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Abstract

The Pinsker subgroup of an abelian group with respect to an endomorphism was introduced in the context of
algebraic entropy. Motivated by the nice properties and characterizations of the Pinsker subgroup, we generalize
its construction in two directions. Indeed, we introduce the concept of entropy function h of an abelian category,
and we define the Pinsker radical with respect to h, so that the class of all objects with trivial Pinsker radical
is the torsion class of a torsion theory.

1 Introduction

The concept of entropy was invented by Clausius in Physics in 1865 and carried over to Information Theory
by Shannon in 1948, to Ergodic Theory by Kolmogorov and Sinai in 1958, and to Topological Dynamics by
Adler, Konheim and McAndrew in 1965 [1] (see Section 6 for the definitions of measure entropy and topological
entropy).

In the context of abelian groups, the algebraic entropy ent of endomorphisms φ of abelian groups G was
introduced first by Adler, Konheim and McAndrew [1], and later on by Weiss [45], using trajectories of finite
subgroups F of G with respect to φ (see Section 5.2). So the algebraic entropy ent is appropriate for endomor-
phisms of torsion abelian groups. More precisely, the value of ent for an endomorphism of an abelian group
coincides with the value of ent for the restriction of the endomorphism to the torsion part of the group, and so
it is trivially zero for endomorphisms of torsion-free abelian groups.

Peters [34] modified the definition of algebraic entropy for automorphisms of arbitrary abelian groups, using
non-empty finite subsets instead of finite subgroups. In [11] this notion was extended to endomorphisms of
abelian groups (see Section 5.1). We denote the algebraic entropy defined in this way by ha.

Another kind of algebraic entropy generalizing ent was introduced in [38], namely, the i-entropy enti defined
for endomorphisms of modules with respect to an additive invariant i (see Section 5.3).

In the framework of Ergodic Theory, the Pinsker σ-algebra P(φ) of a measure preserving transformation φ of
a measure space (X,B, µ) is defined as the maximum σ-subalgebra of B such that φ restricted to (X,P(φ), µ �B)
has measure entropy zero.

A similar concept was introduced in Topological Dynamics as follows. A topological flow is a pair (X,φ),
where X is a compact Hausdorff space and φ : X → X a homeomorphism. Moreover, a factor (π, (Y, ψ)) of
(X,φ) is a topological flow (Y, ψ) together with a continuous surjective map π : X → Y such that π ◦ φ = ψ ◦ π.
A topological flow (X,φ) admits a greatest factor of zero topological entropy, called topological Pinsker factor
[4] (see also [30]).

The counterpart of these notions for the algebraic entropy was introduced and studied in its various aspects
in [12]. For an abelian group G and an endomorphism φ of G, the Pinsker subgroup is the greatest φ-invariant
subgroup of G where the restriction of φ has zero algebraic entropy ha.
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The aim of this paper is two-fold. On one hand, we address the category-minded reader with a blend of
results showing the necessity to develop a rigorous categorical approach to entropy. On the other hand, we
generalize the construction of the Pinsker subgroup from [12] in several directions.

First, we replace the category of abelian groups by abelian categories. Second, we introduce a general
(abstract) notion of entropy function for abelian categories in Definition 1.1. We impose only three very mild
axioms (A1), (A2) and (A3), and we show that they form a minimal set of properties sufficient to carry out the
construction of the Pinsker radical (see Remark 2.18). The essence of our approach is to make clear that many
of the results on the already defined entropies can be proved for abstractly defined entropy functions, without
any recourse to the specific formulas defining the known entropies. This should be compared with the totally
opposite approach in [12], where no use was made of (A2), but the specific features of the algebraic entropy
ha were heavily used to establish the polynomial vs exponential growth dichotomy. Third, in the context of
module categories we introduce several radicals capturing the dynamical behavior of module endomorphisms
and “approximating” the Pinsker submodule. These radicals are used to develop a larger set of axioms with the
aim to determine uniquely the entropy function.

A categorical approach to entropy from a completely different point of view is given in [21] (se also [10]).

1.1 Main results

In the sequel M will be a well-powered cocomplete abelian category.

Definition 1.1. An entropy function h of M is a function h : M→ R≥0 ∪ {∞} such that:

(A1) h(0) = 0 and h(M) = h(N) if M and N are isomorphic objects in M;

(A2) h(M) = 0 if and only if h(N) = 0 = h(Q) for every exact sequence 0 −→ N −→M −→ Q −→ 0 in M;

(A3) for a set {Mj : j ∈ I} of objects of M, h(
⊕

j∈JMj) = 0 if and only if h(Mj) = 0 for all j ∈ J .

An entropy function h of M is binary if it takes only the values 0 and ∞.

A function h with (A1) is called (for obvious reasons) an invariant of M. In the case M = ModA is the
category of left A-modules over a ring A, the axiom (A3), in the presence of (A1) and (A2), is equivalent to:
if M ∈ModA and M is direct limit of its submodules {Mj : j ∈ J}, then h(M) = 0 if and only if h(Mj) = 0
for every j ∈ J . Moreover, the length functions in the sense of [37, 40] (see Definition 3.12) are special entropy
functions of ModA, so our approach generalizes also this known notion.

Section 2 is dedicated to entropy functions of M. In Section 2.1 we define a preorder � of the class H(M)
of all entropy functions of M induced by the order of R≥0 ∪ {∞}. It makes (H(M),�) a complete lattice as
well as its sublattice (Hb(M),�) of all binary entropy functions of M (see Proposition 2.3 and Corollary 2.4,
respectively).

In Section 2.2 we define the Pinsker radical Ph : M →M with respect to an entropy function h of M, and
we prove that it is a hereditary radical in Theorem 2.10. This is a counterpart of the Pinsker subgroup, defined
for the algebraic entropy ha in [12], which was the motivating point of the present paper.

It seems then natural to investigate the subclass of M consisting of all objects in M where a given entropy
function h of M takes value zero. So let

Th = {M ∈M : h(M) = 0}.

In analogy to [12], for a given entropy function h of M, we say that M has completely positive entropy if
h(N) > 0 for every non-zero subobject N of M , and we denote this by h(M) >> 0. As a natural counterpart of
Th, we define the class of all objects in M with completely positive entropy, that is,

Fh = {M ∈M : h(M) >> 0}.

Section 2.3 is dedicated to the torsion theory th = (Th,Fh) relative to the Pinsker radical Ph of M. Since Ph is
a hereditary radical, th is a hereditary torsion theory in M.

Moreover, Theorem 2.17 shows that the assignment h 7→ th is a bijective order preserving correspondence
between binary entropy functions of M and hereditary torsion theories in M. So, there may be information in
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an entropy function which is not captured by the hereditary torsion theory, and binary entropy functions are
simply those which do not contain any additional information.

In Section 3 we restrict to the fundamental case of entropy functions of module categories.

We start recalling in Section 3.1 the definition of the category FlowX of flows of a category X. Prominent
examples will be the category AbGrp of all abelian groups, and the category ModR of all left modules over
a ring R (or, more generally, an abelian category X = M). In the latter case, we denote FlowModR simply by
FlowR, and we call algebraic flow an object (M,φ) of FlowR. Theorem 3.3 shows that

FlowR
∼= ModR[t]. (1.1)

So every R[t]-module can be considered as an algebraic flow, and viceversa. In particular, an entropy function
h can be viewed equivalently as an entropy function of FlowR or as an entropy function of ModR[t].

The general Definition 1.1 of entropy function allows us to consider entropy functions in arbitrary module
categories, going “beyond the limits imposed by endomorphisms” in the leading example FlowR. Nevertheless,
we shall very often turn back to this case, which is the true source of the definition of entropy function. Indeed, in
FlowR compositions (and in particular, powers) of endomorphisms are available, and they have no counterpart
in the general case.

In Section 3.3 we discuss a collection of axioms to add to those of Definition 1.1 in order to have entropy
functions h of FlowR with a behavior closer to the original dynamical nature of this notion. Indeed, most of
these additional axioms are very simple and natural, as for example

(A0) h(0M ) = 0 and h(1M ) = 0 for every M ∈ModR.

Other axioms (that we call (A2∗), (A4), (A4∗) and (A5)) imitate the properties that give uniqueness in the
particular case of the algebraic entropy ha (see Theorem 5.5 below). However, we leave open the problem of
finding a family of axioms giving uniqueness for an abstractly defined entropy function h of FlowR.

In Section 4 we introduce radicals of the category FlowR capturing the dynamics of the endomorphisms.
These radicals do not depend on any specific entropy function, but can be compared with the Pinsker radical of
an entropy function of FlowR. The radical Q, inspired by a characterization of the Pinsker subgroup given in
[12], is defined using the quasi-periodic points. The radicals O and I, generated by all zero endomorphisms and
all identities respectively, satisfy O ≤ Q and I ≤ Q, and provide a flexible language to describe the axiom (A0).

Motivated by the fact that in FlowAbGrp the radical Q coincides with the Pinsker radical Pha , we prove
that Q ≤ Ph holds for any entropy function h of FlowR satisfying (A0) and (A4∗) (see Theorem 4.13).

We introduce two more radicals, namely A ≤ W, that correspond respectively to the notion of pointwise
integral and that of pointwise algebraic endomorphism. They both contain Q and provide a better approximation
from below and from above of the Pinsker radical (see Corollary 4.14, and see also Theorem 5.16 for a particular
case of entropy function). On the other hand, Example 5.18 shows that the Pinsker radical may fail to coincide
with A (hence with Q too).

Section 5 is dedicated to the specific known algebraic entropies, which are examples of entropy functions in
the sense of Definition 1.1. In Section 5.1 we go back to our motivating example, that is the algebraic entropy
ha of FlowAbGrp. In this particular case (1.1) gives FlowAbGrp

∼= ModZ[t]. So ha can be viewed also as an
entropy function of ModZ[t]. Section 5.2 is dedicated to the entropy function that is best understood so far,
namely the algebraic entropy ent of FlowTorAbGrp, where TorAbGrp is the category of all torsion abelian
groups. In Section 5.3 we consider the i-entropy, introduced in [38] for module categories ModR over a ring
R and additive invariants i of ModR, and developed in [37, 41]. Applying the results of Section 2 to these
particular cases, we find a torsion theory with respect to each of the considered entropy functions. Moreover,
we show that the Pinsker radical satisfies A ≤ Penti ≤W when the ring R is an integral domain (see Theorem
5.16) and actually coincides with the radical W under appropriate conditions (see Corollary 5.20).

Finally, in Section 6 we consider the measure entropy and the topological entropy. They satisfy the same
properties with respect to (A1) and (A2) of Definition 1.1, but they are continuous under taking inverse limits.
So we give an idea on how it could be possible to proceed in this different situation and leave open the problem
to treat these what we call “contravariant entropy functions”.

Parts of these results, in preliminary form, were exposed at seminar talks by the first named author at the
Seminar of Dynamical Systems at the Hebrew University of Jerusalem, the Mathematical Colloquium of Bar Ilan
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University of Tel Aviv and the Seminar of Category Theory at Coimbra University in the autumn of 2007. It is a
pleasure to thank the participants of these seminars, as well as Luigi Salce and Simone Virili (who gave us copies
of preliminary versions of [37, 41] in May 2010) for useful comments. Last but not least, thanks are due also to
Peter Vamos, who kindly sent his paper [40] to the first named author in the autumn of 2007 (unfortunately, we
realized the full power of Vamos’ ideas only after reading [37]).

Notation and terminology

We denote by Z, N, N+, Q and R respectively the set of integers, the set of natural numbers (including 0), the
set of positive integers, the set of rationals and the set of reals. Moreover, R≥0 = {r ∈ R : r ≥ 0}. For m ∈ N+,
we use Z(m) for the finite cyclic group of order m. The free-rank of an abelian group G is denoted by r0(G).

