between KV 2-vector spaces can be represented as
a matrix of linear operators, as in (18). We would like to describe explicitly the
linear maps composing Λ(Y ) and some consequences.

To motivate the rest, we can begin with the special case of homSpan(FinGpd)(1,1),
where 1 is the trivial groupoid with one object (which we denote ⋆) and its identity
morphism. We can summarize the effect of Λ on this hom-category by the following
theorem:

Theorem 6.2.1. On homSpan(FinGpd)(1,1), the 2-functor Λ, expressed in coordi-
nates, reproduces groupoidification in the sense of (4).

Proof. First, we note that Λ(1) ∼= Vect, since the only irreducible representation
of the trivial group (basis object) is C itself.

Since 1 is terminal in FinGpd, any groupoid has a unique map into it. Thus,
any span from 1 to 1 is of the form:

(146) 1
!
← X

!
→ 1

which just amounts to a choice of X . Then Λ(X) =!∗!
∗ can be described as a 1× 1

matrix of vector spaces,

Λ(X)(⋆,C),(⋆,C) = hom(!∗C, !∗C)(147)

∼=
⊕

[x]∈X

C(148)

since !∗C is the representation of X assigning a copy of C to each object. In
particular, inducing up the representationC gives, at each x ∈ X , the representation

(149) C[Aut(⋆)]⊗C[Aut(x)] C = C

since !∗C, is the trivial representation of Aut(x).
For each isomorphism class in X, we thus get a copy of homC,C ∼= C. This is

the vector space associated to X by groupoidification.
Similarly, a 2-morphism Y : X1→X2 just amounts to an isomorphism class of

spans of groupoids (since Y and the Xi have unique maps to !. Then the linear
map

(150) Λ(Y )(⋆,C),(⋆,C) : Λ(X1)(⋆,C),(⋆,C)→Λ(X2)(⋆,C),(⋆,C)

just becomes a map

(151) T (Y ) : C[X1]→C[X2]

given by T (Y ) = ǫL,t ◦ ηR,s.
By the above, (58), using F (x1) ∼= C, can be written:



36 JEFFREY C. MORTON

(152) ηR,s(F )(y) : C→
⊕

[y]|s(y)∼=x1

C[Aut(x1)]⊗C[Aut(y)] C

So now for each [x1] ∈ X1, every y in the essential preimage of x1 under s gets a
copy of the trivial representation C for each coset of Im(Aut(y)) in Aut((x1). This
describes a decomposition of a representation of Aut(y) in terms of irreps (all of
which are necessarily trivial in this case). Call this representation G. In particular,
a vector in ΛX1(⋆,C),(⋆,C) gives a complex number at each [x1]. The unit ηR,s takes
such a vector v to, at each y with s(y) ∼= x1,

(153)
1

#Aut(y)

∑

g∈Aut(x1)

g−1 ⊗ 1

By commutativity for the span of span maps (which is necessarily strict here!),
we also must have that
(154)

⊕

[y′]|t(y′)∼=t(y)

C[Aut(t(y))] ⊗C[Aut(y′)] G(y′) ∼=
⊕

[y′]|s(y′)∼=s(y)

C[Aut(s(y))]⊗C[Aut(y)] C

Similarly, then, using this (63) can be written:

(155) ǫL,t(G)(y) :
⊕

[y′]|t(y′)∼=t(y)

C[Aut(t(y))]⊗C[Aut(y′)] G(y′)→G(y)

So now consider the vector v ∈ Λ(X1)(⋆,C),(⋆,C) which gives 1 at [x1] and 0
elsewhere. (That is, it gives the identity intertwining map between the copies of
the representation !∗C at objects in [x1] and the zero intertwiner elsewhere). Then
the natural transformation induces a map on the coefficient:

(156) ηR,s : v 7→
⊕

[y]|s(y)∼=x1

1

#Aut(y)

∑

g∈Aut(x1)

g−1 ⊗ 1

but then suppose we look for the coefficient of the result at [x2] ∈ X2. Only those

y over [x2] will contribute, but then, since the g−1 have no effect on vectors in C,
we get:

(157) ǫL,t :
⊕

[y]|s(y)∼=x1

1

#Aut(x1)

∑

g∈Aut(x1)

g−1 ⊗ 1 7→
∑

y|(s,t)(y)∼=(x1,x2)

#Aut(x1)

#Aut(y)

But this is just

(158) #Aut(x1)
∑

y|(s,t)(y)∼=(x1,x2)

1

#Aut(y)
= #Aut(x1)| ̂(x1, x2)|

where the second term is the groupoid cardinality of the essential preimage of
(x1, x2). This is just the coefficient we find in groupoidification in the sense of Baez
and Dolan. �

Similar calculations apply for less trivial situations as well, although for these
we will require a little more of the representation theory of the groupoids Ai.

