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ASSOCIATION SCHEMOIDS AND THEIR CATEGORIES

KATSUHIKO KURIBAYASHI AND KENTARO MATSUO

Abstract. We propose the notion of association schemoids generalizing that
of association schemes from small categorical points of view. In particular, a
generalization of the Bose-Mesner algebra of an association scheme appears as a
subalgebra in the category algebra of the underlying category of a schemoid. In
this paper, the equivalence between the categories of groupoids and that of thin
association schemoids is established. Moreover linear extensions of schemoids
are considered. A general theory of the Baues-Wirsching cohomology deduces
a classification theorem for such extensions of a schemoid. We also introduce
two relevant categories of schemoids into which the categories of schemes due
to Hanaki and due to French are embedded, respectively.

1. Introduction

Finite groups are investigated in appropriate derived categories via group rings
with categorical representation theory and in the category of topological spaces via
classifying spaces with homotopy theory. Since association schemes are regarded as
generalizations of finite groups, it is natural to construct a categorical framework
for studying such generalized groups. Then we introduce association schemoids and
their categories in expectation of interaction with association schemes, groupoids,
the classifying spaces of small categories and the new notion in the study of these
subjects.

An association scheme is a pair of a finite set and a particular partition of the
Cartesian square of the set. The notion plays a crucial role in algebraic combi-
natorics [3], including the study of designs and graphs, and in coding theory [8].
In fact, such schemes encode combinatorial phenomena in terms of representation
theory of finite dimensional algebras. To this end, we may use the Bose-Mesner
algebra of an association scheme which, by definition, is the matrix algebra gen-
erated by adjacency matrices of the elements of the partition. Each spin model
[16], which is a square matrix yielding an invariant of links and knots, is realized
as an element of the Bose-Mesner algebra of some association scheme [14, 15, 19].
This also exhibits the importance of association schemes. Moreover, the structure
theory of association schemes have been investigated in the framework of group
theory as generalized groups; see [23, 24]. Very recently, global nature of the in-
teresting objects is studied in such a way as to construct categories consisting of
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finite association schemes and appropriate morphisms [9, 11]. Interaction with the
above-mentioned subjects makes the realm of such schemes more fruitful.

In this paper, by generalizing the notion of association schemes itself from a
categorical point of view, we introduce a particular structure on a small category
and coin the notion of association schemoids. Roughly speaking, a specific partition
of the set of morphisms brings the additional structure into the small category we
deal with. One of important points is that the Bose-Mesner algebra associated with
a schemoid can be defined in a natural way as a subalgebra in the category algebra
of the underlying category of the given schemoid. Here the category algebra is a
generalization of the path algebra associated with a quiver, which is a main subject
of consideration in representation theory of associative algebras [1]. Moreover, we
should mention that the category AS of finite association schemes introduced by
Hanaki [11] is imbedded into our category ASmd of association schemoids fully
and faithfully; see Theorem 3.2.

A thin association scheme is identified with a group; see [23, (1.12)] for example.
With our setting, the correspondence is generalized; that is, we give an equivalence
between the category of based thin association schemoids and that of groupoids;
see Theorem 4.11. Indeed, the equivalence is an expected lift of a functor from the
category of finite groups to that of based thin association schemes in [11]; see the
diagram (6.1) below and the ensuring comments.

Baues and Wirsching [6] have defined the linear extension of a small category,
which is a generalization of a group extension, and have proved a classification
theorem for such extensions with cohomology of small categories. We show that
each linear extension of a given schemoid admits a unique schemoid structure; see
Proposition 5.2. This result enables one to conclude that extensions of a schemoid
are also classified by the Baues-Wirsching cohomology; see Theorem 5.7. In our
context, every extension of an arbitrary association scheme is trivial; see Corollary
5.8. Unfortunately, our extensions of a schemoid do not cover extensions of an
association scheme, which are investigated in [2] and [13].

In [9], French has introduced a wide subcategory of the category AS of finite
association schemes. The subcategory consists of all finite association schemes
and particular maps called the admissible morphisms. In particular, the result
[9, Corollary 6.6] asserts that the correspondence sending a finite scheme to its
Bose-Mesner algebra gives rise to a functor A(-) from the wide subcategory to
the category of algebras. To understand the functor in terms of schemoids, we
introduce a category B of basic schemoids and admissible morphisms, into which
the subcategory due to French is embedded. In addition, the functor A(-) can be
lifted to the category B; see the diagram (6.1) again.

Let q : E → C be a linear extension over a schemoid C; see Definition 5.1. It
is remarkable that in some case, the projection q from the schemoid E to C is
admissible. Moreover, the morphism induces an isomorphism between the Bose-
Mesner algebras of E and C even if E and C are not equivalent as a category; see
Corollary 6.13 and Remark 6.14.

The plan of this paper is as follows. In Section 2, we introduce the association
schemoids, their Bose-Mesner algebras, and their Terwilliger algebras. Ad hoc
examples and the categoryASmd of schemoids mentioned above are also described.
Section 3 relates the category ASmd with other categories, especially AS and the
category of groupoids. In Section 4, after dealing with (semi-)thin schemoids, we
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prove Theorem 4.11. Section 5 explores linear extensions of schemoids. At the end
of the section, we give an example of a non-split schemoid extension. Section 6
is devoted to describing some of results due to French [9] in our context, namely
in terms of schemoids. Section 7 explains a way to construct a (quasi-)schemoid
thickening a given association scheme. In Appendix, we try to explain that a toy
model for a network seems to be a schemoid. In this paper, we do not pursue
properties of the Bose-Mesner algebra and Terwilliger algebras of schemoids while
one might expect the study of such algebras from categorical representation theory
points of view. Though we shall need a generalization of the closed subsets of
association schemes when defining subobjects, quotients, limits and colimits in the
context of association schemoids, this article does not address the issue.

As mentioned in [20] by Ponomarenko and Zieschang, association schemes are
investigated from three different points of view: as algebras, purely structure theo-
retically (Jordan-Hölder theory, Sylow theory), and as geometries (distance-regular
graphs, designs). Similarly, association schemoids may be studied relying on com-
binatorial way, categorical representation theory and homotopy theory for small
categories [22, 17]. In fact, the diagram (6.1) of categories and functors enables
us to expect that schemoids bring us considerable interests containing association
schemes and that the study of the new subjects paves the way for homotopical and
categorical consideration of such generalized groups.

As one of further investigations on schemoids, we intend to discuss a (co)fibration
category structure [4] on an appropriate category of schemoids. In particular, it is
important to consider (co)cylinder objects explicitly in the category in developing
a homotopical classification of schemoids. Moreover, the notion of (co)limits in
a category may give us a new construction of schemoids and hence association
schemes. These are issues in our forthcoming paper.

2. Association schemoids

We begin by recalling the definition of the association scheme. Let X be a finite
set and S a partition of X × X , namely a subset of the power set 2X×X , which
contains a partition of the subset 1X := {(x, x) | x ∈ X} as a subset. Assume
further that for each g ∈ S, the subset g∗ := {(y, x) | (x, y) ∈ g} is in S. Then the
pair (X,S) is called a coherent configuration if for all e, f, g ∈ S, there exists an
integer pgef such that for any (x, z) ∈ g

pgef = ♯{y ∈ X | (x, y) ∈ e and (y, z) ∈ f}.

Observe that pgef is independent of the choice of (x, z) ∈ g. By definition, a coherent

configuration (X,S) is an association scheme if S contains the subset 1X as an
element.

Let K be a group acting a finite set X . Then K act on the set X×X diagonally.
We see that the set SK of G-orbits of X ×X gives rise to a coherent configuration
(X,SK). It is readily seen that (X,SK) is an association scheme if and only if the
action of K on X is transitive.