Let R be a ring. We denote by R[t] the ring of polynomials with coefficients in R. We indicate with ModR
the category of left R-modules. For M ∈ModR, the submodule of torsion elements of M is t(M), while End(M)
is the ring of all endomorphisms of M .

For an abelian category M we write M ∈M if M is an object of M and N ⊆ M if N is a subobject of M .
For M ∈M, we denote by 0M the zero morphism of M and by 1M the identity morphism of M . Moreover, for
M1,M2 ⊆ M , we denote by M1 +M2 the join of M1 and M2 and by M1 ∩M2 the intersection of M1 and M2.
If N is a subobject of M , M/N is the quotient object. For a morphism f : M → N we denote by f(M) the
image of f , which is a subobject of N . Moreover, if i : K →M is a subobject of M , f(K) stands for the image
of f ◦ i, which is a subobject of N .

For a family {Mj : j ∈ J} of objects of M, we denote by
⊕

i∈JMj the coproduct and by
∏
j∈JMj the

product, if they exist. In particular, for a cardinal α we denote by M (α) the coproduct
⊕

αM (and by Mα the
product

∏
αM) of α many copies of M .

If M is cocomplete, the join
∑
j∈JMj of a family {Mj : j ∈ J} of subobjects of M ∈ M, is the image

f(
⊕

j∈JMj) of the coproduct
⊕

j∈JMj under the canonical morphism f :
⊕

j∈JMj →M .

2 The Pinsker torsion theory

2.1 The lattice of entropy functions

As imposed in the introduction, M will be a well-powered cocomplete abelian category in the sequel.

Discussion 2.1. (a) The axiom (A2) implies that h(M1⊕. . .⊕Mn) = 0 if and only if h(M1) = . . . = h(Mn) = 0
for M1, . . . ,Mn ∈M.

(b) If M ∈M and M1, . . . ,Mn are subobjects of M , then h(M1 + . . .+Mn) = 0 if h(M1) = . . . = h(Mn) = 0.
This follows from (a) and (A2), since M1 + . . .+Mn is a quotient of M1 ⊕ . . .⊕Mn.

(c) Item (b) can be stated in the following more general form, which is equivalent to (A3) in the presence of
(A1) and (A2): for a set {Mj : j ∈ J} of objects of M , h(

∑
j∈JMj) = 0 if and only if h(Mj) = 0 for all

j ∈ J .

Remark 2.2. For a ring A and ModA, the axiom (A3) holds precisely when, for M direct limit of its submodules
{Mj : j ∈ J}, h(M) = 0 if and only if h(Mj) = 0 for all j ∈ J .

For M ∈ModA, let F(M) be the family of all finitely generated submodules of M . By the previous part of
the remark, the axiom (A3) is equivalent also to: h(M) = 0 if and only if h(N) = 0 for every N ∈ F(M).

Moreover, h(A) = 0 yields that h ≡ 0 because of Discussion 2.1(c).

The order ≤ in R≥0 ∪ {∞} (with x < ∞ for all r ∈ R≥0) defines a partial order � in the class H(M) of all
entropy functions of M by letting

h1 � h2 if and only if h1(M) ≤ h2(M) for every M ∈M.

For h1, h2 ∈ H(M) define h1 + h2 by (h1 + h2)(M) = h1(M) + h2(M) for every M ∈M. Then h1 + h2 ∈ H(M).
In particular, this defines the multiples nh ∈ H(M) for h ∈ H(M) and n ∈ N+ (as usual, we agree that
x+∞ =∞+ x =∞ for all x ∈ R≥0 ∪ {∞}; in particular, n∞ =∞ for n ∈ N+).

Proposition 2.3. The pair (H(M),�) is a (large) complete lattice.
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Proof. Since the constant zero is the bottom element of H(M), to show that (H(M),�) is a complete lattice it
suffices to verify that there exist arbitrary suprema. So, for a class {hj ∈ H(M) : j ∈ J}, let h = supj∈J hj be
defined by h(M) = supj∈J hj(M) for every M ∈M. It is easy to see that h is still in H(M).

Let
Hb(M) = {h ∈ H(M) : h is binary}.

Corollary 2.4. The sublattice (Hb(M),�) of (H(M),�) is a complete lattice.

Proof. It is easy to see that Hb(M) is stable under taking suprema and infima in H(M).

This allows us to give the following

Definition 2.5. The binary hull of h ∈ H(M) is the smallest hb ∈ Hb(M) above h, i.e.,

hb = inf{h′ ∈ Hb(M) : h′ � h}.

One can “approximate” the binary hull hb also from below, as the next proposition shows:

Proposition 2.6. Let h ∈ H(M). Then the following conditions are equivalent:

(a) h ∈ Hb(M);

(b) h = nh for every n ∈ N+;

(c) there exists n > 1 such that h = nh.

Consequently, hb = sup{nh : n ∈ N}. In particular, for every M ∈M,

hb(M) =

{
0 if and only if h(M) = 0,

∞ otherwise.
(2.1)

Proof. (a)⇒(b) and (b)⇒(c) are clear. To prove (c)⇒(a) assume that h = nh for some n > 1. Then h(M) =
nh(M), so h(M) is either 0 or ∞ for every M ∈M. In other words, h ∈ Hb(M).

Let h∗ = sup{nh : n ∈ N+}. Since h is an entropy function, for every n ∈ N+ also nh is an entropy function;
this follows directly from the definition. Hence, h∗ is an entropy function as well. Since hb is binary, by item (b)
we have hb = nhb � nh for every n ∈ N+. Then hb � h∗. If M ∈M and h(M) = 0, then nh(M) = 0 for every
n ∈ N+ and so h∗(M) = 0; if h(M) > 0, then h∗(M) ≥ nh(M) for every n ∈ N+ and consequently h∗(M) =∞.
This shows that h∗ is binary. Clearly, h∗ � h, and so h∗ � hb by definition of binary hull, hence h∗ = hb. As a
byproduct we have seen that (2.1) holds.

Remark 2.7. If h, h1 : M → R≥0 ∪ {∞} are two functions such that h(M) = 0 if and only if h1(M) = 0 for
every M ∈M, then h ∈ H(M) if and only if h1 ∈ H(M). In other words, the only value that matters is 0, when
we have to test when a function h : M→ R≥0 ∪ {∞} is an entropy function.

2.2 The Pinsker radical

A preradical r of M is a subfunctor r : M→M of the identity functor idM : M→M; equivalently, for all M ∈M
there is a monomorphism r(M)→M so that every morphism f : M → N in M restricts to r(f) : r(M)→ r(N)
(i.e., f(r(M)) ⊆ r(N)).

The preradical r is:

(a) a radical, if r(M/r(M)) = 0 for every M ∈M;

(b) idempotent, if r(r(M)) = r(M) for every M ∈M;

(c) hereditary, if r(N) = N ∩ r(M) for every M ∈M and every subobject N of M .

Hereditary preradicals are idempotent, but need not be radicals. A radical need not be idempotent.

Definition 2.8. Let h ∈ H(M). The Pinsker radical Ph : M→M with respect to h is defined for every object
M of M as the join

Ph(M) =
∑
{Nj ⊆M : h(Nj) = 0}.
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If M = ModA for some ring A, then for every M ∈M, Ph(M) =
∑
{Am : m ∈M and h(Am) = 0}.

Lemma 2.9. Let h ∈ H(M) and M ∈M. Then h(Ph(M)) = 0 and Ph(M) is the greatest subobject of M with
this property.

Proof. Clearly, Ph(M) is a subobject of M , and if N is a subobject of M with h(N) = 0, then N ⊆ Ph(M).
By definition, Ph(M) is the join of the family {Nj ⊆ M : h(Nj) = 0}. In view of (A3) and Discussion 2.1(c),
we have h(Ph(M)) = 0.

Theorem 2.10. Let h ∈ H(M). Then Ph : M→M is a hereditary radical.

Proof. First we see that Ph : M → M is a functor. Indeed, Ph(M) is a subobject of M for every M ∈ M.
Moreover, it is well-defined on morphisms f : M → N in M. In fact, by the standard properties of images and
joins,

f(Ph(M)) =
∑
{f(Nj) : Nj ⊆M and h(Nj) = 0};

moreover, h(Nj) = 0 implies h(f(Nj)) = 0 by (A2), and so f(Ph(M)) ⊆ Ph(N). Finally, if g : N → L is another
morphism in M, then Ph(g ◦ f) = Ph(g) ◦Ph(f) and Ph(idM ) = idPh(M).

We prove now that Ph is a radical. Let M ∈ M. Assume that N is a subobject of M/Ph(M) such that
h(N) = 0. Let N ′ be the pullback of N along the projection M → M/Ph(M). By (A2) applied to N ′, Ph(M)
and N ′/Ph(M) = N , we can conclude that h(N ′) = 0. By the definition of Ph(M), this yields N ′ ⊆ Ph(M),
and so N = 0. Consequently Ph(M/Ph(M)) = 0 and hence Ph is a radical.

To show that the radical Ph is hereditary, consider M ∈ M and a N ⊆ M . It is clear that Ph(N) ⊆
N ∩Ph(M). By Lemma 2.9 we have h(Ph(M)) = 0, and so h(N ∩Ph(M)) = 0 by (A2). Since N ∩Ph(M) ⊆ N ,
Lemma 2.9 implies N ∩Ph(M) ⊆ Ph(N).

The equivalent definition of the binary hull given by Proposition 2.6 has an easy consequence on the Pinsker
radical:

Corollary 2.11. If h ∈ H(M), then Ph = Phb .

2.3 The torsion theory associated to an entropy function

For the following definition and discussion we refer to [9] and [25].

Definition 2.12. A pair (T ,F) of non-empty subclasses of an abelian category M is a torsion theory in M if:

(i) T ∩ F = {0};
(ii) if T → A→ 0 is exact with T ∈ T , then A ∈ T ;

(iii) if 0→ A→ F is exact with F ∈ F , then A ∈ F ;

(iv) for every M ∈M there exists an exact sequence 0→ T →M → F → 0 with T ∈ T and F ∈ F .

The class T is the class of torsion objects in M, while F is the class of torsion-free objects in M.

Remark 2.13. A pair (T ,F) of non-empty subclasses of M is a torsion theory in M if and only if:

(a) Hom(T, F ) = 0 for every T ∈ T and every F ∈ F ; and

(b) T and F are maximal with respect to (a).

Moreover, by [9, Theorem 2.3],

(i) T is a torsion class if and only if it is closed under quotients, coproducts and extensions in M; and dually,

(ii) F is a torsion-free class if and only if it is closed under subobjects, products and extensions in M.

For two torsion theories tj = (Tj ,Fj), j = 1, 2, in M one sets t1 ≤ t2 if and only if F1 ⊆ F2 (or, equivalently,
T1 ⊇ T2).

Definition 2.14. A torsion theory (T ,F) in M is hereditary if T is closed under subobjects.

6



If r is an idempotent preradical of M, let

Tr = {M ∈M : r(M) = M} and Fr = {M ∈M : r(M) = 0}.
It is known that if r is a (hereditary) radical of M, then tr = (Tr,Fr) is a (hereditary) torsion theory.

Every torsion theory t = (T ,F) in M can be obtained by means of a radical r. Indeed, by [9, Proposition 2.4],
for every object M in M there exists a unique greatest subobject Mt of M such that Mt ∈ T and M/Mt ∈ F
(with Mt =

∑
{T ⊆ M : T ∈ T }). Moreover, by [9, Corollary 2.5] the correspondence rt : M 7→ Mt is an

idempotent radical of M (if t is hereditary, then rt is hereditary too). So starting from an idempotent radical
r of M, we have that rtr = r. In other words, there is a bijective correspondence between of all idempotent
radicals of M and all torsion theories in M, so that hereditary radicals of M correspond to hereditary torsion
theories in M.