Lemma 6.2.2. Given a (strict) span between spans, Y : X1→X2, for X1, X2 :
A1→A2, then the natural transformation

(159) Λ(Y ) : Λ(X1)→Λ(X2)



2-VECTOR SPACES AND GROUPOIDS 37

is a natural transformation given by a matrix of linear operators:

(160) Λ(Y )([a1],W1),([a2],W2) : Λ(X2)([a1],W1),([a2],W2)→Λ(X2)([a1],W1),([a2],W2)

or equivalently

Λ(Y )([a1],W1),([a2],W2) :
⊕

[x1]

homRep(Aut(x1))[s
∗
1(W1), t

∗
1(W2)](161)

→
⊕

[x2]

homRep(Aut(x2))[s
∗
2(W1), t

∗
2(W2)]

Such that for each block ([x1], [x2]), the corresponding linear operator behaves as
follows: for f ∈ hom[s∗1(W1), t

∗
1(W2)] we get:

(162) Λ(Y )([a1],W1),([a2],W2)|(x1,x2)(f) = |
̂(x1, x2)|

∑

g∈Aut(x1)

g−1fg

where ̂(x1, x2) is the essential preimage of (x1, x2) under (s, t), namely the comma
category ((s, t) ↓ (x1, x2)).

Proof. The argument here is similar to that in Theorem 6.2.1, except that we must
deal with nontrivial representations of the Aut(xi). That is, when we apply the
Nakayama isomorphism, and the evaluation maps, we cannot use triviality. The
“group-averaging” acting on intertwiners in the expression we have given is exactly
the exterior trace used in the Nakayama isomorphism. Here its function is to project
a linear map (a “pulled-back” intertwiner) onto a space of intertwiners as we push
it along the functor t.

In particular, the effect of ηR, s on coordinates (i.e. choosing particular repre-
sentations Wi) is to take an intertwiner f ∈ hom[s∗1(W1), t

∗
1(W2)] and produce an

intertwiner at the representations pulled back to Y . The counit ηL, t “pushes” this
down to an intertwiner in hom[s∗2(W1), t

∗
2(W2)]. The group averaging ensures this

will be an intertwiner itself. �

Remark 6.2.3. Using the formula for composition of 2-linear maps and natural
transformations in a general 2-vector space, we can readily see how horizontal and
vertical composition work.

Vertical composition is given by composition of linear maps component-wise, so
we have:

(163) Λ(Y ′ ◦ Y )([a1],W1),([a2],W2)

with components given by by:
⊕

([x1],[x3])

| ̂(x1, x3)|
∑

g∈Aut(x3)

g−1fg(164)

=
⊕

([x1],[x3])

∑

[x2]

| ̂(x2, x3)| · | ̂(x1, x2)| ·#Aut(x2)
(

∑

g∈Aut(x3)

g−1fg
)

This uses the fact that the two group averages each give projections into spaces
of intertwiners, which is redundant, so we omit one, taking only the order of the

group. We also use that ̂(x1, x3) is a subgroupoid of Y ′◦Y . In fact, it is a union over
all equivalence classes [x2] in X2 of the objects in the weak pullback Y ′ ◦ Y based
over [x2], which gives the sum over [x2] (which performs the matrix multiplication
in each component).



38 JEFFREY C. MORTON

The horizontal composite, Λ(Y ′ ◦ Y ) ∼= Λ(Y ′) ◦ Λ(Y ), on the other hand, in-
volves “matrix multiplication” at the level of composition of 2-linear maps. The
(([a1],W1), ([a3],W3)) component of the product is a linear map given as a block
matrix with one block for each basis 2-vector. The blocks consist of the tensor
products of the matrices from the components of Λ(Y ) and Λ(Y ′). In particular,
the β isomorphisms from the horizontal composition of source and target induce
an isomorphism which acts on intertwiners ι⊗ ι′ by:

(

⊕

([x1,f1,x′

1
])

([x2,f2,x
′

2])

| ̂((x1, x
′
1), (x2, x

′
2))|

∑

(g,g′)∈Aut([x1],[x′

1])

(g, g′)−1ι⊗ ι′(g, g′)
)

(165)

∼=
⊕

([a2],W2)