For an association scheme (X,S), the pair (x, y) ∈ X × X is regarded as an
edge between vertices x and y. Then the scheme (X,S) is considered as a directed
complete graph and hence a small category; see Example 2.6 (ii) below for more
details. With this in mind, we generalize the notion of association schemes from a
categorical point of view.
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Definition 2.1. Let C be a small category; that is, the class of the objects of
the category C is a set. Let S := {σl}l∈I be a partition of the set mor(C) of all
morphisms in C. We call the pair (C, S) a quasi-schemoid if the set S satisfies the
concatenation axiom. This means that for a triple σ, τ, µ ∈ S and for any morphisms
f , g in µ, as a set

(πµ
στ )

−1(f) ∼= (πµ
στ )

−1(g),

where πµ
στ : π−1

στ (µ) → µ is the map defined to be the restriction of the concatenation
map πστ : σ ×ob(C) τ → mor(C).

For σ, τ and µ ∈ S, we have a diagram which explains the condition above

(2.1) (πστ )
−1

(µ) �
� //

πµ
στ

��

σ ×ob(C) τ //

��

comp=πστ

ww♥♥♥
♥♥
♥♥
♥♥
♥

τ

t

��
µ
� � // mor(C) σ

s
// ob(C).

If the set (πµ
στ )

−1(f) is finite, then we speak of the number pµστ := ♯(πµ
στ )

−1(f) as
the structure constant.

Definition 2.2. A quasi-schemoid (C, S) is an association schemoid (schemoid for
short) if the following conditions (i) and (ii) hold.

(i) For any σ ∈ S and the set J := ∐x∈ob(C)HomC(x, x), if σ∩J 6= φ, then σ ⊂ J .

(ii) There exists a contravariant functor T : C → C such that T 2 = idC and

σ∗ := {T (f) | f ∈ σ}

is in the set S for any σ ∈ S. We denote by (C, S, T ) the association schemoid
together with such a functor T .

Let J0 denote the subset {1x | x ∈ ob(C)} of the set of morphisms of a category
C. We call a (quasi-)schemoid unital if α ⊂ J0 for any α ∈ S with α ∩ J0 6= φ.

We define morphisms between (quasi-)schemoids.

Definition 2.3. (i) Let (C, S) and (E , S′) be quasi-schemoids. A functor F : C → E
is a morphism of quasi-schemoids if for any σ in S, F (σ) ⊂ τ for some τ in S′. We
then write F : (C, S) → (E , S′) for the morphism. By abuse of notation, we may
write F (σ) = τ if F (σ) ⊂ τ for a morphism F of schemoids.

(ii) Let (C, S, T ) and (E , S′, T ′) be association schemoids. If a morphism F from
(C, S) to (E , S′) satisfies the condition that FT = T ′F , then we call such a functor
F a morphism of association schemoids and denote it by F : (C, S, T ) → (E , S′, T ′).

Let C be a small category and K a commutative ring with unit. We here recall
the category algebra KC of C which is defined to be the free K-module generated by
the morphisms of the category C. The product of morphisms α and β as elements
of KC is defined by

αβ =

{
α ◦ β if α and β are composable

0 otherwise.

Let (C, S) be a quasi-schemoid with mor(C) finite. Then for any σ and τ in S,
we have an equality

(
∑

s∈σ

s) · (
∑

t∈τ

t) =
∑

µ∈S

pµστ (
∑

u∈µ

u)
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in the category algebra KC of C. This enables one to obtain a subalgebra K(C, S)
of KC generated by the elements (

∑
s∈σ s) for all σ ∈ S. We refer to the subalgebra

K(C, S) as the schemoid algebra of (C, S). Observe that the algebra K(C, S) is not
unital in general even if C is finite. The following lemma shows the significance of
the unitality of a (quasi-)schemoid.

Lemma 2.4. Let (C, S) be a quasi-schemoid whose underlying category C is finite.
Then (C, S) is unital if and only if so is the schemoid algebra K(C, S).

Proof. Assume that K(C, S) is unital. We write
∑

x∈ob(C) 1x =
∑

i αi(
∑

s∈σi
s),

where αi ∈ K and σi ∈ S. Then for any x ∈ ob(C), there exists a unique index i
such that 1x ∈ σi and αi = 1. If the element σi of S contains a morphism s which
is not the identity 1y for some y ∈ ob(C), then the right hand side of the equality
has s as a term, which is a contradiction. The converse is immediate. �

We are aware that the schemoid algebra is a generalization of the Bose-Mesner
algebra associated with an association scheme; see Example 2.6 (ii) below for details.
We may call the schemoid algebra the Bose-Mesner algebra of the given quasi-
schemoid.

Suppose that the underlying category C of a quasi-schemoid (C, S) has a terminal
object e. By definition, for any object x of C, there exists exactly only one morphism
(e, x) from x to e. For any σ ∈ S, we define an element Eσ of the category algebra
KC by Eσ =

∑
(e,x)∈σ 1x. We refer to the subalgebra T (e) of KC generated by

K(C, S) and elements Eσ for σ ∈ S as the Terwilliger algebra of (C, S). Since∑
σ∈S Eσ =

∑
x∈ob(C) 1x, it follows that T (e) is unital if C is finite.

Remark 2.5. (i) The schemoid algebra of an quasi-schemoid (C, S) can be defined
provided ♯σ < ∞ for each σ ∈ S and for any τ and µ in S, the structure constant
pµστ is zero except for at most finite indexes µ ∈ S.

(ii) A functor F : C → E induces an algebra map F : KC → KE if F is a
monomorphism on objects. However, a morphism F : (C, S) → (E , H) of quasi-
association schemoids does not define naturally an algebra map between schemoid
algebrasK(C, S) and K(C, E) even if F induces an algebra map as mentioned above.
In Section 6, we shall discuss morphisms between quasi-schemoids which induce
algebra maps between the schemoid algebras.

Example 2.6. (i) A (possibly infinite) group G gives rise to an association schemoid

(G, G̃, T ), where G̃ = {{g} | g ∈ G} and T (g) = g−1. The schemoid algebra

K(G, G̃) is nothing but the group ring KG.
(ii) For an association scheme (X,S), we define an association schemoid j(X,S)

by the triple (C, U, T ) for which ob(C) = X , HomC(y, x) = {(x, y)} ⊂ X×X , U = S,
T (x) = x and T (x, y) = (y, x), where the composite of morphisms (z, x) and (x, y)
is defined by (z, x) ◦ (x, y) = (z, y).

The schemoid algebra of j(X,S) is indeed the ordinary Bose-Mesner algebra of
the association scheme (X,S). Moreover, we see that the Terwilliger algebra T (e)
of j(X,S) is the Terwilliger algebra of (X,S) introduced originally in [21]. Observe
that every object of j(X,S) is a terminal one because j(X,S) is a directed complete
graph.

(iii) Let G be a group. Define a subset Gf of G × G for f ∈ G by Gf :=
{(k, l) | k−1l = f}. Then we have an association scheme S(G) = (G, [G], T ), where
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[G] = {Gf}f∈G. The same procedure permits us to obtain an association schemoid

S̃(H) = (H̃, S, T ) for a groupoid H, where ob(H̃) = mor(H) and

HomH̃(g, h) =

{
{(h, g)} if t(h) = t(g)

∅ otherwise.

In fact, we define the partition S = {Gf}f∈mor(H) by Gf = {(k, l) | k−1l = f},

T (f) = f for f in ob(H̃) and T ((f, g)) = (g, f) for (f, g) ∈ mor(H̃).

We define categories qASmd and ASmd to be the category of quasi-schemoids
and that of association schemoids, respectively. The forgetful functor k : ASmd →
qASmd is defined immediately.

Let Cat be the category of small categories. We recall that morphisms of Cat

are functors between small categories. Let Gpd be the category of possibly infinite
groupoids which is a full subcategory of Cat. For a functor F ∈ HomGpd(K,H),

we define a morphism S̃(F ) in HomASmd(S̃(K), S̃(H)) by S̃(F )(f) = F (f) and

S̃(F )(f, g) = (F (f), F (g)) for f, g ∈ mor(K). Then the correspondence gives rise

to a functor S̃( ) : Gpd → ASmd.
Let AS be the category of association schemes in the sense of Hanaki [11]; that

is, its objects are association schemes and morphisms f : (X,S) → (X ′, S′) are
maps which satisfy the condition that for any s ∈ S, f(s) ⊂ s′ for some s′ ∈ S′.
It is readily seen that the correspondence j defined in Example 2.6 (ii) induces a
functor j : AS → ASmd.