Definition 2.15. For a torsion theory tr in M, a subobject N of M ∈M is tr-closed if r(M/N) = 0.
More generally, the tr-closure cltr(N) of a subobject N of M is the pullback of r(M/N) along the projection

M →M/N .

Note that the assignment N 7→ cltr(N) is a closure operator in the sense of [16, 20].
For example, if M = AbGrp and r(G) = t(G), where G is a torsion-free abelian group, this gives the classical

notions of pure subgroup and purification, respectively.

For an entropy function h of M, the two classes Th and Fh defined in the introduction can be expressed in
terms of the Pinsker radical as

Th = {M ∈M : Ph(M) = M} and Fh = {M ∈M : Ph(M) = 0}.
In other words, Th = TPh and Fh = FPh . We abbreviate tPh simply to th. According to Theorem 2.10, th is a
hereditary torsion theory in M, so we give the following

Definition 2.16. For h ∈ H(M) we call th the Pinsker torsion theory of h in M.

Since for M ∈M, h(M) = 0 if and only if Ph(M) = M , Remark 2.13(i) and Definition 1.1 implies that Th
is the torsion class of a hereditary torsion theory.

If h(M) > 0 for every non-zero M ∈M, then Ph(M) = 0. In this case Th = {0} and Fh = M.

Theorem 2.17. If h ∈ H(M), then th is a hereditary torsion theory in M. The assignment h 7→ th = (Th,Fh)
determines a bijective order preserving correspondence between binary entropy functions of M and hereditary
torsion theories t = (T ,F) in M.

Proof. In view of Corollary 2.11, th coincides with the torsion theory thb generated by the binary hull hb of h.
So it remains to define, for a given hereditary torsion theory t = (T ,F), a binary entropy function h of M such
that t = th. For M ∈M let

h(M) =

{
0 if and only if M ∈ T , and

∞ otherwise.

We check that h is a binary entropy function and that t = th. The axiom (A1) is satisfied by h since T and F
are stable under isomorphisms. Consider now (A2); if for some M ∈M, h(M) = 0 and N ⊆ M , then M ∈ T ,
which is closed under quotients and subobjects, so that h(N) = 0 = h(M/N). Viceversa, if h(N) = 0 = h(M/N)
for some M ∈ M and N ⊆ M , then N ∈ T and M/N ∈ T ; since T is closed under extensions, also M ∈ T ,
that is, h(M) = 0. Finally (A3) holds for h, since T is closed under coproducts. Then h is a binary entropy
function of M. By the definition of h we have immediately T = Th. It remains to show that F = Fh. For every
M ∈M there exists T ∈ T such that M/T ∈ F ; moreover, M ∈ F if and only if T = 0. This occurs if and only
if h(N) = ∞ for every non-zero subobject N of M , that is, h(M) >> 0, i.e., M ∈ Fh. Hence F = Fh and we
have proved that t = th. Finally, it is clear that the correspondence preserves the order.

This theorem shows that hereditary torsion theories in M are nothing else but binary entropy functions of
M.

Remark 2.18. The set of axioms (A1), (A2), (A3) used in Definition 1.1 to define an entropy function h : M→
R≥0 ∪ {∞} is minimal in order to prove Theorem 2.17. Indeed, first of all it is natural to impose (A1) since the
classes Th and Fh are stable under isomorphisms. Moreover, we want Th to be a torsion class of a hereditary
torsion theory. Since Th has to be closed under subobjects, quotients and extensions, hence we have to impose
(A2). Finally, Th has to be closed under coproducts, that is, h satisfies (A3).
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3 Entropy functions of algebraic flows

3.1 The category of flows

In this section we recall the category of flows for a given arbitrary category X.

We introduce the category FlowX of flows of X first as a subcategory of the arrows category X2. Recall that
for a category X the category of arrows X2 is the special comma category (X ↓ X). The objects of this category X2

are triples (X,Y, f), where X,Y are objects of X and f : X → Y is a morphism in X. The morphisms between
two objects (X1, Y1, f1) and (X2, Y2, f2) of X2 are pairs (u, v) of morphisms u : X1 → X2 and v : Y1 → Y2 in X
such that the diagram

X1
f1−−−−→ Y1

u

y yv
X2 −−−−→

f2
Y2

(3.1)

commutes.
To describe FlowX we impose now two restrictions. First, we consider special objects of the arrows category

X2 of X, namely, we take endomorphisms in X instead of all morphisms:

Definition 3.1. A flow in X is a pair (X,φ), where X is an object in X and φ : X → X an endomorphism in
X.

So the category FlowX has as objects all flows in X. Second, FlowX will not be a full subcategory of X2,
since we shall take as morphisms in FlowX only those pairs (u, v) in (3.1) with u = v. Namely, a morphism in
FlowX between two flows (X,φ) and (Y, ψ) is a morphism u : X → Y in X such that the diagram

X
φ−−−−→ X

u

y yu
Y −−−−→

ψ
Y

(3.2)

in X commutes. Two flows (X,φ) and (Y, ψ) are isomorphic in FlowX if the morphism u : X → Y in (3.2) is an
isomorphism in X.

Actually, FlowX is isomorphic to a functor category. Indeed, consider the monoid N as a one-object category
and the functor category Fun(N,X). Since N has one object Z and the morphisms of this object are the free
monoid N generated by 1, every F ∈ Fun(N,X) is determined by F (Z) and F (1); and if F,G ∈ Fun(N,X), a
morphism from F to G is given by the natural transformation {u}, where u : F (Z)→ G(Z) is a morphism such
that u ◦ F (1) = G(1) ◦ u.

At this point the functor I : FlowX → Fun(N,X), which associates to a pair (X,φ) ∈ FlowX the functor
F(X,φ) : N→ X such that F(X,φ)(Z) = X and F(X,φ)(1) = φ and to a morphism u : (X,φ)→ (Y, ψ) the natural
transformation {u} from F(X,φ) to F(Y,ψ), is an isomorphism of categories.

Being a functor category, FlowX is abelian when so is X.

Remark 3.2. Every flow (X,φ) of a category X gives a semigroup action of N ∼= {φn : n ∈ N} on X (and
viceversa, a semigroup action α : N×X → X of N on X via endomorphisms of X defines a flow (X,α(1,−))).
In case φ : X → X is an automorphism, this action becomes a group action of Z ∼= {φn : n ∈ Z}.

3.2 Algebraic flows and module categories

Let R be a ring. As said in the introduction we abbreviate FlowModR simply to FlowR, and we call algebraic
flow an element (M,φ) of FlowR.

An algebraic flow (M,φ) in FlowR can be completely “encoded” via a structure of a R[t]-module of M . This
gives the following theorem, that in particular shows that FlowR is an abelian category.

Theorem 3.3. Let R be a ring. Then FlowR and ModR[t] are isomorphic categories.
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Proof. Let
F : FlowR →ModR[t] (3.3)

be defined in the following way. If (M,φ) ∈ FlowR, define an R[t]-module structure on M by letting tm = φ(m)
for every m ∈ M . This can be extended to multiplication by arbitrary polynomials in obvious way. We denote
M with this structure by Mφ. Let F (M,φ) = Mφ. If u : (M,φ) → (N,ψ) is a morphism in FlowR, let
F (u) = u : Mφ → Nψ. Then u : Mφ → Nψ is a morphism of R[t]-modules. It is easy to see that F is a functor.

Viceversa, let
G : ModR[t] → FlowR (3.4)

be defined in the following way. Every R[t]-module M gives rise to an algebraic flow (M,µM ), where µM (m) = tm
for every m ∈ M . So let G(M) = (M,µM ). Moreover, if u : M → N is a morphism in ModR[t], let
G(u) = u : (M,µM )→ (N,µN ). This is a morphism in FlowR, since u ◦ µM = µN ◦ u. It is easy to see that G
is a functor and that F and G give an isomorphism between FlowR and ModR[t].

This isomorphism is very convenient since it allows us to replace FlowR by a module category, namely,
ModR[t].

Theorem 2.17 shows that there are at least as many entropy functions as hereditary torsion theories. Since
our aim is to concentrate mainly on those entropy functions having a “reasonable behavior” from a dynamical
point of view, we shall impose some further restrictions in the form of axioms in addition to those of the general
Definition 1.1. This is the aim of the next section, in which we concentrate on the particular case M = ModA,
where A is ring.

3.3 Adding some axioms

The known entropy functions h ∈ H(ModA) satisfy a stronger form of (A2), namely,

(A2∗) h(M) = h(N) + h(M/N), for every M ∈ModA and every submodule N of M .

Following the standard terminology in module theory, we call an entropy function satisfying (A2∗) additive.
In case A is an integral domain, (A2∗) has the following consequences.

Lemma 3.4. Let A be an integral domain and h ∈ H(ModA). Then h(I) = h(A) for every non-zero ideal of A.

Proof. Pick any non-zero a ∈ I. Since Aa ∼= A and Aa ⊆ I, we have the inequalities h(A) = h(aA) ≤ h(I) ≤
h(A), hence h(I) = h(A).

Proposition 3.5. Let A be an integral domain and h ∈ H(ModA). If h is additive and 0 < h(A) < ∞, then
h(t(M)) = 0; consequently h(M) = h(M/t(M)) for every M ∈ModA.

Proof. Let r = h(A) and let I be a non-zero ideal of A. Then h(I) = r by Lemma 3.4. From (A2∗) applied to A
and I we deduce r = r+h(A/I), so h(A/I) = 0. Now take any M ∈ModA. If x ∈ t(M), then I = annA(x) is a
non-zero ideal of A, therefore Ax ∼= A/I and consequently h(Ax) = h(A/I) = 0. This easily gives h(t(M)) = 0.
Another application of (A2∗) yields h(M) = h(M/t(M)).

Let A be an integral domain and let h ∈ H(ModA) be additive with h(A) =∞. Call an ideal I of A h-large,
if h(A/I) <∞, denote by Jh(A) the family of all h-large ideals of A. Let now rI = h(A/I) for I ∈ Jh(A).

Proposition 3.6. Let A be an integral domain and h ∈ H(ModA). If A is additive and h(A) =∞, then:

(a) Jh(A) is closed under taking finite intersections and larger ideals; therefore, Jh(A) is the local base of a
ring topology τh on A;

(b) τh is indiscrete (i.e., Jh(A) coincides with {A}) exactly when h(M) =∞ for every non-zero A-module M ;

(c) rI = h(J/I) + rJ when I ⊆ J in Jh(A);

(d) rI∩J = rI + rJ when I, J ∈ Jh(A) are coprime (i.e., I + J = A);

(e) if A is a PID, then rAbc = rAb + rAc for Ab,Ac ∈ Jh(A).
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Proof. (a) Follows from the fact that the diagonal map A/I ∩J ↪→ A/I×A/J is an embedding for I, J ∈ Jh(A),
and from the monotonicity of h under taking quotients.

(b) Is obvious, and (c) and (d) follows from the additivity of h and the isomorphism A/I ∩ J ∼= A/I × A/J
for coprime ideals I, J of A.

(e) If I ⊆ J are ideals in Jh(A), then they have the form J = Ab and I = Jc = Abc, so J/I ∼= A/Ac. This
gives rAbc = rAb + rAc.

It follows from item (e) that the numbers rAp for prime elements p ∈ A determine all others.