(

⊕

([x1],[x2])

| ̂(x1, x2)|
∑

g∈Aut(x1)

g−1ιg
)

⊗
(

⊕

([x′

1],[x
′

2])

| ̂(x′
1, x

′
2)|

∑

g′∈Aut(x′

1)

(g′)−1ι′g′
)

=
⊕

([a2],W2)

(

⊕

([x1],[x2])

([x′

1],[x
′

2])

| ̂(x1, x2)| · | ̂(x′
1, x

′
2)|

∑

(g,g′)∈Aut(x1)×Aut(x′

1)

(g, g′)−1ι⊗ ι′(g, g′)
)

Here, we note that since Y ′ ◦ Y is a weak pullback over A2, its objects consist of
triples (y, h, y′), we implicitly have a sum over [y, h, y′] in the groupoid cardinality,

which is | ̂(x1, x2)| · | ̂(x′
1, x

′
2)| · |Aut(a2).

7. Main Theorem

Having now described the effect of the functor Λ at each level - groupoids, spans,
and spans of spans—it remains to check that these really define a 2-functor of the
right kind. We begin by explicitly laying out what this 2-functor is, then verify the
remaining properties.

7.1. The 2-Linearization Functor. We have been defining the maps involved
in Λ throughout the last few sections, so here we collect the full definition in one
place.

Definition 7.1.1. The 2-linearization process Λ : Span(FinGpd)→2Vect is de-
fined as follows:

• For an essentially finite groupoid A it assigns:

(166) Λ(A) = [A,Vect]

• For a span of groupoids:

(167) A
s
←X

t
→B

it assigns:

(168) Λ(S) = t∗ ◦ s
∗



2-VECTOR SPACES AND GROUPOIDS 39

• For a (strictly commuting) span of maps between two spans with the same
source and target:

(169) X1

s1

~~}}
}}

}}
}} t1

  A
AA

AA
AA

A

A Y

s

OO

t

��

B

X2

s2

``AAAAAAAA

t2

>>}}}}}}}}

Λ assigns a natural transformation:

(170) Λ(Y ) = ǫL,t ◦ ηR,s : (t1)∗s
∗
1 =⇒ (t2)∗s

∗
2

(and analogously for weakly commuting spans of maps as in Definition
6.1.1)

Λ also associates the following:

• For each composable pair X : A1→A2 and X ′ : A2→A3, a natural iso-
morphism

(171) β : Λ(X ′ ◦X)→Λ(X ′) ◦ Λ(X)

, as described in Theorem 5.2.1.
• For each object X ∈ FinGpd, the natural transformation

(172) UB : 1Λ(B)
∼
→ Λ(1B)

is the natural transformation induced by the equivalence between B and 1B.

Then we have the following:

Theorem 7.1.2. The construction given in Definition 7.1.1 defines a weak 2-
functor Λ : Span(FinGpd)→2Vect .

Proof. First, we note that by the result of Lemma 4.1.1, we know that Λ assigns a
2-vector space to each object of Span(FinGpd).

If S : B→B′ span of essentially finite groupoids—i.e. a morphism in Span(FinGpd),
the map Λ(S) defined in Definition 5.1.1 is a linear functor by the result of The-
orem 4.2.1, since it is a composite of two linear maps. This respects composition
of morphisms, as shown in Theorem 5.2.1, and of 2-morphisms in both horizontal
and vertical directions, as shown in Theorems 6.1.3 and 6.1.4.

Next we need to check that our Λ satisfies the remaining properties of a weak 2-
functor: that the isomorphisms from the weak preservation of composition and units
satisfy the requisite coherence conditions; and that Λ strictly preserves horizontal
and vertical composition of natural transformations.

The coherence conditions for the compositor morphisms

(173) βS,T : Λ(T ◦ S)→Λ(T ) ◦ Λ(S)



40 JEFFREY C. MORTON

and the associator say that these must make the following diagram commute for
all composable triples (X,X ′, X ′′):

(174)

Λ(X ′′) ◦ Λ(X ′) ◦ Λ(X)

Λ(X ′′ ◦X ′) ◦ Λ(X)

Λ((X ′′ ◦X ′) ◦X)Λ(X ′′ ◦ (X ′ ◦X))

Λ(X ′′) ◦ Λ(X ′ ◦X)