We obtain many association schemoids from association schemes and groupoids

via the functors S̃ and j; see Example 2.14. As mentioned above, we have

Lemma 2.7. A schemoid in the image of the functor S̃ or j is a groupoid whose
hom-set for any two objects consists of a single element.

The following examples are association (quasi-)schemoids which are in neither
of the images. A more systematic way to construct (quasi-)schemoids is described
in Sections 5 and 7.

Example 2.8. We consider a group G a groupoid with single object. Then the triple
G• := (G, {G}, T ) is a schemoid with a contravariant functor T : G → G defined
by T (g) = g−1. In view of Lemma 2.7, we see that the schemoid G• is in neither

the image of the functors j nor the image of S̃( ) if ♯G > 1.

Example 2.9. Let us consider a category C defined by the diagram

x1x 99
f // y 1ydd

Define a contravariant functor T on C by T (x) = y and T (y) = x. Then the
triple (C, S, T ) is a unital schemoid, where S = {S1, S2} with S1 = {1x, 1y} and
S2 = {f}. We can define another partition S′ by S′ = {S′

1, S
′
2, S

′
3} for which

S′
1 = {1x}, S

′
2 = {1y} and S′

3 = {f}. Then (C, S′, T ) is also a unital schemoid.

Example 2.10. Let C and D be categories. The join construction C ∗ D with C
and D is a category given as follows. The set of objects is the disjoint union
ob(C) ∪ ob(D). The set of morphisms consists of all elements of mor(C) ∪mor(D)
and wab ∈ HomC∗D(a, b) for a ∈ ob(C) and b ∈ ob(D). Observe that HomC∗D(a, b)
has exactly one element wab and HomC∗D(b, a) = φ if a ∈ ob(C) and b ∈ ob(D).
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The additional concatenation law is defined by αwas = wat and wvbβ = wub for
α ∈ HomD(s, t) and β ∈ HomC(u, v).

Let (C, S) and (D, S′) be quasi-schemoids. We define a partition Σ of mor(C ∗D)
by Σ = S ∪ S′ ∪ {{wab}}a∈ob(C),b∈ob(D). It is readily seen that (C ∗ D,Σ) is a quasi-
schemoid.

Example 2.11. Let G be a group and let C denote the category G ∗ Gop obtained
by the join construction, namely a category with ob(C) = {x, y}, HomC(x, x) = G,
HomC(y, y) = Gop, HomC(x, y) = {f} and HomC(y, x) = φ. The diagram

xG 99
f // y Gopdd

denotes the category C. It is shown that T : C → C defined by T (x) = y and
T (y) = x is a contravariant functor. Then we have a unital schemoid (C, S, T ) with
the partition S defined by S = {Sg}g∈G∪{Sf}, where Sg = {g, gop} and Sf = {f}.

Observe that (C, S) is not isomorphic to the join (G• ∗ G′•,Σ) of the schemoid
G• and its copy G′• in the sense of Exmaple 2.10. In fact, for any morphism F :
(G•∗G′•,Σ) → (C, S) of quasi-schemoids, we see that F (1G) = 1x and F (1G′) = 1y.
This implies that F ({G} ∪ {G′}) ⊂ Se.

Example 2.12. Let C be a category defined by the diagram

// yi−1

1yi−1

��
xi

1xi

��hi−1oo

fi
��

gi // yi+1

1yi+1

�� oo

xi−1
oo

1xi−1

WW

fi−1

OO

gi−1 // yi

1yi

XX xi+1

1xi+1

WW
hioo

fi+1

OO

//

We define subsets σ and J0 of mor(C) by σ = {gi, hi}i∈Z and J0 = {1xi
, 1yi

}i∈Z,
respectively. Then for any partition S of the form {σ, J0, τl}l∈I of mor(C), the
triple (C, S, T ) is a unital schemoid, where T (xi) = yi and T (yi) = xi for any i ∈ Z.

Example 2.13. For l ≥ 1, let Cl be a category defined by the diagram

al
βl

''❖❖
❖❖

❖❖
❖❖

x
ε //

αl
77♦♦♦♦♦♦♦♦

γl ''❖❖
❖❖

❖❖
❖❖ y with βlαl = ε = δlγl;

bl
δl

77♣♣♣♣♣♣♣♣♣

see [6, (7.8)]. We define a partition S = {Si
l}i=0,1,2,3 of mor(Cl) by S

1
l = {αl, γl},

S2
l = {βl, δl}, S

3
l = {ε} and S0

l = {1x, 1y, 1al
, 1bl}. Define a contravariant functor

T : Cl → Ci by T (al) = bl, T (ε) = ε, T (αl) = δl and T (βl) = γl. Then we obtain a
unital schemoid C[k] of the form

(
⋃

1≤l≤k

Cl, {
⋃

1≤l≤k

Si
l}0≤i≤3, T ).

Example 2.14. Let (Ci, Si, Ti) be a schemoid. Then it is readily seen that the
product (ΠiCi,ΠiSi,ΠiTi) is a schemoid. In particular an EI-category of the form
C[k]×G

•; that is, all endomorphisms are isomorphisms, is a schemoid for any group
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G. Moreover, for an association scheme (X,S), we have a schemoid of the form

j(X, s) × G•, which is in neither the images of j nor the image of S̃( ) provided
♯G > 1.

3. A category of association schemoids and related categories

Let Gr be category of finite groups. With the funcotrs S̃( ), j and k mentioned
in Section 2, we obtain a diagram of categories and functors

(3.1) Gpd
S̃( ) //

ℓ

''
ASmd

k // qASmd
U //

Cat.
K

oo

Gr

i

OO

S( ) // AS

j

OO

Here U is the forgetful functor and, for a small category C, K defines a quasi-
schemoid K(C) = (C, S) with S = {{f}}f∈mor(C). It is readily seen that K is a

fully faithful functor and that UK = idCat. Observe that U ◦ k ◦ S̃( ) does not
coincide with the canonical faithful functor ℓ : Gpd → Cat. We emphasize that
the left-hand square is commutative.

Remark 3.1. (i) The functor j factors through the category of coherent configura-
tions, whose morphisms are defined by the same way as in AS.
(ii) We see that the functor K is the left adjoint of the forgetful functor U and that
the schemoid algebra of K(C) is the whole category algebra K(C).

Theorem 3.2. (i) The functors i and j are fully faithful embedding.

(ii) The functors S( ) and S̃( ) are faithful.

Proof. We prove the assertion (i). It is well known that i is fully faithful. Let
(X,SX) and (Y, SY ) be association schemes. It is readily seen that i and j are
injective on the sets of objects. We prove that

j : HomAS((X,SX), (Y, SY )) → HomASmd(j(X,SX), j(Y, SY ))

is bijective. Let F be a morphism from j(X,SX) = (CX , UX , TX) to j(Y, SY ) =
(CY , UY , TY ). Now we define a map ϕ(F ) : X → Y by ϕ(F )(x) = F (x), where
x ∈ X = ob

(
j(X,SX)

)
. For each s ∈ UX , there exists a unique set t of morphisms

in UY such that F (s) ⊂ t and F (s∗) ⊂ t∗. The map ϕ(F ) : SX → SY defined by
ϕ(F )(s) = t fits into the commutative diagram

X ×X
ϕ(F )×ϕ(F )//

r
��

Y × Y

r
��

SX

ϕ(F ) // SY ,

where r is the map defined by r(x1, x2) = s for (x1, x2) ∈ s. Moreover, we see that
ϕ is the inverse of j. This completes the proof.
(ii) We prove that the map

S̃ := k ◦ S̃( ) : HomGpd(K,H) → HomqASmd(S̃(K), S̃(H))

is injective. To this end, a left inverse of S̃ is constructed below.
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Let G : S̃(K) → S̃(H) be a morphism in qASmd, namely a functor which gives
maps G : mor(K) → mor(H) and G : Hom

S̃(K)(f, g) → Hom
S̃(H)(G(f), G(g)).