In the sequel we consider only entropy functions h of FlowR (i.e., A = R[t]). Because of the importance of
the additivity axiom (A2∗), we reformulate it in this specific case:

(A2∗) h(φ) = h(φ �N ) + h(φ), for every (M,φ) ∈ FlowR and every φ-invariant submodule N of M , with
φ : M/N →M/N the endomorphism induced by φ.

In this form it is known also as Addition Theorem — see Theorem 5.2 for the algebraic entropy ha, Fact
5.6(e) for the algebraic entropy ent and Theorem 5.13 for the i-entropy.

A starting axiom that permits to avoid the pathological case of h ≡ ∞, is the following one, which intuitively
has to hold for a reasonable entropy function h ∈ H(FlowR):

(A0) h(0M ) = 0 and h(1M ) = 0 for every M ∈ModR.

We split (A0) in two parts in order to better deal with it:

(A00) h(0M ) = 0 for every M ∈ModR;

(A01) h(1M ) = 0 for every M ∈ModR.

Observe that in the presence of (A2) and (A3), the axioms (A00) and (A01) follow respectively from the
equalities h(0R) = 0 and h(1R) = 0, since every R-module is quotient of a free R-module.

For every algebraic flow (M,φ) ∈ FlowR one can consider all powers φn to get new algebraic flows (M,φn) ∈
FlowR with the same underlying R-module M . This gives the possibility to consider the following axiom for an
entropy function h of FlowR:

(A4) h(φ) ≤ h(φn) ≤ nh(φ) for every (M,φ) ∈ FlowR.

Most of the known specific examples of entropy functions satisfy this weak logarithmic law (see Fact 5.1(b) for
the algebraic entropy ha, Fact 5.6(b) for the algebraic entropy ent and Fact 5.12(b) for the i-entropy), or the
(stronger) logarithmic law:

(A4∗) h(φn) = nh(φ) for every (M,φ) ∈ FlowR.

Remark 3.7. Let h ∈ H(FlowR). In other terms (A4∗) says that, fixed M ∈ ModR, the restriction h :
(End(M), ·) → (R≥0 ∪ {∞},+) is a semigroup homomorphism. Since every semigroup homomorphisms sends
idempotents to idempotents, and the only idempotents of (R≥0∪{∞},+) are 0 and∞, we have that idempotency
of φ ∈ End(M) implies that h(φ) is either 0 or ∞.

In particular we have the following obvious

Lemma 3.8. Let h ∈ H(FlowR). If h satisfies (A4∗), then h(0M ) and h(1M ) are either 0 or ∞ for every
M ∈ModR.

Consider the functors

(a) O : ModR → FlowR
∼= ModR[t] such that M 7→ (M, 0M ), and

(b) I : ModR → FlowR
∼= ModR[t] such that M 7→ (M, 1M ).

Then both O(ModR) and I(ModR) are subcategories of FlowR closed under quotients, direct sums and mod-
ules, and isomorphic to ModR.

Let now h ∈ H(FlowR). We can associate to this entropy function h of FlowR,

(a) hO : ModR → R≥0 ∪ {∞} defined by hO(M) = h(0M ) for every M ∈ModR; and

(b) hI : ModR → R≥0 ∪ {∞} defined by hI(M) = h(1M ) for every M ∈ModR.
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Remark 3.9. Let h ∈ H(FlowR).

(a) If h satisfies (A4∗), then hO ∈ Hb(ModR) and hI ∈ Hb(ModR).

In fact, hO and hI are entropy functions of ModR, since hO = h �O(ModR) and hI = h �I(ModR), where
O(ModR) and I(ModR) in FlowR are closed under quotients, direct sums and submodules, and are
isomorphic to ModR. Moreover, in view of Lemma 3.8, (A4∗) implies that h(0M ) and h(1M ) are either 0
or ∞, and so hO and hI are binary.

(b) Consequently, if h satisfies (A4∗), then:

(b1) h satisfies (A00) if and only if hO ≡ 0;

(b2) h satisfies (A01) if and only if hI ≡ 0.

In other words, hO and hI measure to what extent h satisfies (A00) and (A01), respectively.

In the next section we will see that (A00) does not imply (A01) and that (A01) does not imply (A00).

Remark 3.10. The abstractly defined binary hull hb of an entropy function h of M has a very natural intuitive
construction in the case of algebraic flows. Indeed, from a given entropy function h of FlowR, for every n ∈ N+

one can define a new entropy function hn of FlowR letting hn(M,φ) = h(M,φn) for every (M,φ) ∈ FlowR (one
can define this also in the isomorphic situation Mφ ∈ModR[t]).

(a) If h ∈ Hb(FlowR), then h = nh for every n ∈ N+.

Indeed, according to Proposition 2.6, h = nh for every n ∈ N+, since h is binary.

(b) If h ∈ Hb(FlowR) satisfies (A4), then h = hn = nh for every n ∈ N+.

In fact, h � hn � nh for all n ∈ N+, and so h = hn = nh for all n ∈ N+.

(c) If h ∈ H(FlowR) satisfies (A4), then hb = supn∈N+
hn.

To verify this statement, let h′ = supn∈N+
hn. Then h′ ∈ Hb(FlowR). Moreover, suppose that h∗ ∈

Hb(FlowR) and h � h∗. By item (b) we have hn � h∗n = h∗ for every n ∈ N+, so that also h′ � h∗. This
proves that h′ is the least binary entropy function above h, so h′ coincides with the binary hull hb of h.

For M ∈ModR, the right Bernoulli shift is the algebraic flow

βM : MN →MN defined by (x0, . . . , xn, . . .) 7→ (0, x0, . . . , xn, . . .).

Abusing notation we use βM to denote also the restriction of βM to M (N).

Example 3.11. (a) The algebraic flow (R(N), βR) ∈ FlowR is mapped by the functor F : FlowR →ModR[t]

of (3.3) to R[t].

(b) Let I be an ideal of R. As in (a), F sends ((R/I)(N), βR/I) to (R/I)[t]. Observe that (R/I)[t] is isomorphic
to the R[t]-module R[t]/J , where J = I[t] is the ideal generated by I in R[t].

The following condition appears in the collections of axioms that guarantee uniqueness for the algebraic
entropy ha of FlowAbGrp and for the algebraic entropy ent of FlowTorAbGrp: ha(βZ(p)) = ent(βZ(p)) = log p
for every prime p (see Theorem 5.5 and Fact 5.6(f) below, respectively).

Inspired by this condition, in order to reach uniqueness of an arbitrary entropy function h ∈ H(FlowR), one
may want to add the following axiom:

(A5) h(βR/I) = rI ∈ R≥0 ∪ {∞}, for every ideal I of R,

with appropriate conditions on the rI (e.g., imposed by Proposition 3.6 when R is an integral domain).
For example, if h is monotone under taking quotients and I, J are ideals of R, then rI ≥ rJ if I ⊆ J .

Moreover, if (A2∗) holds for h, then rI = h(βJ/I) + rJ when I ⊆ J , while rI∩J = rI + rJ when I, J are coprime,
etc.

Beyond the quotients of R[t] with respect to ideals as in Example 3.11(b), one can take also principal
ideals of R[t] of the form J = (f(t)) for some f(t) ∈ R[t]. These ideals also provide data that may help
to capture the entropy function, namely the values yf = h(R[t]/J). In particular, if the polynomial f(t) =
a0 + a1t+ . . .+ an−1t

n−1 + tn is monic, then R[t]/J is isomorphic to F (Rn, φ) as R[t]-modules, where φ is the
endomorphism of Rn having as a matrix the companion matrix of f(t).

For a ring A and M ∈ModA, recall from Remark 2.2 that F(M) denotes the family of all finitely generated
submodules of M . An invariant i : ModA → R≥0 ∪ {∞} is upper continuous if i(M) = sup{i(F ) : F ∈ F(M)}
for every M ∈ModA [33, 40]. As follows from Remark 2.2, this property implies (A3).

11



Definition 3.12. [33] An additive upper continuous invariant is called length function.

Since each length function obviously satisfies (A1), (A2) and (A3), it follows that length functions are entropy
functions. It is not hard to see that a length function h is completely determined by its values on cyclic modules
h(A/I). If one restricts to Noetherian commutative rings A and the entropy function h ∈ H(ModA) is a length
function, to prove uniqueness of h one can eventually use the following

Fact 3.13. [40] If A is a Noetherian commutative ring and i, i′ are length functions of ModA, then i = i′ if
and only if i(A/p) = i′(A/p) for every prime ideal p of A.

This fact 3.13, combined with the fact that ha ∈ H(FlowAbGrp) is a length function of ModZ[t], is used in
[11] to give a second proof of the Uniqueness Theorem for ha (see Theorem 5.5).

The following general problem remains open.

Problem 3.14. Find a family of axioms that give uniqueness for an abstractly defined entropy function h of
FlowR, where R is an integral domain.

4 Radicals capturing the dynamics of module endomorphisms

4.1 Radicals of FlowR

Let R be a ring. We recall that if (M,φ) ∈ FlowR and F is a subset of M , for any positive integer n, the n-th
φ-trajectory of F with respect to φ is

Tn(φ, F ) = F + φ(F ) + . . .+ φn−1(F ),

and the φ-trajectory of F is

T (φ, F ) =
∑
n∈N

φn(F ).

In [12] the Pinsker subgroup Pha(G,φ) of an algebraic flow (G,φ) ∈ FlowAbGrp was characterized also in
terms of the quasi-periodic points of φ.

Definition 4.1. Let (M,φ) ∈ FlowR. An element x ∈M is a quasi-periodic point of φ if there exist n > m in
N such that φn(x) = φm(x). Moreover, φ is pointwise quasi-periodic if every x ∈M is a quasi-periodic point of
φ; and φ is quasi-periodic if there exist n > m in N such that φn = φm.

We generalize the definition given in [12] to every (M,φ) ∈ FlowR letting by induction:

(a) Q0(M,φ) = 0, and for every n ∈ N
(b) Qn+1(M,φ) = {x ∈M : (∃n > m in N) (φn − φm)(x) ∈ Qn(M,φ)}.

This defines an increasing chain of φ-invariant submodules of M

Q0(M,φ) ⊆ Q1(M,φ) ⊆ . . . ⊆ Qn(M,φ) ⊆ . . . ,

where Q1(M,φ) is the submodule of M consisting of all quasi-periodic points of φ. In particular, φ is pointwise
quasi-periodic if and only if M = Q1(M,φ). Let

Q(M,φ) :=
⋃
n∈N

Qn(M,φ).

Then also Q(M,φ) is a φ-invariant submodule of M .

Imitating the definition of Q, for every (M,φ) ∈ FlowR define by induction:

(a) O0(M,φ) = 0, and for every n ∈ N
(b) On+1(M,φ) = {x ∈M : φ(x) ∈ On(M,φ)}.
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This defines an increasing chain of φ-invariant submodules of M

O0(M,φ) ⊆ O1(M,φ) ⊆ . . . ⊆ On(M,φ) ⊆ . . . .

Note that On(M,φ) = kerφn for every n ∈ N. Let

O(M,φ) :=
⋃
n∈N

On(M,φ).

Then also O(M,φ) is a φ-invariant submodule of M .

Also for the identity endomorphism it is possible to define by induction:

(a) I0(M,φ) = 0, and for every n ∈ N
(b) In+1(M,φ) = {x ∈M : (φ− 1M )(x) ∈ In(M,φ)}.

This defines an increasing chain of φ-invariant submodules of M

I0(M,φ) ⊆ I1(M,φ) ⊆ . . . ⊆ In(M,φ) ⊆ . . . .

Note that I1(M,φ) is the submodule of M of fixed points of φ. Let

I(M,φ) :=
⋃
n∈N

In(M,φ).

Then also I(M,φ) is a φ-invariant submodule of M .