1⊗β2,1

66nnnnnnnnnnnnnnn

β3,2⊗1

hhPPPPPPPPPPPPPPP

β3,21

VV,,,,,,,,,,,,

β32,1

HH������������

Λ(αX′′,X′,X )
//

We implicitly assume here a trivial associator for the 2-linear maps in the expres-
sion Λ(X ′′)◦Λ(X ′)◦Λ(X). This is because each 2-linear map is just a composite of
functors, so this composition is associative. But note that we can similarly assume,
without loss of generality, that the associator α for composition of spans is trivial.
The composite X ′ ◦X is a weak pullback. This is only defined up to isomorphism,
but one candidate is the comma category for any x ∈ A2. Any other candidate is
isomorphic to this one. But then, the associator

(175) αX′′,X′,X : Λ(X ′′ ◦ (X ′ ◦X))→Λ((X ′′ ◦X ′) ◦X)

is just given by the obvious canonical map between the comma categories. In
particular, both composites give comma categories whose objects are determined
by choices (x, f, x′, g, x′′) where f : t1(x)→ s2(x

′) and g : t2(x
′)→ s3(x

′′), and
whose morphisms are triples of morphisms in X×X ′×X ′′ making the appropriate
diagrams commute. However, these comma categories are defined in terms of pairs,
with different parenthesizations. So αX′′,X′,X is the evident isomorphism between
these composites.

So it suffices to show that, up to this identification:

(176) (1⊗ βX′,X) ◦ βX′′,X′◦X = (βX′′,X′ ⊗ 1) ◦ βX′′◦X′,X

The β isomorphisms are given by the α up to which the weak pullbacks commute,
and so are given by choices of the functions f ∈ A2 and g ∈ A3 in the comma
categories. The associator isomorphism induces an corresponding isomorphism be-
tween these composite β maps by the correspondence between the choices of f and
g in the pullback squares on each side of this equation. So indeed, this is true.

In general, the coherence conditions for the “unit” isomorphism

(177) UA : 1Λ(A)
∼
→ Λ(1A)



2-VECTOR SPACES AND GROUPOIDS 41

which accomplishes weak preservation of identities, say that it must make the fol-
lowing commute for any span X : A1→A2:

(178) Λ(X)

Λ(X) ◦ Λ(1A1)

1⊗UA1

OO

Λ(X ◦ 1A1)

Λ(rX)

eeLLLLLLLLLLLLLLLLLLLLL
βX,1A1oo

where rA1 is the right unitor for A1. There is also the symmetric condition for the
left unitor.

We notice that, as with Λ(1A1), Λ(rA1) is equivalent to the identity. The map
rX : X ◦ 1A1→X is the canonical isomorphism taking composition of X with an
identity span to X which is just a projection from a comma category. Since X ◦1A1

and X are thus isomorphic, .
So the condition amounts to the fact that βX,1A1

: Λ(X ◦1A1)→Λ(X)◦Λ(1A1) =

Λ(X) is equivalent to the identity in such a way that (178) commutes. But this is
immediate since this β map is being applied to an identity span. �

8. Acknowledgements

The author would like to recognize the invaluable assistance of John Baez, whose
advice and guidance made possible the Ph.D. thesis work which led to this project;
to acknowledge the useful discussions with and help of James Dolan, Derek Wise,
Alex Hoffnung, Jamie Vicary, and Dan Christensen; and to the editors and referees
whose copious suggestions greatly improved the material and its presentation.

Appendix A. Weak Preservation of Composition

In this appendix, we give some background to the definition of composition of
spans of groupoids, namely comma categories. We also give a note on a key element
of the proof of Theorem 5.2.1, which states that the putative 2-functor Λ weakly
preserves this composition. We rely on the fact that a pullback square of groupoids
gives rise to a square of 2-linear maps, which satisfies the Beck-Chevalley condition.
We discuss this here as well.

A.1. Background on Comma Categories. We now recall some facts about
comma categories, which play a role in our construction of our 2-functor Λ in
the composition of spans of groupoids, via weak pullback.

Definition A.1.1. Given a diagram of categories A
F
→C

G
←B. Then an object in

the comma category (F ↓ G) consists of a triple (a, f, b), where a ∈ A and b ∈ B
are objects, and f : F (a)→G(b) is a morphism in C. A morphism in (F ↓ G) from
(a1, f1, b1) to (a2, f2, b2) consists of a pair of morphisms (h, k) ∈ A×B making the



42 JEFFREY C. MORTON

square

(179) F (a1)
f1 //

F (h)

��

G(b2)

G(k)

��

F (a2)
f2

// G(b2)

commute.

Remark A.1.2. Note that in a weak pullback, the morphisms f would be required
to be an isomorphism, but when we are talking about a weak pullback of groupoids,
these conditions are the same.