The hom-set of S̃(H) consists of a single element. Then we see that G(f, g) =
(G(f), G(g)).

Claim 3.3. For an object f ∈ obS̃(K) = mor(K), one has sG(f) = sG(1s(f)) and
tG(1t(f)) = tG(f).

Claim 3.4. For composable morphisms f : s(f) → t(f) and g : s(g) = t(f) → t(g)
in K, G(fg) = G(f)G(1t(g))

−1G(g).

Define a map ( ) : HomqASmd(S̃(K), S̃(H)) → HomGpd(K,H) by (G)(x) =

sG(1x) for x ∈ ob(K) and (G)(f) = G(1t(f))
−1G(f) for f ∈ HomK(x, y). Claim

4.12 implies that the composite

(G)(f) : (G)(s(f)) = sG(1s(f)) = sG(f)
G(f) // tG(f) tG(1t(f))

G(1t(f))
−1

��
sG(1t(f)) (G)(t(f))

is well-defined. We then have (G)(1x) = G(1t(1x))
−1G(1x) = 1sG(1x) = 1(G)(x).

Moreover, Claim 3.4 enables us to deduce that

(G)(f)(G)(g) = G(1t(f))
−1G(f)G(1t(g))

−1G(g) = G(1t(fg))G(fg) = (G)(fg).

Thus (G) : K → H is a functor for any G in HomqASmd(S̃(K), S̃(H)) so that the

map ( ) is well-defined. It is readily seen that the composite ( ) ◦ S̃ is the identity
map.

Since the left-hand side in the diagram (3.1) is commutative and S̃( ) ◦ i is
faithful, it follows that so is S( ). This completes the proof. �

Proof of Claim 3.3. We can write (K̃, {Kf}f∈mor(K)) and (H̃, {Hg}g∈mor(H)) for

S̃(K) and S̃(H), respectively; see Example 2.6 (iii). Since (f, f) and (1s(f), 1s(f)) are
in K1s(f)

, it follows that (G(f), G(f)) and (G(1s(f)), G(1s(f))) are in the same Hl for

some l ∈ morH. This yields that G(f)−1G(f) = l = G(1s(f))
−1G(1s(f)) and hence

sG(f) = sG(1s(f)). We have tG(1t(f)) = tG(f) as G(1t(f), f) = (G(1t(f)), G(f)).
�

Proof of Claim 3.4. We observe that (1t(g), g) and (f, fg) are in Kg. Then mor-
phisms (G(1t(g)), G(g)) and (G(f), G(fg)) are in Hh for some h ∈ mor(H). This

implies that G(1t(g))
−1G(g) = h = G(f)−1G(fg). We have the result. �

Let (qASmd)0 be the category of quasi-schemoids with base points; that is, an
object (C, S) in (qASmd)0 is a quasi-schemoid with C◦ a subset of ob(C) and a
morphism F : (C, S) → (E , T ) preserves the sets of base points in the sense that

F (C◦) ⊂ E◦. For a groupoid G, the quas-schemoid S̃(G) = (G̃, S) is endowed with

base points G̃◦ = {1x}x∈ob(G). We define the category of schemoids (ASmd)0 with
base points as well.

Corollary 3.5. The functor S̃ : Gpd → (qASmd)0 is fully faithful.
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Proof. We define a map ( ) : Hom(qASmd)0(S̃(K), S̃(H)) → HomGpd(K,H) by the

same functor as ( ) in the proof of Theorem 3.2 (ii). Since G(1x) is the identity map

for a morphism G : S̃(K) → S̃(H) in (qASmd)0, it follows that (G)(f) = G(f) for

any f ∈ HomK(x, y). It turns out that the map ( ) is the inverse of S̃. �

Remark 3.6. We have a commutative diagram

Hom(ASmd)0(S̃(K), S̃(H))

U��
HomGpd(K,H)

S̃( ) 33❣❣❣❣❣❣❣❣❣❣❣❣❣❣

S̃( )

≈ // Hom(qASmd)0(S̃(K), S̃(H)),

where U denotes the map induced by the forgetful functor. For any functor G in

Hom(qASmd)0(S̃(K), S̃(H)) and for a morphism (f, g) in S̃(K), it follows that

GT ((f, g)) = G((g, f)) = (G(g), G(f)) = TG((f, g))

and hence G is also in Hom(ASmd)0(S̃(K), S̃(H)). This yields that the vertical
arrow U is a bijection.

4. Thin association schemoids

The goal of this section is to prove that the category of groupoids is equivalent to
the category of based thin association schemoids, which is a subcategory of ASmd.

A thin association schemoid defined below is a generalization of a thin coherent
configuration in the sense of Hanaki and Yoshikawa [12]. The results [12, Theorem
12, Remark 16] assert that a connected finite groupoid is essentially identical with
a finite thin coherent configuration. We consider such a correspondence from a
categorical point of view.

Let (C, S, T ) be an association schemoid. For σ, τ and µ ∈ S, we recall the

structure constant pµτσ = ♯ (πµ
τσ)

−1
(f), where f ∈ µ; see Definition 2.1.

Definition 4.1. (Compare the definition of a thin coherent configuration [12, Sec-
tion 3] ) A unital association schemoid (C, S, T ) is called semi-thin if the following
two conditions hold.

(i) ♯{f ∈ σ | s(f) = x} ≤ 1 for any σ ∈ S and x ∈ ob(C).
(ii) The underlying category C is a groupoid with the contravariant functor T :

C → C defined by T (f) = f−1 for f ∈ mor(C).

Following Zieschang [23, 24] and Hanaki and Yoshikawa [12], we here fix the
notation used below. We define subsets SJ and S0 of S by SJ = {κ ∈ S | κ∩J 6= φ}
and S0 = {α ∈ S | α ∩ J0 6= φ}, respectively. For any σ ∈ S, write σx = {f ∈ σ |
s(f) = x} and yσ = {f ∈ σ | t(f) = y}, where x, y ∈ ob(C). For any α ∈ S0, we
write Xα = {x ∈ ob(C) | 1x ∈ α}. Let αSβ be the subset of S defined by

αSβ = {σ ∈ S | pσσα = pσβσ = 1},

where α, β ∈ S0.
To construct a functor from the category of semi-thin association schemoids to

the category of groupoids, we need some lemmas.

Lemma 4.2. (cf. [12, Lemma 1]) Let (C, S, T ) be a unital association schemoid.
(i) For any σ ∈ S, there exists a unique element α in S0 such that pσσα = 1.

Moreover, pσσα′ = 0 if α′ ∈ S0 and α′ 6= α.



ASSOCIATION SCHEMOIDS AND THEIR CATEGORIES 11

(ii) For any σ ∈ S, there exists a unique element β in S0 such that pσβσ = 1.

Moreover, pσβ′σ = 0 if β′ ∈ S0 and β′ 6= β.

Lemma 4.2 allows one to deduce that

S =
∐

α,β∈S0

αSβ .

Proof of Lemma 4.2. We prove (i). The second assertion follows from the same
argument as in the proof of (i). Let f be a morphism in σ. Suppose that s(f) 6∈ Xα.
If pσσα ≥ 1, then there exists g ∈ σ such that s(g) ∈ Xα and g ◦ 1s(g) = f . Since
g = g ◦ 1s(g) = f , we see that s(f) = s(g) ∈ Xα, which is a contradiction. This
yields that pσσα = 0 if s(f) /∈ Xα.