Note that On(M,φ) ⊆ Qn(M,φ) and In(M,φ) ⊆ Qn(M,φ) for every n ∈ N. So also O(M,φ) ⊆ Q(M,φ) and
I(M,φ) ⊆ Q(M,φ). One can prove directly that Q, O and I are radicals of FlowR; Corollary 4.7 will prove it
easily in ModR[t] using the isomorphism given by Theorem 3.3.

Moreover, O (respectively, I) is the smallest radical of FlowR containing all zero endomorphisms (respec-
tively, all identities). So, M = O(M) (respectively, M = I(M)) if and only if for every x ∈ M there exists
n ∈ N+ such that φn(x) = 0 (respectively, (φ− idM )n(x) = 0).

The property in (a) of the next lemma is proved in [12] for FlowAbGrp. It is possible to prove it in the same
way for FlowR, and analogously the properties in (b) and (c).

Lemma 4.2. Let (M,φ) ∈ FlowR and n ∈ N. Then:

(a) Qn(M,φ) is a φ-invariant submodule of M , and for the induced endomorphism φn of M/Qn(M,φ),

Qn+1(M,φ)/Qn(M,φ) = Q1(M/Qn(M,φ), φn);

(b) On(M,φ) is a φ-invariant submodule of M , and for the induced endomorphism φn of M/On(M,φ),

On+1(M,φ)/On(M,φ) = O1(M/On(M,φ), φn);

(c) In(M,φ) is a φ-invariant submodule of M , and for the induced endomorphism φn of M/In(M,φ),

In+1(M,φ)/In(M,φ) = I1(M/In(M,φ), φn).

For (G,φ) ∈ FlowTorAbGrp, we shall see in (5.4) that Q(G,φ) = Q1(M,φ), but this is not the case in
general, as the following example shows.

Example 4.3. Let G = Z(N+) =
⊕∞

n=1〈en〉, and let φ be the automorphism of G given by the matrix
1 1 1 . . .
0 1 1 . . .
0 0 1 . . .
...

...
. . .

. . .

 .

For every n ∈ N+ let Gn = 〈e1, . . . , en〉. Then Gn = Qn(G,φ) and Q(G,φ) = G. In particular, we have the
following strictly increasing chain

0 = Q0(G,φ) ⊂ Q1(G,φ) ⊂ Q2(G,φ) ⊂ . . . ⊂ Qn(G,φ) ⊂ . . . ⊂ Q(G,φ) = G.
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From the construction of Q(M,φ) for (M,φ) ∈ FlowR, one can realize that

Q(M,φ) =

x ∈M : ∃k ∈ N, (nj ,mj) ∈ N2, nj > mj , j = 0, . . . , k − 1,

k−1∏
j=0

(φnj − φmj )

 (x) = 0

 .

Motivated by this equality, one can define now analogously another submodule for every (M,φ) ∈ FlowR, letting

A(M,φ) =

x ∈M : ∃k ∈ N, aj ∈ R, j = 0, . . . , k − 1, φk(x) =

k−1∑
j=0

ajφ
j(x)

 ,

i.e., x ∈ A(M,φ) if and only if x ∈ Tk(φ,Rx) (or, equivalently, Tk(φ,Rx) is a φ-invariant submodule) for some
k ∈ N+. Then A(M,φ) is a φ-invariant submodule of M and Q(M,φ) ⊆ A(M,φ) for every (M,φ) ∈ FlowR.
We shall see in Corollary 4.7 that also A is a radical.

According to [17], an endomorphism φ of M ∈ ModR is pointwise integral if for every x ∈ M there exists
a monic polynomial p(t) ∈ R[t] such that p(φ)(x) = 0, in other words, if M = A(M,φ). According to [41], φ is
pointwise algebraic if for every x ∈M there exists a polynomial p(t) ∈ R[t] \ {0} such that p(φ)(x) = 0. Clearly,
pointwise integral implies pointwise algebraic. So, for (M,φ) ∈ FlowR we introduce also

W(M,φ) = {x ∈M : ∃p(t) ∈ R[t] \ {0}, p(φ)(x) = 0},

and obviously A(M,φ) ⊆ W(M,φ). Clearly, φ is pointwise algebraic if and only if M = W(M,φ). If R is an
integral domain, then W(M,φ) is a φ-invariant submodule of M , and so W is another radical of FlowR, so that

Q(M,φ) ⊆ A(M,φ) ⊆W(M,φ)

for every (M,φ) ∈ FlowR.

Example 4.4. Let R = Z. If G is a torsion abelian group, then

Q1(G,φ) = Q(G,φ) = A(G,φ) ⊆W(G,φ) = G for every φ ∈ End(G).

(a) If p is a prime number and G = Z(p)(N), then W(G,φ) = G for every φ ∈ End(G), while A(G, βZ(p)) = 0.

(b) If G is a torsion-free abelian group of finite rank n ∈ N+, then every φ ∈ End(G) is pointwise algebraic.
Indeed, each φ ∈ End(G) can be expressed by a matrix A ∈ Mn(Q). Let p(t) ∈ Q[t] be the characteristic
polynomial of A. After multiplication by an integer we may assume that p(t) ∈ Z[t] (although it will not
be monic any more). Then p(φ)(x) = 0 holds for every x ∈ G. Consequently, G = W(G,φ) for every
φ ∈ End(G).

(c) If φ ∈ End(Q), then there exists r ∈ Q such that φ(x) = rx for every x ∈ Q. Hence,

A(Q, φ) =

{
0 if r 6∈ Z,
Q if r ∈ Z;

and Q(Q, φ) =

{
0 if r 6∈ {0, 1},
Q if r ∈ {0, 1}.

So,
0 = Q(Q, φ) ⊂ A(Q, φ) = Q = W(Q, φ) if r ∈ Z \ {0, 1}.

On the other hand,
Q(Q, φ) = 0 = A(Q, φ) ⊂ Q = W(Q, φ) if r 6∈ Z.

4.2 Passing to ModR[t]

We pass now to ModR[t] (through the isomorphism given by Theorem 3.3) and its radicals Q,O, I, A and W.

Remark 4.5. It is easy to see that if M ∈ModR[t], then:

(a) x ∈ Q(M) if and only if there exist k ∈ N+ and pairs of naturals (nj ,mj) with nj > mj for j = 0, . . . , k−1
and such that (tn0 − tm0) · . . . · (tnk−1 − tmk−1) · x = 0;

(b) x ∈ O(M) if and only if there exists k ∈ N such that tk · x = 0;
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(c) x ∈ I(M) if and only if there exists k ∈ N such that (t− 1)k · x = 0;

(d) x ∈ A(M) if and only if there exists a monic p(t) ∈ R[t] such that p(t) · x = 0;

(e) x ∈W(M) if and only if there exists p(t) ∈ R[t] \ {0} such that p(t) · x = 0.

This can be expressed by radicals of ModR[t] (see Corollary 4.7). We give first the following general result:

Theorem 4.6. Let A be a ring and S ⊆ A. For every left A-module M , let

rS(M) = {x ∈M : (∃s ∈ S)sx = 0}.

If S is multiplicatively closed (i.e., s′, s ∈ S yields s′s ∈ S), then rS : ModA →ModA is a hereditary radical.
In particular, trS = (TrS ,FrS ) is a hereditary torsion theory in ModA.

Proof. That rS is hereditary follows directly from the definitions. To check that rS is a radical take an A-module
M and x ∈ M such that the coset x + rS(M) ∈ M/rS(M) belongs to rS(M/rS(M)). Then sx ∈ rS(M) for
some s ∈ S by the definition of rS . So s′(sx) ∈ rS(M) for some s′ ∈ S. This yields x ∈ rS(M), as s, s′ ∈ S and
S ⊆ A is multiplicatively closed.

Theorem 4.6 together with Remark 4.5 give immediately the following result. Note that R[t] \ {0} is multi-
plicatively closed if and only if R is an integral domain.

Corollary 4.7. (a) Let Q be the multiplicative closure of the subset {tn− tm : n,m ∈ N, n > m} of R[t]. Then
Q = rQ.

(b) Let O = {tn : n ∈ N} ⊆ R[t]. Then O = rO.

(c) Let I = {(t− 1)n : n ∈ N} ⊆ R[t]. Then I = rI .

(d) Let A = {p(t) ∈ R[t] : p(t) monic} ⊆ R[t]. Then A = rA.

(e) Let W = R[t] \ {0}. Then W = rW .

In particular, Q, O, I and A are hereditary radicals of ModR[t]. If R is an integral domain, then also W is a
hereditary radical of ModR[t].

Both O and I are contained in Q, and both O and I generate Q as a multiplicative closed subset of R[t].
Moreover, Q is contained in A and A in W . Then

O ≤ Q, I ≤ Q and Q ≤ A;

if R is an integral domain, also A ≤ W. Furthermore, M = W(M) precisely when M is torsion as an R[t]-
module. Alternatively, M 6= W(M) precisely when M contains a copy of the cyclic module R[t] (in terms of
FlowR, when M contains a copy of the right Bernoulli shift βR, see the proof of Theorem 4.14 for the relative
argument).

Corollary 4.7 and Theorem 4.6 give immediately the following

Corollary 4.8. The pairs tQ = (TQ,FQ), tO = (TO,FO), tI = (TI,FI) and tA = (TA,FA) are hereditary
torsion theories in ModR[t]. If R is an integral domain, then also tW = (TW,FW) is a hereditary torsion theory
in ModR[t].

By Theorem 2.17 there exist binary entropy functions hQ, hO, hI and hA in Hb(ModR[t]) which correspond
respectively to these torsion theories, that is, thQ

= tQ, thO
= tO, thI

= tI and thA
= tA. If R is an integral

domain, then there exists also hW ∈ Hb(ModR[t]) such that thW
= tW.

4.3 Radicals and axioms

We use now the radicals defined above to clarify the relations among some of the axioms introduced in Section
3.3. The following lemma follows from Corollary 2.11 and gives various equivalent forms of (A00) and (A01)
in terms of the radicals O, I and the Pinsker radical Ph. Recall that the binary entropy functions hO and hI,
introduced at the very end of Section 4.2, satisfy PhO

= O and PhI
= I.

Lemma 4.9. Let h ∈ H(ModR[t]). The following conditions are equivalent:
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(a) h satisfies (A00) (respectively, (A01));

(b) hb satisfies (A00) (respectively, (A01));

(c) O ≤ Ph = Phb (respectively, I ≤ Ph = Phb);

(d) hO � hb (respectively, hI � hb).

In the case when R is a field, using the equivalences of Lemma 4.9, we can see that (A01) and (A00) are
independent:

Example 4.10. Assume that R is a field. Then

O(M) ∩ I(M) = 0 for every M ∈ModR[t]. (4.1)

Indeed, let x ∈ O(M) ∩ I(M). Then there exist n,m ∈ N+ such that tnx = 0 and (t− 1)mx = 0. Since tn and
(t− 1)m are coprime elements of R[t], there exist u(t), v(t) ∈ R[t] such that 1 = u(t)tn+ v(t)(t− 1)m. Therefore,
x = u(t)tnx+ v(t)(t− 1)mx = 0.

(a) To prove that (A01) does not imply (A00) consider the entropy function hI. Since PhI
= I, we conclude

with Lemma 4.9 that hI satisfies (A01). Assume for a contradiction that hI satisfies also (A00). Then by
Lemma 4.9 hO � hI. By Theorem 2.17 this yields thO

≤ thI
. Since PhO

= O and PhI
= I, it follows that

O ≥ I, which contradicts (4.1).

(b) To show that (A00) does not imply (A01), argue as in (a) exchanging the roles of O and I.