The comma category has projection functors which complete the (weak) pullback
square for the two projections:

(180) (F ↓ G)

PA

{{ww
ww

ww
ww

w
PB

##G
GG

GG
GG

GG

A

F
$$H

HH
HH

HH
HH

H
α

∼
+3 B

G
{{vv

vv
vv

vv
vv

C

such that (F ↓ G) is a universal object (in Cat) with maps into A and B making
the resulting square commute up to a natural isomorphism α. This satisfies the
universal condition that, given any other category D with maps to A and B, there
is an equivalence between [D,C] and the comma category (P ∗

A, P
∗
B) (where PS∗ and

PT ∗ are the functors from D to B which factor through PS and PT respectively).
This is the weak form of the universal property of a pullback.

So suppose we restrict to the case of a weak pullback of groupoids. This is
equivalent to the situation where A, B and C are skeletal - that is, each is just
a disjoint union of groups. Then the set of objects of (F ↓ G) is a disjoint union
over all the morphisms of C (which are all of the form g : x→ x for some object
x) of all the pairs of objects a ∈ A and b ∈ B with g : F (a)→G(b). In particular,
since we assume C is skeletal, this means F (a) = G(b), though there will be an
instance of this pair in (F ↓ G) for each g in the group of morphisms on this object
F (a) = G(b).

So as the set of objects in (F ↓ G) we have a disjoint union of products of sets—
for each c ∈ C, we get |Aut(c)| copies of F−1(c) ×G−1(c). The set of morphisms
is just the collection of commuting squares as in (179) above.

Note that if we choose a particular c and g : c→ c, and choose objects a, b with
F (a) = c, G(b) = c, and if H = Aut(a), K = Aut(b) and M = Aut(c), then the
group of automorphisms of (a, g, b) ∈ (F ↓ G) is isomorphic to the fibred product
H ×M K. In particular, it is a subgroup of the product group H × K consisting
of only those pairs (h, k) with F (h)g = gG(k), or just F (h) = gG(k)g−1. We can
call it H ×M K, keeping in mind that this fibred product depends on g. Clearly,
the group of automorphisms of two isomorphic objects in (F ↓ G) are isomorphic
groups.

Now, as we saw when discussing comma squares, the objects of the weak pullback
X ′ ◦X consist of pairs of objects, x ∈ X , and x′ ∈ X ′, together with a morphism in



2-VECTOR SPACES AND GROUPOIDS 43

A2, g : t(x)→ s′(x′). The morphisms from (x1, g1, x
′
1) to (x2, g2, x

′
2) in the weak

pullback are pairs of morphisms, (h, k) ∈ X ×X ′, making the square

(181) t(x1)
g1 //

t(h)

��

s′(x′
2)

s′(k)

��

t(x2) g2
// s′(x′

2)

commute.
We may assume that the groupoids we begin with are skeletal—if not, we replace

the groupoid with its skeleton, so the objects are just isomorphism classes of the
original objects. Then recall from Section 5.1 that in this weak pullback the set of
objects in X ′ ◦X is a disjoint union of products of sets - for each a ∈ A2, we get
|Aut(a)| copies of t−1(a)× (s′)−1(a).

A.2. The Beck Condition.

Remark A.2.1. The isomorphism α in the weak pullback square (11) gave rise to
a natural isomorphism:

(182) α∗ : T ∗ ◦ (s′)∗→S∗ ◦ t∗

Given an object in the composite X ′ ◦ X , α gives an isomorphism of the two
restrictions to A2, through X and X ′.

What we proved is that the other square—the “mate” under the adjunctions,
also has a natural isomorphism (“vertically” across the square), namely that there
exists:

(183) βX,X′ : T∗ ◦ S
∗→(s′)∗ ◦ t∗

In fact, these are related by the units for both pairs of adjoint functors:

(184) ηR,T : 1Λ(X′◦X)→T∗ ◦ T
∗

and

(185) ηR,t : 1Λ(X)→ t∗ ◦ t
∗

So the desired “vertical” natural transformation across the square (80) is deter-
mined by the condition that it complete the following square of natural transfor-
mations to make it commute:

(186) T∗ ◦ S
∗

1⊗ηR,t
+3

βX,X′

��
�
�
�

�
�
� T∗ ◦ S

∗ ◦ t∗ ◦ t∗

1⊗(α∗)−1⊗1

��

(s′)∗ ◦ t∗
1⊗ηR,T

+3 T∗ ◦ T
∗ ◦ (s′)∗ ◦ t∗

The crucial element of this is the fact that the (weak) pullback square for the
groupoids in the middle of the composition diagram gives rise to a (weak) pullback
square of Vect-presheaf categories. This is shown by Ross Street [18]. This is the
Beck-Chevalley (BC) condition, which is discussed by Bénabou and Streicher [5],
MacLane and Moerdijk [14], and by Dawson, Paré and Pronk [7].