It is readily seen that ob(C) =
∐

α∈S0
Xα. Then there exists a unique element

α ∈ S0 such that s(f) ∈ Xα. This allows us to deduce that
(
f, 1s(f)

)
∈
(
πσα

)−1
(f)

and hence pσσα ≥ 1. On the other hand, if
(
g, 1s(g)

)
∈

(
πσα

)−1
(f), then g =

g ◦ 1s(g) = f . Therefore we have pσσα = 1. �

Lemma 4.3. Let (C, S, T ) be a unital association schemoid satisfying the condition
(i) in Definition 4.1. If σ ∈ αSβ, then

♯ (σx) =

{
1 if x ∈ Xα,

0 otherwise.

Proof. By the definition of the subset αSβ , we have the result. �

Lemma 4.4. Let (C, S, T ) be a semi-thin association schemoid. For any α, β, γ ∈
S0, σ ∈ αSβ and τ ∈ βSγ , there exists a unique element µ = µ(τ, σ) in αSγ such

that pµτσ = 1. Moreover, pµ
′

τσ = 0 if µ′ ∈ S and µ′ 6= µ.

Proof. We show that there exists µ ∈ αSγ such that pµτσ ≥ 1. Let x be an element
in Xα. In view of Lemma 4.3, we see that ♯ (σx) = 1. Let f be the unique element
of σx; that is, σx = {f} and t(f) ∈ β. Lemma 4.3 implies that τt(f) = {g} for
some g ∈ τ . Then there is an exactly one element µ ∈ αSγ such that g ◦ f ∈ µ.
Thus we have pµτσ ≥ 1.

We prove that pµτσ ≤ 1. Let s1, s2 ∈ σ and t1, t2 ∈ τ satisfying t1 ◦s1 = t2 ◦s2 =
m ∈ µ. Since ♯(σs(m)) = 1, it follows that s1 = s2. On the other hand, we see
that {t1} = τt(s1) = τt(s2) = {t2} since ♯(τt(s1)) = ♯(τt(s2)) = 1. This yields that
t1 = t2.

We show that µ = ν if pµτσ = pντσ = 1. Let t1 ◦ s1 = m1 ∈ µ and t2 ◦ s2 = n2 ∈ ν
where s1, s2 ∈ σ and t1, t2 ∈ τ . Since s1 = t−1

1 ◦ m1, it follows that pστ∗µ ≥ 1.
By the definition of the schemoid, we see that there exist t3 ∈ τ and m3 ∈ µ such
that s2 = t−1

3 ◦ m3. We have s(t2) = t(s2) = t(t−1
3 ) = s(t3). Lemma 4.3 yields

that t2 = t3. This enables us to conclude that n2 = t2 ◦ s2 = t2 ◦
(
t−1
3 ◦m3

)
=

t2 ◦ t
−1
2 ◦m3 = m3. Therefore µ ∩ ν 6= φ and hence µ = ν. �

Let (C, S, T ) be a semi-thin schemoid. We define a category R̃(C, S, T ) = G by
ob(G) = S0 and HomG(α, β) = αSβ, where α, β ∈ S0. For σ ∈ HomG(α, β) and
τ ∈ HomG(β, γ), the composite is defined by τ ◦σ = µ(τ, σ) using the same element
µ as in Lemma 4.4.

Lemma 4.5. Let σ ∈ αSβ, τ ∈ βSγ , f ∈ σ and g ∈ τ . If t(f) = s(g), then
g ◦ f ∈ τ ◦ σ.
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Proof. If g ◦ f ∈ µ, then pµτσ ≥ 1. Lemma 4.4 implies that µ = τ ◦ σ. �

Proposition 4.6. R̃(C, S, T ) is a category.

Proof. Let x ∈ Xα, σ ∈ αSβ , τ ∈ βSγ and γ ∈ αSγ . By Lemma 4.3, we see that
♯(σx) = 1 and hence σx = {f} with f ∈ mor(C). Moreover, we have τ

(
t(f)

)
= {g}

with an appropriate morphism g in C. Lemma 4.5 implies that h◦(g◦f) ∈ µ◦(τ ◦σ)
and (h ◦ g) ◦ f ∈ (µ ◦ τ) ◦ σ. Since

(
µ ◦ (τ ◦ σ)

)
∩
(
(µ ◦ τ) ◦ σ

)
6= φ, it follows that

µ ◦ (τ ◦ σ) = (µ ◦ τ) ◦ σ.
For α ∈ S0, we see that α ∈ αSα = HomG(α, α). For σ ∈ HomG(α, β), it follows

from Lemma 4.5 that β ◦ σ = σ = σ ◦ α. This completes the proof. �

Proposition 4.7. The category R̃(C, S, T ) is a groupoid.

Proof. Suppose that σ is in HomG(α, β). Lemma 4.5 yields that σ∗ ◦ σ = α and
σ ◦ σ∗ = β. We have σ−1 = σ∗. �

Let stASmd denote a full subcategory of ASmd whose objects are semi-thin

association schemoids. We here construct a functor R̃( ) from stASmd to the
category Gpd of groupoids.

Let (C, S, T ) be a semi-thin association schemoid. It follows from Proposition

4.7 that R̃(C, S, T ) = G is a groupoid. Let F be a morphism between semi-thin
association schemoids (C, S, T ) and (C′, S′, T ′). By definition, for any σ ∈ S =
mor(G), there exists a unique element τ ∈ S′ = mor(G′) such that F (σ) ⊂ τ . Since
α ∈

∐
x∈ob(C){1x} for any α ∈ S0 = ob(G), there exists a unique element β ∈ S′

0 =

ob(G′) such that F (α) ⊂ β. We then define a functor R̃ : stASmd → Gpd by

R̃(F )(α) = β and R̃(F )(σ) = τ .

Definition 4.8. A semi-thin association schemoid (C, S, T ) is a thin association
schemoid with a subset V of base points of ob(C) if

(iii) ♯HomC (x, y) ≤ 1 for x, y ∈ ob(C) and
(iv) the subset V ⊂ ob(C) satisfies the condition that for any connected compo-

nent C of ob(C), ♯(C ∩ V ) = 1 and the map ϕ : V → S0 defined by ϕ(v) ∋ 1v is
bijective.

Let tASmd be the full subcategory of stASmd whose objects are thin associa-
tion schemoids. We have a commutative diagram of categories and functors

ASmd

stASmd

R̃( )
ss❣❣❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣

?�

OO

Gpd
S̃( ) //

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

S̃( )

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
tASmd.

R̃( )

oo
?�

OO

Remark 4.9. In [12], Hanaki and Yoshikawa give a procedure to make a groupoid
with a thin coherent configuration as an ingredient. The construction factors
through tASmd the category of thin association schemoids; see Remark 3.1 (i).

Let (C, S, T ) be a thin association schemoid with base points. We here define

functors Φ : (C, S, T ) → S̃R̃(C, S, T ) and Ψ : S̃R̃(C, S, T ) → (C, S, T ). Moreover we
shall prove
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Proposition 4.10. Let (C, S, T ) be a thin association schemoid with a set V of

base points. Then the functor Φ : (C, S, T ) → S̃R̃(C, S, T ) is an isomorphism with
the inverse Ψ. Moreover, Φ preserves the sets of base points.

Thus we have the main result in this section.

Theorem 4.11. (cf. [11, Proposition 5.2]) The functor S̃( ) gives rise to an equiv-
alence between the category Gpd of groupoids and the category (tASmd)0 of based

thin association schemoids. Moreover, the functor R̃( ) : (tASmd)0 → Gpd is the

right adjoint for S̃( ) : Gpd → (tASmd)0.

Proof. The results follow from Corollary 3.5 and Proposition 4.10. �

In order to define the functor Φ mentioned above, we recall the condition (iii)
in Definition 4.8. Then for any object x ∈ ob(C), we see that there are an exactly
one element v ∈ V and a unique morphism ρx in C such that HomC(x, v) = {ρx}.
Moreover, we choose the partition σx ∈ S so that ρx is in σ. Then define a functor

Φ : (C, S, T ) → S̃R̃(C, S, T ) = (S, {Sg}g∈S , T
′) by Ψ(x) = σx for x ∈ ob(C) and

Φ



x

f //

ρx ""❉
❉❉

❉❉
❉ y

ρy||③③
③③
③③

v


 = (σy, σx)

for f ∈ mor(C). In order to define a functor from S̃R̃(C, S, T ) to (C, S, T ), we need
the following fact.