Remark 4.11. According to [12], Pha(G,φ) = Q(G,φ) for every (G,φ) ∈ FlowAbGrp, i.e., Pha = Q in
ModZ[t]. In particular, tha = tQ, that is, Tha = TQ and Fha = FQ.

We shall see now that the inequality Q ≤ Ph remains true for a general entropy function h satisfying
the axioms (A0) and (A4∗). For the proof we need the next lemma establishing that every finitely generated
submodule of A(M,φ) is contained in a finitely generated φ-invariant submodule of A(M,φ).

Lemma 4.12. If (M,φ) ∈ FlowR and N ∈ F(A(M,φ)) then T (φ,N) ∈ F(A(M,φ)). In particular, φ �T (φ,N)

is quasi-periodic.

Proof. Since N is finitely generated, there exists n ∈ N+ such that φn+1(N) ⊆ Tn(φ,N). Consequently,
T (φ,N) = Tn(φ,N) is finitely generated, and T (φ,N) ∈ F(A(M,φ)) as A(M,φ) is a φ-invariant submodule of
M . Finally, φ �T (φ,N) is quasi-periodic, as T (φ,N) ∈ F(Q1(M,φ)).

Theorem 4.13. Let h be an entropy function of FlowR satisfying (A0) and (A4∗). Then Q ≤ Ph.

Proof. Let (M,φ) ∈ FlowR. We show first that

φ quasi-periodic =⇒ h(φ) = 0. (4.2)

Since φ is quasi-periodic, the semigroup {φn : n ∈ N+} is finite and so it contains an idempotent, say φk for
some k ∈ N+. Since h(φk) = kh(φ) by (A4∗), to prove (4.2) we can assume without loss of generality that φ is
idempotent. Under this assumption, let N = kerφ. Then φ �N= 0N and so h(φ �N ) = 0 by (A00). Moreover,
let φ : G/N → G/N be the endomorphism induced by φ. Since G/N ∼= φ(M), φ is conjugated to φ �φ(M). Now

φ �φ(M)= 1φ(M), so h(φ �φ(M)) = 0 by (A01), and hence h(φ) = 0 by (A1). Finally (A2) gives h(φ) = 0. This
concludes the proof of (4.2).

We prove by induction that
h(φ �Qn(M,φ)) = 0 for every n ∈ N. (4.3)

This is obvious for n = 0. Let n = 1 and suppose N ∈ F(Q1(M,φ)). Then φ �T (φ,N) is quasi-periodic by Lemma
4.12. Thus h(φ �T (φ,N)) = 0 by (4.2). Again by Lemma 4.12, Q1(M,φ) is a direct limit of finitely generated
φ-invariant subgroups, so (A3) implies h(φ �Q1(M,φ)) = 0 in view of Remark 2.2.

Assume now that h(φ �Qn(M,φ)) = 0 for some n ∈ N, and let L = Qn+1(M,φ). Consider the endomorphism

φ : L/Qn(M,φ) → L/Qn(M,φ) induced by φ. By Lemma 4.2(a), L/Qn(M,φ) = Q1(L/Qn(M,φ), φ) by the
choice of L. The case n = 1 gives h(φ) = 0. Then h(φ) = 0 by (A2). This concludes the proof of (4.3).

Hence, h(φ �Q(M,φ)) = 0 by (4.3) and by the equivalent form of (A3) given in Remark 2.2.
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It is proved in [12] that the converse inequality Q ≥ Ph of that in Theorem 4.13 holds in the case of
FlowAbGrp and ha (see Remark 4.11), but its proof required the use of the Algebraic Yuzvinski Formula (see
Theorem 5.4). More precisely, this fundamental tool was shown to be necessary in the proof of the inclusion
Q(Qd, φ) ≥ Ph(Qd, φ), for arbitrary d ∈ N and φ. A proof of this inclusion, making no recourse to the Algebraic
Yuzvinski Formula, was obtained in the recent [18]. On the other hand, the proof given in [12] of the inequality
Q ≤ Pha for FlowAbGrp makes no recurse to (A2), as it uses other results in that specific case related to the
properties of the endomorphisms whose trajectories have polynomial growth. Therefore, it is fair to say that the
verification of (A2) in the case of FlowAbGrp and ha makes no recourse to the Algebraic Yuzvinski Formula.

Here comes another general result:

Theorem 4.14. Let R be a domain and let h 6≡ 0 be an entropy function of FlowR. Then Ph ≤W.

Proof. Let us prove first that h(βR) > 0. Assume for a contradiction that h(βR) = 0. If (M,φ) ∈ FlowR, then
for x ∈M we define a homomorphism f : (R(N), βR)→ (M,φ) in FlowR. For n ∈ N, let en be the n-th canonical
generator of R(N) (so that en+1 = β(en)). Then the map defined by f(en) = φn(x) for n ∈ N can be extended
to a homomorphism with the desired properties. Clearly, f(R(N)) = T (φ,Rx). Hence, our hypothesis h(βR) = 0
yields that h(φ �T (φ,Rx)) = 0. Let N ∈ F(M). Then T (φ,N) is a finite sum of φ-invariant submodules of the
form Nx = T (φ,Rx), with x ∈ N . Since h(φ �T (φ,Rx)) = 0 for each x ∈ N , we deduce that also h(φ �N ) = 0. In
view of Remark 2.2, (A3) gives h(φ) = 0. Hence, h ≡ 0, a contradiction.

Assume that Ph(M,φ) 6⊆ W(M,φ) for some (M,φ) ∈ FlowR and pick x ∈ Ph(M,φ) \W(N,φ �N ). Then
Rφn(x) ∩ (Rx+ . . .+ Rφn−1(x)) = 0 for every n ∈ N+. Hence, the submodule T (φ,Rx) is isomorphic to R(N).
Fix an isomorphism f : R(N) → T (φ,Rx) as above. Then f is also a morphism in FlowR, so βR is conjugated
to φ �T (φ,Rx). Since T (φ,Rx) is the smallest φ-invariant submodule containing x ∈ Ph(M,φ) and the latter is
a φ-invariant submodule, we conclude that T (φ,Rx) ≤ Ph(M,φ). Hence, h(φ �T (φ,Rx)) = h(φ �Ph(M,φ)) = 0
yields h(βR) = 0 as well. By the above argument this leads to a contradiction.

Corollary 4.15. Let R be an integral domain and h 6≡ 0 an entropy function of FlowR satisfying (A0) and
(A4∗). Then Q ≤ Ph ≤W.

5 Examples

In this section we consider the general results of the previous sections with respect to the known algebraic
entropies.

5.1 Algebraic entropy in AbGrp

We start with our principal and motivating example, that is, the algebraic entropy ha of FlowAbGrp.

Let (G,φ) ∈ FlowAbGrp. For a non-empty finite subset F of G and for any positive integer n, let τφ,F (n) =
|Tn(φ, F )|. Then the limit

H(φ, F ) = lim
n→∞

log τφ,F (n)

n

exists, as proved in [11], and it is called the algebraic entropy of φ with respect to F . The algebraic entropy of φ
is

ha(φ) = sup{H(φ, F ) : F ⊆ G non-empty, finite}. (5.1)

It is clear from the definition that ha(0G) = 0 for every abelian group G and it is proved in [12] that
ha(1G) = 0 for every abelian group G. In other words, ha satisfies (A0).

In the next fact we collect the basic properties of the algebraic entropy proved in [11] (see also [34]).

Fact 5.1. Let (G,φ) ∈ FlowAbGrp.

(a) If (H,ψ) ∈ FlowAbGrp and φ and ψ are conjugated, then ha(φ) = ha(ψ).

(b) If k ∈ N, then ha(φk) = k · ha(φ). If φ is an automorphism, then ha(φk) = |k| · ha(φ) for every k ∈ Z.

(c) If G is a direct limit of φ-invariant subgroups {Gj : j ∈ J}, then ha(φ) = supj∈J ha(φ �Gj ).

(d) For every prime p, ha(βZ(p)) = log p.
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This fact implies that ha satisfies (A1), (A4∗), (A3) and (A5) (as a consequence of items (a), (b), (c) and
(d), respectively).

The following theorem is one of the main results on the algebraic entropy ha proved in [11].

Theorem 5.2 (Addition Theorem). Let G be an abelian group, φ ∈ End(G), H a φ-invariant subgroup of G
and φ : G/H → G/H the endomorphism induced by φ. Then ha(φ) = ha(φ �H) + ha(φ).

The Addition Theorem shows exactly that ha satisfies (A2∗). It implies in particular that for (G,φ) ∈
FlowAbGrp, the algebraic entropy ha is monotone under taking restrictions to φ-invariant subgroups H of G
and under taking endomorphisms φ induced by φ on quotients G/H, that is, ha(φ) ≥ max{ha(φ �H), ha(φ)}.

Therefore, the algebraic entropy ha is an example of entropy function in the sense of Definition 1.1:

Theorem 5.3. The algebraic entropy ha : FlowAbGrp → R≥0 ∪ {∞} is an entropy function of FlowAbGrp.

In this particular case Theorem 2.17 gives that tha = (Tha ,Fha) is a hereditary torsion theory in FlowAbGrp,
recalling that

Tha = {(G,φ) ∈ FlowAbGrp : ha(φ) = 0} and Fha = {(G,φ) ∈ FlowAbGrp : ha(φ) >> 0}.

Let f(t) = ant
n + a1t

n−1 + . . .+ a0 ∈ Z[t] be a primitive polynomial. Let {λi : i = 1, . . . , n} ⊆ C be the set
of all roots of f(t). The (logarithmic) Mahler measure of f(t) is

m(f(t)) = log |a0|+
∑
|λi|>1

log |λi|.

The Mahler measure plays an important role in number theory and arithmetic geometry and is involved in the
famous Lehmer’s Problem, asking whether inf{m(f(t)) : f(t) ∈ Z[t] primitive,m(f(t)) > 0} > 0 (for example
see [22] and [27]). If g(t) ∈ Q[t] is monic, then there exists a smallest positive integer s such that sg(t) ∈ Z[t];
in particular, sg(t) is primitive. The Mahler measure of g(t) is defined as m(g(t)) = m(sg(t)). Moreover, if
φ : Qn → Qn is an endomorphism, its characteristic polynomial pφ(t) ∈ Q[t] is monic, and we can define the
Mahler measure of φ as m(φ) = m(pφ(t)).

The following Algebraic Yuzvinski Formula shows that for an endomorphism of Qn the algebraic entropy
coincides with the Mahler measure. A direct proof of the Algebraic Yuzvinski Formula is given in [42] in the
particular case of endomorphisms of Zn and in [24] in the general case of endomorphisms of Qn. It is deduced

in [12] from the Yuzvinski Formula for the topological entropy of automorphisms of the Pontryagin dual Q̂n of
Qn (see [31, 44, 46]) and from the “Bridge Theorem” proved by Peters in [34] (see Theorem 6.1 below).

Theorem 5.4 (Algebraic Yuzvinski Formula). For n ∈ N+, if φ : Qn → Qn is an endomorphism, then
h(φ) = m(φ).

The Algebraic Yuzvinski Formula was heavily used in the proof of the Addition Theorem 5.2 in [11], and this
was the reason to avoid the use of (A2) in the proof of Q ≤ Pha in [12]. It plays an important role also in the
following

Theorem 5.5 (Uniqueness Theorem). The algebraic entropy ha of FlowAbGrp is characterized as the unique
collection ha = {hG : G ∈ AbGrp} of functions hG : End(G)→ R≥0 ∪ {∞} such that:

(a) hG is invariant under conjugation for every abelian group G;

(b) the Addition Theorem holds for hG for every abelian group G;

(c) if φ ∈ End(G) and the abelian group G is a direct limit of φ-invariant subgroups {Gj : j ∈ J}, then
hG(φ) = supj∈J hGj (φ �Gj );

(d) hZ(p)(N)(βZ(p)) = log p for every prime p;

(e) the Algebraic Yuzvinski Formula holds for hQ restricted to the automorphisms of Q.