44 JEFFREY C. MORTON

References

[1] Baez, J. Higher-dimensional algebra II: 2-hilbert spaces. Adv. Math. 127 (1997), 125–189.
[2] Baez, J. Higher-dimensional algebra VII: Groupoidification.

http://math.ucr.edu/home/baez/hda7.pdf.
[3] Baez, J., and Crans, A. Higher-dimensional algebra VI: Lie 2-algebras. Theory and Appli-

cations of Categories 12 (2004), 492–528.
[4] Baez, J., and Dolan, J. From finite sets to Feynman diagrams. In Mathematics Unlimited

- 2001 And Beyond (2001), B. Engquist and W. Schmid, Eds., Springer Verlag. Preprint at
arXiv:math.QA/0004133.

[5] Bénabou, J., and Streicher, T. Beck-Chevalley condition and exact squares. Unpublished.
[6] Benson, D. Representations and Cohomolgy I: Basic representation theory of finite groups

and associative algebras. Cambridge studies in advanced mathematics. Cambridge University
Press.

[7] Dawson, R. J. M., Paré, R., and Pronk, D. A. Universal properties of span. Theory and

Applications of Categories 13, 4 (2004), 61–85.
[8] Elgueta, J. Generalized 2-vector spaces and general linear 2-groups. J. Pure Appl. Alg. 212

(2008), 2067–2091.
[9] Freyd, P. Abelian Categories: An Introduction to the Theory of Functors. Harper & Row,

1964.
[10] Kapranov, M., and Voevodsky, V. 2-categories and Zamolodchikov tetrahedron equations.

Proc. Symp. Pure Math 56 Part 2 (1994), 177–260.
[11] Lauda, A. D. Frobenius algebras and ambidextrous adjunctions. Theory and Applications of

Categories 16, 4 (2006), 84–122.
[12] Lawvere, W. F. Functorial Semantics of Algebraic Theories and Some Algebraic Problems

in the Context of Functorial Semantics of Algebraic Theories. PhD thesis, Columbia Univer-
sity, 1963. Reprinted in Theory and Applications of Categories, 2004.

[13] MacLane, S. Categories for the Working Mathematician. No. 5 in Graduate Texts in Math-

ematics. Springer, 1971.
[14] MacLane, S., and Moerdijk, I. Sheaves in Geometry and Logic: A First Introduction to

Topos Theory. Universitext. Springer Verlag, 1992.
[15] Morton, J. C. Extended TQFT’s and Quantum Gravity. PhD thesis, University of California,

Riverside, 2007. arxiv:math/0710.0032.
[16] Panchadcharam, E. Categories of Mackey Functors. PhD thesis, Macquarie University,

2006.
[17] Sternberg, S. Group theory and physics. Cambridge University Press, 1994.
[18] Street, R. Enriched categories and cohomology. Quaestiones Mathematicae 6 (1983), 265–

283. Reprints in Theory and Applications of Categories.

Mathematics Department, University of Western Ontario

E-mail address: jeffrey.c.morton@gmail.com


	Abstract
	1. Introduction
	2. The Bicategory Span(bold0mu mumu FinGpdFinGpdFinGpdFinGpdFinGpdFinGpd)
	3. Kapranov-Voevodsky 2-Vector Spaces
	3.1. Definition
	3.2. Classification Theorems
	3.3. Example: Group 2-Algebra

	4. KV 2-Vector Spaces and Finite Groupoids
	4.1. Free 2-Vector Space on a Finite Groupoid
	4.2. The Ambidextrous Adjunction
	4.3. Units and Counits

	5. Spans of Groupoids
	5.1. 2-Linear Maps from Spans of Groupoids
	5.2.  and Composition

	6. Spans of Spans
	6.1. 2-Morphisms from Spans of Spans
	6.2. Coordinate Description of 2-Morphisms

	7. Main Theorem
	7.1. The 2-Linearization Functor

	8. Acknowledgements
	Appendix A. Weak Preservation of Composition
	A.1. Background on Comma Categories
	A.2. The Beck Condition

	References