Claim 4.12. ♯ϕ−1(β)σ = 1.

Proof. Suppose that fσ and gσ are in ϕ−1(β)σ. There exists a unique partition
τ ∈ S such that T (σ) ⊂ τ . Then f−1

σ and g−1
σ are in τ . It follows that s(f−1

σ ) =
t(fσ) = ϕ−1(β) = t(gσ) = s(g−1

σ ). The condition (i) in Definition 4.1 implies that
f−1
σ = g−1

σ . �

We define a functor Ψ : S̃R̃(C, S, T ) → (C, S, T ) by Ψ(σ) = s(fσ) and

Ψ( σ
(τ,σ) // τ ) =

s(fσ)
f−1
τ fσ //

fσ $$❍❍
❍❍

❍❍
s(fτ )

fτzz✈✈✈
✈✈
✈

ϕ−1(β),

where t(σ) = β and ϕ−1(β) = σ.

Proof of Proposition 4.10. By definition, it is readily seen that Φ and Ψ are func-
tors. We prove that Ψ is an isomorphism of schemoids preserving the set of base
points.

For any object x in C, we see that ΨΦ(x) = Ψ(σ) = s(fσ), where HomC(x, v) =
{ρ}, ρ ∈ σ for some v ∈ V , σ ∈ αSβ and ϕ−1σ = {fσ}. Since 1v ∈ β, it follows that
ϕ−1(β) = v. Claim 4.12 yields that ρ = fσ and hence s(fσ) = x.

Let σ be an object in S̃R̃(C, S, T ); that is, σ ∈ S. Then ΦΨ(σ) = Φ(s(fσ)) = σ
because fσ ∈ σ.

Observe that (C, S, T ) and S̃R̃(C, S, T ) are thin. The condition (iii) in Definition
4.8 enables us to conclude that the functors ΨΦ and ΦΨ are identity on the set of
morphisms since so are on objects.
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We prove that Φ and Ψ preserve partitions. For any σ ∈ S, let f : x → y be
a morphism in σ. Suppose that Φ(f) = (σy , σx) and σ∗

yσx = τ . It follows from

Lemma 4.5 that f = ρ−1
y ρx ∈ τ . Thus we see that τ = σ and hence Ψ(σ) ⊂ Sσ. By

definition, we see that Ψ(σ
(τ,σ) // τ) = s(fσ)

f−1
τ fσ// s(fτ ) . Suppose that τ∗ ◦ σ = µ.

Then f−1
τ fσ ∈ τ∗ ◦ σ = µ. Thus we have Ψ(Sµ) ⊂ µ.

In order to prove that Φ preserves the set of base points, we take an element v
in V . Then it follows that HomC(v, v) = {1v}, 1v ∈ ϕ(v) and hence Φ(V ) ⊂ S0;
see Definition 4.8. The map ϕ : V → S0 is a bijection by definition. We have
Φ(V ) = S0. This completes the proof. �

We conclude this section with an example of a semi-thin association shcemoid

(C, S, T ) which is not isomorphic to S̃R̃(C, S, T ).

Example 4.13. Let I be a set with an element 1. For any i ∈ I, let Ci be a groupoid
of the form

xi1xi 77
fi // yi, 1yihhgi

oo

and CI the disjoint union of the categories Ci over I. Define a partition S of
mor(CI) by S = {σ1

0 , σ
2
0 , τ1, τ2}, where σ

1
0 = {1xi

}i∈I , σ
2
0 = {1yi

}i∈I , τ1 = {fi}i∈I

and τ2 = {gi}i∈I . Moreover, we define a contravariant functor T with T 2 = 1CI

on CI by T (xi) = yi and T (gi) = fi. Then (CI , S, T ) is a schemoid. A direct

computation shows that R̃(CI , S, T ) ∼= C1 for any I but S̃C1 ∼= (CI , S, T ) if and
only if ♯I = 2. In fact, (CI , S, T ) is not thin if ♯I > 2; see (iv) in Definition 4.8.

5. Extensions of schemoids

In order to assert that the categories qASmd and ASmd are more fruitful, it is
important to construct (quasi-)schemoids systematically. This section contributes
to it. We begin with the definition of a linear extension of a small category in the
sense of Baues and Wirsching [6].

Let F (C) be the category of factorizations in C; that is, the objects are the
morphisms in C and morphisms f → g are the pairs (α, β) for which diagram

t(f)
α // t(g)

s(f)

f

OO

s(g)

g

OO

β
oo

commutes. The composition is defined by (α′, β′) ◦ (α, β) = (α′α, ββ′).

Definition 5.1. ([6, (2.2) Definition]) Let C and E be small categories. Let
D : F (C) → K-Mod denote a natural system, namely a functor from F (C) to
the category of K-modules. We say that

D+ → E
q
→ C

is a linear extension if (a), (b) and (c) hold:
(a) E and C have the same objects and q is a full functor which is the identity

on objects.
(b) For each morphism f : A → B in C, the abelian group Df acts transitively

and effectively on the subset q−1(f) of morphisms in E . We write f0 + α for the
action of α ∈ Df on f0 ∈ q−1(f).
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(c) The action satisfies the linear distributivity law:

(f0 + α)(g0 + β) = f0g0 + f∗β + g∗α,

where f∗ = D(f, 1) and g∗ = D(1, g).

We give a linear extension a schemoid structure under appropriate assumptions.

Proposition 5.2. Let D+ → E
q
→ C be a linear extension of C. Let (C, S) be a

quasi-schemoid. Assume further that for any morphism f in C, the homomorphism
f∗ and f∗ are invertible and that D1s(f)

∼= D1s(g) for any σ ∈ S and f, g ∈ σ.
Then E admits a unique quasi-schemoid structure for which q is a morphism of
quasi-schemoids and injective on the partition of mor(E).

We call such a morphism q in Proposition 5.2 a proper morphism.

Remark 5.3. Let C be a quasi-schemoid. If C has a connected groupoid struc-

ture, for example objects in j(AS) and connected objects in S̃(Gpd), then all the
assumptions in Theorem 5.2 and in Theorem 5.5 below are satisfied.

Lemma 5.4. Let q : (E , S̃) → (C, S) be a proper morphism of quasi-schemoids if

and only if S̃ = {q−1(σ)}σ∈S .

Proof. It is immediate. �

Proof of Proposition 5.2. Let H be a partition ofmor(E) defined by the sets q−1(σ)
for σ ∈ S. We prove that H satisfies the concatenation axiom in Definition 2.1.
Consider a commutative diagram

q−1(τ) ×E q
−1(µ) π̃τµ

−1
(q−1(σ))

q //⊃oo

π̃σ
τµ ��

πτµ
−1(σ)

⊂ //

πσ
τµ

��

τ ×C µ

q−1(σ)
q

// σ,

where πτµ and π̃τµ are the maps defined by the concatenation of morphisms and πσ
τµ

and π̃σ
τµ denote the restrictions of πτµ and π̃τµ, respectively. We take a morphism

f0 ∈ q−1(f) for each f . Let + : Df ×Df → Df denote the sum on Df . For any
f0 + γ in q−1(σ), we define maps between sets

(πσ
τµ)

−1(f)× (+)−1{γ}
θ // (π̃σ

τµ)
−1(f0 + γ)

ξ
oo

by

θ(fi, fj , α, β) = (f0
i − (f∗

j )
−1u0 + (f∗

j )
−1α, f0

j + ((fi)∗)
−1β) and

ξ(f0
i + α′, f0

j + β′) = (q(f0
i ), q(f

0
j ), u

0 + (fj)
∗(α′), ((fi)∗)β

′),

where u0 is an element in Df which is uniquely determined by the equality f0
i ◦

f0
j = f0 + u0. We see that θ is a bijection with inverse ξ. Moreover, we have

(+)−1{γ} ∼= Df
∼= D1s(f)

for any γ since, by assumption, f∗ : D1s(f)
→ Df is

invertible for f ∈ σ. The assumption that D1s(f)
∼= D1s(g) for any f, g ∈ σ implies

that the cardinal number of (+)−1{γ} does depend on only the choice of σ ∈ S.
This enables us to conclude that (E , H) is a quasi-schemoid. It is immediate that
q is a proper morphism.