Note that the logarithmic law, which is axiom (A4∗) does not appear among the axioms needed in the
Uniqueness Theorem, since it is embodied in (d) and (e).
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5.2 Algebraic entropy in TorAbGrp

In Section 5.1 we have discussed the algebraic entropy ha of FlowAbGrp, and we have shown that it is an entropy
function. But, as said in the introduction, the algebraic entropy ha introduced by Peters in [34] is a modification
of the algebraic entropy ent by Weiss in [45]. The algebraic entropy ent is defined as ha, but taking in (5.1) the
supremum with F ranging among all finite subgroups of G, instead of all non-empty finite subsets of G. More
precisely, for (G,φ) ∈ FlowAbGrp,

ent(φ) = sup{H(φ, F ) : F ≤ G,F finite}.

From the definition it follows directly that

ent(φ) = ent(φ �t(G)) = ha(φ �t(G)), (5.2)

where t(G) is the torsion subgroup of G.

Since ha satisfies (A0), (5.2) implies immediately that also ent satisfies (A0).

The following are the basic properties of the algebraic entropy ent, proved in [17, 45].

Fact 5.6. Let (G,φ) ∈ FlowAbGrp.

(a) If (H,ψ) ∈ FlowAbGrp and φ and ψ are conjugated, then ent(φ) = ent(ψ).

(b) For every k ∈ N, ent(φk) = k · ent(φ). If φ is an automorphism, then ent(φk) = |k| · ent(φ) for every k ∈ Z.

(c) If G is a direct limit of φ-invariant subgroups {Gj : j ∈ J}, then ent(φ) = supj∈J ent(φ �Gj ).

(d) For every prime p, ent(βZ(p)) = log p.

(e) If G is torsion and H is a φ-invariant subgroup of G, then ent(φ) = ent(φ �H) + ent(φ), where φ : G/H →
G/H is the endomorphism induced by φ.

(f) The algebraic entropy of the endomorphisms of the torsion abelian groups is characterized as the unique
collection h = {hG : G torsion abelian group} of functions hG : End(G)→ R+ ∪ {∞} that satisfy (a), (b),
(c), (d) and (e).

It follows respectively from (a), (b) and (c) of Fact 5.6 that ent satisfies (A1), (A4∗) and (A3) considered on
all FlowAbGrp. Moreover, (d) is (A5) and (e) shows that ent satisfies (A2∗) (and so (A2)) when is restricted to
the subcategory FlowTorAbGrp of FlowAbGrp. Since TorAbGrp is an abelian category, FlowTorAbGrp is an
abelian category as well. So we have just verified the following

Theorem 5.7. The algebraic entropy ent : FlowTorAbGrp → R≥0 ∪ {∞} is an entropy function.

The same result can be obtained by Theorem 5.3, noting that ent coincides with ha on FlowTorAbGrp by
(5.2).

In view of Theorem 5.7 the results of the previous sections can be applied to ent : FlowTorAbGrp →
R≥0 ∪ {∞}. In particular, Theorem 2.17 implies that tent = (Tent,Fent) is a hereditary torsion theory in
FlowTorAbGrp, where

Tent = {(G,φ) ∈ FlowTorAbGrp : ent(φ) = 0} and Fent = {(G,φ) ∈ FlowTorAbGrp : ent(φ) >> 0}.

Let us recall that for (G,φ) ∈ FlowAbGrp

tφ(G) = {x ∈ G : |T (φ, 〈x〉)| <∞} (5.3)

is the φ-torsion subgroup of G. For (G,φ) ∈ FlowTorAbGrp, from [12] we have

Pent(G,φ) = tφ(G) = Q1(G,φ) = Q(G,φ). (5.4)

In particular, considering the restriction QT of the radical Q to FlowTorAbGrp, we have that

tent = tQT ,

that is, the inequality of Theorem 4.13 becomes an equality in this case.
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5.3 i-Entropy in ModR

5.3.1 The entropy associated to an additive invariant

Let R be a ring. Recall, that an invariant i : ModR → R≥0∪{∞} is additive if it satisfies (A2∗), and an additive
invariant is a length function if it is also upper continuous (see Definition 3.12 above). Moreover, i is discrete if
it has values in a subset of R+ order-isomorphic to N [38].

Remark 5.8. The algebraic entropy ent is discrete as it takes values in logN+ ∪ {∞}.
On the other hand, it is known that the above mentioned Lehmer’s Problem is equivalent to the problem of

finding the value of inf{ha(φ) : (G,φ) ∈ FlowAbGrp, ha(φ) > 0} (see [44]) — note that this follows also from
the Algebraic Yuzvinski Formula (i.e., Theorem 5.4). This value is positive if and only if the algebraic entropy
ha is discrete (see [11, 18]).

For an invariant i of ModR, the class of all R-modules M with i(M) < ∞ is closed under finite sums and
quotients. If i is an additive invariant, then this class is closed also under submodules and extensions. Following
[38, 37], for M ∈ModR let

Fini(M) = {N ≤M : i(N) <∞},

zi(M) = {x ∈M : i(Rx) = 0} and fi(M) = {x ∈M : i(Rx) <∞}. (5.5)

For every φ ∈ End(M), zi(M) is a φ-invariant submodule of M . Moreover, zi : ModR →ModR is a hereditary
radical when i is a length function, while the preradical fi : ModR → ModR need not be a radical (see [37,
Example 2.5]).

Following [37, 41], for M ∈ModR we denote by Ni∗ the tzi-closure of a submodule N of M (in the sense of
Definition 2.15 above), that is, Ni∗ = π−1(zi(M/N)) where π : M →M/N is the canonical projection.

If fi(M) = M we say that M is locally i-finite. Let lFini(R) be the class of all locally i-finite left R-modules.
As noted in [37] this class is closed under quotients, direct sums and submodules, while in general it is not closed
under extensions.

Remark 5.9. As the ring R is a generator of ModR, the behavior of an additive invariant i of ModR depends
on whether R ∈ lFini(R) or not. If i(R) = 0, then i(M) = 0 for every M ∈ModR, that is, i ≡ 0 (since every
M ∈ ModR is quotient of some free module R(I), which has i(R(I)) = 0 by the additivity of i). In the sequel
assume that i 6≡ 0, i.e., i(R) > 0.

(a) If R 6∈ lFini(R), then i(R) =∞. In this case, if x ∈ fi(M), then x is torsion, i.e., annR(x) 6= 0.

An example to this effect is given by R = Z and i = log | − |, since log |Z| =∞. In this case fi(G) = t(G)
for every abelian group G.

(b) If R ∈ lFini(R) (i.e., 0 < i(R) < ∞), then lFini(R) = ModR as lFini(R) is closed under direct sums and
quotients (nevertheless, i(R(I)) =∞ if I is infinite, by the additivity of i). By Proposition 3.5, i(R/I) = 0
for every proper ideal I of R.

An example to this effect is given by i = r0 : AbGrp → N ∪ {∞}; in fact, r0(Z) = 1 and r0(Z(N)) is
infinite.

In analogy with (5.2) for the algebraic entropy ent, also for the i-entropy of (M,φ) ∈ FlowR we have

enti(φ) = enti(φ �fi(M)) and enti(φ �zi(M)) = 0. (5.6)

Let (M,φ) ∈ FlowR and consider an additive invariant i of ModR. It is proved in [38] that for F ∈ Fini(M)
the limit

Hi(φ, F ) = lim
n→∞

i(Tn(φ, F ))

n

exists, and Hi(φ, F ) is the algebraic entropy of φ with respect to F . The algebraic entropy of φ is

enti(φ) = sup{Hi(φ, F ) : F ∈ Fini(M)}.

Obviously, i ≡ 0 yields enti ≡ 0.

Example 5.10. For the invariant i = log | − | of AbGrp, enti is exactly the algebraic entropy ent.
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The following fact is a direct consequence of the definition (see also [38, Proposition 1.8]) and it shows that
enti satisfies (A0).

Fact 5.11. Let (M,φ) ∈ FlowR. If F ∈ Fini(M) is φ-invariant, then H(φ, F ) = 0. In particular, enti(0M ) = 0
and enti(1M ) = 0.

Many properties of the i-entropy were studied in [38]. In particular, the following properties hold.

Fact 5.12. [38] Let R be a ring and i a discrete additive invariant of ModR. Let (M,φ) ∈ FlowR.

(a) If (N,ψ) ∈ FlowR and φ and ψ are conjugated, then enti(φ) = enti(η).

(b) If k ∈ N, then enti(φ
k) = k ·enti(φ). If φ is an automorphism, then enti(φ

k) = |k| ·enti(φ) for every k ∈ Z.

(c) For every M ∈ModR, enti(βM ) = i(M).

(d) If N is a φ-invariant submodule of M , then enti(φ) ≥ enti(φ �N ).

(e) If M = M1 ×M2 in ModR and φj ∈ End(Mj), for j = 1, 2, then enti(φ1 × φ2) = enti(φ1) + enti(φ2).

(f) [37, Corollary 2.18(i)] Let (M,φ) ∈ FlowR and N a φ-invariant submodule of M . Then enti(φ �N ) =
enti(φ �Ni∗).

This fact implies that for an additive invariant i of ModR, the function enti satisfies, beyond (A0), also
(A1), (A4∗) and (A5) (as a consequence of items (a), (b) and (c), respectively). In Theorem 5.14 we show that
enti is an entropy function, but to this end we need to restrict appropriately its domain and impose two more
conditions on i.

5.3.2 The entropy function of a length function

It is proved in [37] that the Addition Theorem for enti holds for discrete length functions i in the class of locally
i-finite R-modules; in other words, enti restricted to FlowlFini(R) satisfies (A2∗).

Theorem 5.13 (Addition Theorem). Let R be a ring and i : ModR → R≥0 ∪ {∞} a discrete length function.
Let M ∈ ModR be locally i-finite, φ ∈ End(M), N a φ-invariant submodule of M and φ : M/N → M/N the
endomorphism induced by φ. Then enti(φ) = enti(φ �N ) + enti(φ).

Also an impressive Uniqueness Theorem is proved in [37] for enti, with i discrete length function. This
theorem in particular generalizes the Uniqueness Theorem proved in [38] for the entropy function entr0 of
FlowAbGrp and the Uniqueness Theorem for the algebraic entropy ent of FlowTorAbGrp (see Fact 5.6(f)).

Let i be a discrete length function on ModR, and consider enti : FlowR → R≥0 ∪ {∞}. Since lFini(R) is a
cocomplete abelian category, and FlowlFini(R) is a cocomplete abelian category as well, it is possible to consider
enti restricted to FlowlFini(R) and to prove the following

Theorem 5.14. Let i be a discrete length function on ModR. Then enti : FlowlFini(R) → R≥0 ∪ {∞} is an
entropy function.

Proof. It remains to note that (A2) holds according to Theorem 5.13, while (A3) follows from the fact (established
in [37]) that enti is an upper continuous invariant of ModR[t] (see Remark 2.2).

The restriction to the subcategory M = lFini(R) seems to be necessary, as enti may fail to satisfy (A2) (even
monotonicity under taking induced endomorphisms on quotients) in ModR[t].

In this particular case, for

Zenti = {(M,φ) ∈ FlowlFini(R) : enti(φ) = 0} and Penti = {(M,φ) ∈ lFini(R) : enti(φ) >> 0},

by Theorem 2.17 we have that tenti = (Zenti ,Penti) is a hereditary torsion theory in lFini(R). Moreover,
zi(M) ⊆ Penti(M,φ) for every (M,φ) ∈ FlowlFini(R).
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5.3.3 The Pinsker radical of the i-entropy

Inspired by (5.3), for (M,φ) ∈ FlowR define

tiφ(M) = {x ∈M : i(T (φ,Rx)) <∞}.

In particular, tiφ(M) ⊆ fi(M).

For i = log |− | and (G,φ) ∈ FlowTorAbGrp the subgroup tiφ(G) coincides with the φ-torsion subgroup tφ(G)
recalled in (5.3). Now we extend this property to enti:

Theorem 5.15. Let (M,φ) ∈ FlowlFini(R). Then Penti(M,φ) = tiφ(M).

Proof. According to [38, Proposition 1.10(i)], for F ∈ Fini(M), Hi(φ, F ) = 0 if and only if i(T (φ, F )) < ∞.
Consequently, enti(φ) = 0 if and only if M = tiφ(M). In particular, enti(φ �tiφ(M)) = 0, so tiφ(M) is the greatest

φ-invariant submodule of M with this property. Since this is also the defining property of Penti(M,φ) (see
Lemma 2.9), we conclude that Penti(M,φ) = tiφ(M).

For (M,φ) ∈ FlowlFini(R), Q(M,φ) ⊆ Penti(M,φ) by Theorem 4.13. This inclusion can be strict as Example
5.18 will show.

The next theorem improves Corollary 4.15.

Theorem 5.16. Let (M,φ) ∈ FlowlFini(R). Then A(M,φ) ⊆ Penti(M,φ). If R is an integral domain, then
Penti(M,φ) ⊆W(M,φ).

Proof. The inclusion Penti(M,φ) ⊆W(M,φ) was proved in the general setting in Theorem 4.14. The inclusion
A(M,φ) ⊆ Penti(M,φ) follows substantially from [41, Proposition 2.22] (a proof appears also in [14]).

Theorems 5.15, 5.16 and (5.6) give

zi(M) + A(M,φ) ⊆ Penti(M,φ) = tiφ(M).

As a consequence of Fact 5.12(f), since both zi(M) and A(M,φ) are contained in A(M,φ)i∗, one can strengthen
this as follows:

Corollary 5.17. For every (M,φ) ∈ FlowR, Penti(M,φ) is tzi-closed in M . In particular, if M ∈ lFini(R),
then A(M,φ)i∗ ⊆ Penti(M,φ).

The next example shows that A(M,φ)i∗ (and so also A(M,φ)) may be strictly contained in Penti(M,φ), even
if zi(M) = 0.

Example 5.18. Let φ ∈ End(Q), that is, there exists r ∈ Q such that φ(x) = rx for every x ∈ Q. Since Q has
finite free-rank, entr0(φ) = 0, and hence Pentr0

(Q, φ) = Q.

(a) If r ∈ Z \ {0, 1}, then Q(Q, φ) = 0 and A(Q, φ) = Q = W(Q, φ) by Example 4.4. Hence, 0 = Q(Q, φ) ⊂
A(Q, φ) = A(Q, φ)r0∗ = W(Q, φ) = Q = Pentr0

(Q, φ).

(b) If r 6∈ Z, then A(Q, φ) = Q(Q, φ) = 0 and W(Q, φ) = Q by Example 4.4. Therefore, 0 = Q(Q, φ) =
A(Q, φ) = A(Q, φ)r0∗ ⊂W(Q, φ) = Q = Pentr0

(Q, φ).

In case R is an integral domain and i(R) <∞ we have the following

Example 5.19. [14] Let R be an integral domain and i a length function on ModR such that i(R) <∞. Then
lFini(R) = ModR and i(R/I) = 0 for every proper ideal I of R (see Remark 5.9(b)). Moreover, for every
(M,φ) ∈ FlowR the following conditions are equivalent:

(a) enti(φ) = 0;

(b) φ is pointwise algebraic over R.

One can prove that under the above hypotheses, i coincides with the multiple i(R)rankR of the rank rankR over
R (see [33, Theorem 2]). For R = Z this generalizes the equivalence established in [38] for the rank-entropy in
AbGrp.

Corollary 5.20. Let R be an integral domain and i a length function on ModR such that i(R) < ∞. Then
Penti = W in FlowR.
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6 Contravariant entropy functions

A measure space is a triple (X,B, µ), where X is a non-empty set, B a σ-algebra on X and µ is a measure on B.
If (Xi,Bi, µi), i = 1, 2, are measure spaces, then a map T : (X1,B1, µ1)→ (X2,B2, µ2) is a measure preserving
transformation if T−1(B2) ⊆ B1 and µ1(T−1(A)) = µ2(A) for all A ∈ B2. Denote by Mes the category of all
measure spaces and their measure preserving transformations. The measure entropy hmes in Mes is defined as
follows.

For a measure space (X,B, µ) and a measurable partition ξ = {A1, A2, . . . , Ak} of X define the (measure)
entropy of ξ by

Hmes(ξ) = −
k∑
i=1

µ(Ak) logµ(Ak).

For two partitions ξ, η of X let ξ∨η = {U ∩V : U ∈ ξ, V ∈ η}. Analogously define ξ1∨ ξ2∨ . . .∨ ξn for partitions
ξ1, . . . , ξn of X. For a measure preserving T : X → X and a measurable partition ξ = {A1, A2, . . . , Ak} of X,
let T−j(ξ) = {T−j(Ai)}ki=1. Then the limit

hmes(T, ξ) = lim
n→∞

Hmes(
∨n−1
j=0 T

−j(ξ))

n

exists. The (measure) entropy of T is hmes(T ) = supξ hmes(T, ξ), where ξ runs over the family of all measurable
partitions of X.

The topological entropy htop in the category Comp of all compact spaces and their continuous maps is
defined as follows. For a compact topological space X and for an open cover U of X, let N(U) be the minimal
cardinality of a subcover of U . Since X is compact, N(U) is always finite. Let H(U) = logN(U) be the entropy
of U . For any two open covers U and V of X, let U ∨ V = {U ∩ V : U ∈ U , V ∈ V}. Define analogously
U1 ∨ . . . ∨ Un, for open covers U1, . . . ,Un of X. For a continuous map ψ : X → X and an open cover U of X let
ψ−1(U) = {ψ−1(U) : U ∈ U}. The topological entropy of ψ with respect to U is

Htop(ψ,U) = lim
n→∞

H(U ∨ ψ−1(U) ∨ . . . ∨ ψ−n+1(U))

n
,

and the topological entropy of φ is

htop(ψ) = sup{Htop(ψ,U) : U open cover of X}.

A definition of the topological entropy hd(f) for a continuous self-map f of a metrizable topological space
(X, d) was given by Bowen [6]. In case (X, d) is compact, one has hd(f) = htop(f) [44].

Let CompGrp denote the category of all compact groups and their continuous homomorphisms, and let
U : CompGrp → Comp be the obvious forgetful functor. On the other hand, every compact group G
has a (unique) invariant measure µG (i.e., that makes all translations in G measure preserving), namely the
Haar measure. It was noticed by Halmos [26], that a continuous homomorphism in CompGrp is measure
preserving precisely when it is surjective. The epimorphisms in CompGrp are precisely the surjective continuous
homomorphisms [36]. So, denoting by CompGrpe the non-full subcategory of CompGrp, having as morphisms
all epimorphisms in CompGrp, we obtain also an obvious forgetful functor V : CompGrp → Mes, given in
the following diagram where i is the inclusion of CompGrpe in CompGrp as a non-full subcategory:

CompGrpe
i //

V

��

CompGrp
U // Top

Mes

A remarkable property of this triple is that for (G,φ) ∈ FlowCompGrpe (i.e., with φ surjective), the measure
entropy hmes(V φ) coincides with the topological entropy htop(Uφ). This was established by Aoki [3] in the case
of automorphisms and by Stojanov [39] in the general case.

On the other hand, it is possible to reduce general continuous homomorphisms of compact groups to surjective
ones. Indeed, every continuous endomorphism φ of a compact group K admits a largest closed φ-invariant
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subgroup Eφ(K) such that φ �Eφ(K): Eφ(K) → Eφ(K) is surjective and htop(φ �Eφ(K)) = htop(φ) (see [43,
Corollary 8.6.1]).

For the sake of simplicity, we shall write htop(φ) in place of htop(Uφ) in the sequel.

Another important connection between the topological entropy and the algebraic entropy (exploiting the
Pontryagin duality) is the following so-called Bridge Theorem due to Peters:

Theorem 6.1. [34] If G is a countable abelian group and φ is an automorphism of G, then h(φ) = htop(φ̂),

where Ĝ is the Pontryagin dual of G and φ̂ : Ĝ→ Ĝ is the adjoint automorphism of φ.

In [11] we generalize this theorem, proving it for endomorphisms of arbitrary abelian groups.

It is known that htop is “continuous” with respect to inverse limits when considered on CompGrp. This
shows a substantial difference compared to the entropy functions we considered in the previous sections as the
algebraic entropy and the i-entropy for AbGrp and ModR respectively, as they are “continuous” with respect
to direct limits.

This gives a good motivation to split the abstract notion of entropy functions in two dual notions, say
covariant entropy functions (precisely those of Definition 1.1) and contravariant entropy functions as htop on
CompGrp.

While both the covariant and contravariant entropy functions must be invariant under conjugation, and
satisfy the Addition Theorem (or some weaker version of the Addition Theorem), the “continuity” property
must be imposed in a selective way: the covariant entropy functions must be “continuous” with respect to direct
limits, while the contravariant entropy functions could be “continuous” with respect to inverse limits (here we
respect the already existing record on the topological and the measure entropy).

Remark 6.2. The distinction between both types of entropy is well visible also in the case of the “normalization
axiom” that imposes a specific value of the entropy function at the Bernoulli shifts.

Recall that for M ∈ModR, the left Bernoulli shift is the algebraic flow

Mβ : MN →MN defined by (x0, . . . , xn, . . .) 7→ (x1, . . . , xn+1, . . .).

Abusing notation, we use Mβ to denote also the restriction of Mβ to M (N).
For K ∈ AbGrp, the left Bernoulli shift Kβ of K(N) has algebraic entropy 0 (as (K(N),Kβ) = O(K(N),Kβ)),

and the right Bernoulli shift βK of K(N) has algebraic entropy log |K|. Conversely, for K ∈ CompGrp, the left
Bernoulli shift Kβ of KN has topological entropy log |K|, while the right Bernoulli shift βK of KN has topological
entropy 0.

So, in view of the properties of the measure entropy and of the topological entropy discussed above, we
introduce the contravariant entropy functions in the following way.

Definition 6.3. Let N be a complete abelian category. A contravariant entropy function of N is a an entropy
function h : Nop → R≥0 ∪ {∞}, where Nop is the opposite category of N.

Note that a contravariant entropy function h satisfies (A1) and (A2) of Definition 1.1, as the conditions are
self-dual; so the difference between covariant and contravariant entropy functions is contained in (A3) and its
“opposite”.

Semiabelian categories, introduced in [28], provide a nice generalization of abelian categories which reflects
the properties of the categories of groups, rings and algebras and allows for a categorical approach to radical
theories. As shown recently in [5], the category CompGrp is semiabelian but not abelian. This suggests to
generalize the setting at least to semiabelian categories to include the topological entropy at least for continuous
endomorphisms of compact groups. So we leave open the following problem, noting that the theory of torsion
theories has been extended in this context (see for example in [8, 29]).

Problem 6.4. Develop the theory of covariant (respectively, contravariant) entropy functions in semiabelian
cocomplete (respectively, complete) categories.
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