The uniqueness of the schemoid structure on E follows from Lemma 5.4. This
completes the proof. �
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Let C be a small category. Let π : F (C) → Cop × C denote the natural functors
[6, (1.16)] defined by π(f) = (s(f), t(f)) for f ∈ ob(F (C)) and π(α, β) = (β, α)
for (α, β) ∈ mor(F (C)). Let p : Cop × C → C be the obvious forgetful functor.
Proposition 5.2 and its proof deduce the following result.

Theorem 5.5. Let H : C → K-Mod be a functor and D the natural system induced

by H, namely D = π∗p∗H. Let D+ → E
q
→ C be a linear extension. Suppose that

(C, S, T ) is an association schemoid whose underlying category C is a connected

groupoid with T (f) = f−1 for f ∈ mor(C). Then the quasi-schemoid (E , S̃) defined
in Proposition 5.2 admits a schemoid structure for which E is a groupoid with

T̃ (f̃) = f̃−1, and q is a morphism of association schemoids. Moreover for σ, τ and

µ in S̃, one has pστµ = ♯Dgp
q(σ)
q(τ)q(µ) for some g and hence any g.

A linear extension D+ → E
q
→ C in Proposition 5.2 or Theorem 5.5 is called a

schemoid extension of (C, S).
We prove Theorem 5.5 by using the following lemma.

Lemma 5.6. Let ∆ be a normalized cocycle in F 2(C;D); see [5, (1.9) Theorem].
With the same assumption as in Theorem 5.5, one has f∗∆(f−1, f) = f∗∆(f, f−1).

Proof. We see that

0 = (δ∆)(f, f−1, f) = f∗∆(f−1, f)−∆(1, f) + ∆(f, 1)− f∗∆(f, f−1).

Observe that ∆(1, g) = 0 = ∆(g, 1) because ∆ is normalized cocycle. This com-
pletes the proof. �

Proof of Theorem 5.5. We verify that for the partition H the condition (i) in Def-
inition 2.2 holds. Since q is the identity map on objects, it follows that

q−1(∐y∈obCHomC(y, y)) = ∐x∈obEHomE(x, x) =: J.

We see that for q−1(σ) ∈ H , if q−1(σ) ∩ J 6= φ, then σ ∩ ∐y∈obCHomC(y, y) 6= φ.
Thus σ ⊂ ∐y∈obCHomC(y, y) as C is a quasi-schemoid. This yields that q−1(σ) ⊂ J .

Without loss of generality, we assume that (g, β)◦ (f, α) = (gf,−∆(g, f)+g∗α+
f∗β) for morphisms (f, α) and (g, β) in E , where ∆ is a normalized cocycle; see [5,
(1.9) Theorem] and the proof of [6, (2.3) Theorem]. Observe that D = π∗p∗DM

and hence f∗ = id. We then have (f, α) ◦ (1, 0) = (f, α) = (1, 0) ◦ (f, α). For an
element (f, α), we define

(f, α)−1 = (f−1, β) = (f−1, (f∗)
−1(−α+∆(f, f−1)).

Then we see that

(f, α) ◦ (f−1, β) = (ff−1,−∆(f, f−1) + f∗(f
−1
∗ (−α+∆(f, f−1) + (f−1)∗α)

= (1, 0) and that

(f−1, β) ◦ (f, α) = (f−1f,−∆(f−1, f) + (f−1)∗α+ f∗((f−1)∗(−α+∆(f, f−1)))

= (1,−∆(f−1, f) + (f−1)∗∆(f, f−1)) = (1, 0).

The last equality follows from Lemma 5.6.

We define a natural transformation T : E → E by T̃ (f̃) = f̃−1. Then it follows

that T̃ is a contravariant functor and T̃ 2 = id. It is readily seen that Tq = qT̃ and

hence q−1(σ)∗ := {T̃ (f̃) | f̃ ∈ q−1(σ)} = q−1(σ∗). We have the result. �
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We recall the definition of an equivalence between linear extensions. Two linear

extensions D+ → E
q
→ C and D+ → E

q′

→ C are equivalent if there exists an

isomorphism ε : E
∼=
→ E ′ of categories with q′ε = q and with ε(f0 + α) = ε(f0) + α

for f0 ∈ mor(E) and α ∈ Dqf0 ; see [6, page 193]. A linear extension E
q
→ C is split

if there exists a functor s : C → E such that qs = 1.
For an Z-module M , we define a natural system M : F (C) → Z-Mod, which is

so-called the trivial representation, by M(x) = M and M(f) = idM for x ∈ ob(C)
and f ∈ mor(C). Then the Baues-Wirsching cohomology H∗

BW (C, D) is defined by

H∗
BW (C, D) = Ext ∗

Func(F (C),Z-Mod)(Z, D).

Originally, the Baues-Wirsching cohomology is defined by using a cochain complex;
see [6, (1.4) Definition]. The result [6, (4.4) Theorem] allows us to obtain the
extension functor description mentioned above.

A functor F : C → Z-Mod induces a natural system π∗p∗F : F (C) → Z-Mod.
Then we see that the cohomologyH∗(C, F ) := Ext∗Func(C,K-Mod)(Z, F ) is isomorphic

to the Baues-Wirsching cohomology H∗
BW (C, π∗p∗F ); see [6, (8.5) Theorem]. In

particular, for the trivial representation Z, we have H∗
BW (C,Z) ∼= H∗(C,Z) ∼=

H∗(BC;Z), where the last one is the singular cohomology of the classifying space
of C.

The result [6, (2.3) Theorem] implies that the second Baues-Wirsching cohomol-
ogy classifies linear extensions over a small category. Thus Proposition 5.2 enables
us to deduce the following result.

Theorem 5.7. Let (C, S) be a quasi-schemoid and D : F (C) → Z-Mod a natural
system for which f∗ and f∗ are invertible for any f ∈ mor(C) and D1s(f)

∼= D1s(g)

for any σ ∈ S and f, g ∈ σ. Then the Baues-Wirsching cohomology H2
BW (C;D)

classifies schemoid extensions of the form D+ → E
q
→ C with q proper.

Let (X,S) be an association scheme. Since the underlying category of j(X,S)
is a directed complete graph, we see that the category is equivalent to the trivial
category •, namely the category consisting of one object and one morphism. It is
immediate that H∗

BW (•;D) = 0 for ∗ > 0 and any natural system D on •. Then
the result [6, (2.3) Theorem] deduces the following corollary.

Corollary 5.8. Every schemoid extension of j(X,S) is split.

Example 5.9. Theorem 5.7 asserts that the classification of schemoid extensions is
reduced in turn to that of extensions of the underlying category. We here comment
on such linear extensions of categories.

LetM be an abelian group and G a finite group. LetM : C×G→ Z-Mod denote
the trivial representation of C ×G. We also write M for the induced representation
π∗p∗M : F (C×G) → Z-Mod. Suppose that the classifying space BC is contractible
and that C is finite. For example the classifying space of the underlying category D
of C[k] in Example 2.13 is contractible because D has the initial object. Then every

linear extension M+ → E
q
→ C ×G is isomorphic to a linear extension of the form

M+ → C ×K
1×q′

→ C ×G which is induced by some extension M → K
q′

→ G of the
groupG. In fact, since C and G are finite, it follows that B(C×G) ∼= BC×BG. Then
we see that H2

BW (C × G;M) ∼= H2(BC × BG;M) ∼= H2(BG;M). More precisely,
linear extensions of C ×G associated with the natural systemM is classified by the
group homology H2(G;M).
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Example 5.10. Let (X,S) be an association scheme. The same argument as in
Example 5.9 enables us to deduce that there exists a non-split schemoid extension
of j(X,S)× (Z× Z)• while j(X,S) and the first extension j(X,S)× (Z)• have no
non-split schemoid extension; see Example 2.14. On the other hand, the first exten-
sion j(X,S)× (Z/2)• has only one non-trivial extension since H2(B(Z/2);Z/2) ∼=
H2(RP∞;Z/2) ∼= Z/2.

6. Basic schemoids and admissible morphisms

We introduce a subcategory B of the category of quasi-schemoids for which the
correspondence sending each object in B to the schemoid algebra is a well-defined
functor to the category of (possibly nonunital) algebras.

Definition 6.1. (cf. Definition 4.1) A unital quasi-schemoid (C, S) is basic if the
underlying category C is a groupoid.

Every coherent configuration is considered as a complete graph and hence it is a
basic association schemoid. In general, a morphism of schemes does not induce a ho-
momorphism between their Bose-Mesner algebras. To overcome this inconvenience,
French [9] has introduced the notion of admissible morphisms in the category AS

of association schemes. Generalizing the notion, we introduce admissible maps in
the category qASmd.

Definition 6.2. A morphism φ : (C, S) → (D, T ) of quasi-schemoids is admissible
if for any x ∈ ob(C), σ ∈ S and g ∈ φ(σ) with t(g) = φ(x), there exists a morphism
f ∈ σ such that t(f) = x and φ(f) = g.

C
φ // D

· · · · · · •

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱ •

""❊
❊❊

❊❊
❊ •

f
��

•
g∈φ(σ)��

nφ
σ morphisms x φ(x)

Lemma 6.3. The composite of any two admissible morphisms is admissible.

For elements σ and τ of a quasi-schemoid S over an category C, we define a
subset στ of the power set 2mor(C) by στ = {µ ∈ S | pµστ ≥ 1}. The notion of the
closed subset of an association scheme is generalized to that of schemoids by the
natural way. However, as mentioned in the Introduction, we do not deal with such
generalized one in this paper.

Lemma 6.4. If τ ∈ φ(ρ)φ(π) for some π and ρ in S, then τ ∈ φ(S).

The proofs of Lemmas 6.3 and 6.4 proceed verbatim as in those of [9, Lemmas
3.3, 4.1]. Two lemmas below are rewritten versions of [9, Lemmas 3.11 and 6.3].

Lemma 6.5. Let φ : (C, S) → (D, T ) be an admissible morphism from a finite
quasi-schemoid, whose underlying category is a groupoid, to a basic schemoid. Then
for any σ ∈ S, there exists a positive integer nφ

σ such that for any x ∈ ob(C) and
g ∈ φ(σ) with t(g) = φ(x),

♯(φ−1(g) ∩ xσ) = nφ
σ.
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Proof. We define a subset Kerφ of 2mor(C) by

Kerφ = {κ ∈ S | φ(κ) ⊂ α ⊂ J0 for some α ∈ T }.

Since the morphism φ is admissible, by definition, there exists a morphism f in C
such that t(f) = x and φ(f) = g. We define a subset Uκ of mor(C) by

Uκ = {f ′ | (u, f ′) ∈ π−1
κσ (f) for some u ∈ κ}.

Observe that for any element f ′ in Uκ, an element u above is determined uniquely
by f and f ′ if any because C is a groupoid. The usual argument deduces that

φ−1(g) ∩ xσ =
⋃

κ∈Kerφ

Uκ.

Moreover, it follows that Uκ ∩ Uκ′ = φ if κ 6= κ′. Thus we have ♯(φ−1(g) ∩ xσ) =∑
κ∈Ker φ ♯Uκ. It is immediate that the cardinal of the set Uκ is not depend on the

choice of f and is only depend on κ ∈ Ker φ. The sum in the right-hand side is
nothing but the integer nφ

σ we require. This completes the proof. �

Lemma 6.6. (cf. [9, Lemma 6.3]) Let φ : (C, S) → (D, T ) be the same admissible
morphism as in Lemma 6.5. Then for any π, ρ ∈ S and τ ∈ T , one has

∑

σ:φ(σ)=τ

pσπρn
φ
σ = pτφ(π)φ(ρ)n

φ
πn

φ
ρ .

Proof. The proof proceeds along the same line as that of the proof of [9, Corollary
6.3]. In order to obtain the result, it suffices to show that the equality holds when
τ = φ(ν) for some ν ∈ S. This follows from Lemma 6.4. We choose f ∈ ν and
write g = φ(f). We define a subset Ω0 of ρ by

Ω0 = {f̃ ∈ ρ | s(φ(f̃)) = s(φ(f)), t(f ′) = t(f) for some f ′ ∈ π with (∗)},

where (∗) denotes the condition that s(f ′) = t(f̃) and φ(f̃ f ′) = g.

· · · · · · •f̃∈ρ

yyrrr
rr

•

f

��

•

g∈φ(ν)

��
•

f ′∈π **❚❚❚
❚❚❚

❚❚❚
❚❚

x φ(x)

For any f̃ in Ω0, there exists σ ∈ S such that f ′f̃ is in σ. We see that φ(f ′f̃) ∈ φ(ν)
by definition and hence φ(σ) = φ(ν). On the other hand, Lemma 6.5 enables us to
deduce that for any σ ∈ S with φ(σ) = φ(ν), there exist nφ

σ elements α in φ(g)∩xσ,

where x = s(f). For each of these choices of α, there exist nσ
πρ elements f̃ ∈ ρ such

that f̃ is in Ω0. We then conclude that

♯Ω0 =
∑

σ∈S:φ(σ)=φ(ν)

nσ
πρn

φ
σ.

Write Ω1 = π−1
φ(π)φ(ρ)(g). By the definition of the structure constant, we see that

♯Ω1 = p
φ(ν)
φ(π)φ(ρ). Define a map θ : Ω0 → Ω1 by θ(f̃) = (φ(f̃ ), φ(f̃)−1g). The

definitions of the integers nφ
π and nφ

ρ yield that ♯θ−1((α, β)) = nφ
πn

φ
ρ for any (α, β) ∈

Ω1. It turns out that∑

σ:φ(σ)=τ

pσπρn
φ
σ = ♯Ω0 = nφ

πn
φ
ρ♯Ω1 = p

φ(ν)
φ(π)φ(ρ)n

φ
πn

φ
ρ .
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we have the result. �

Lemma 6.6 enables to us to prove the following proposition with the same argu-
ment as in the proof of [9, Corollary 6.4].

Proposition 6.7. Let (D, T ) and (C, S) be a finite basic schemoid and a finite
quasi-schemoid whose underlying category is a groupoid, respectively. Let φ : (C, S) →
(D, T ) be an admissible morphism. Then the function K(φ) : K(C, S) → K(D, T )
defined by K(φ)(sπ) = nφ

πsφ(π) is an algebra homomorphism, where sπ =
∑

p∈π p.

Remark 6.8. Let (C, S) be a quasi-schemoid which satisfies the following condition.

(P) : For any σ, τ and µ in S, there exists at most one solution of the equation
f ◦ g = h with f ∈ σ, g ∈ τ and h ∈ µ if any two of f , g and h are given.

Then we can prove Lemmas 6.5 and 6.6 without assuming that C is a groupoid.
Thus, Proposition 6.7 remains valid if (C, S) satisfies the condition (P) instead of
assuming that C is groupoid.

We define a category B to be the subcategory of qASmd consisting of finite basic
schemoids and admissible morphisms. Let Alg denote the category of (possibly
nonunital) algebras. Then we have the following theorem.

Theorem 6.9. The function defined in Proposition 6.7 gives rise to a well-defined
functor K(−) : B → Alg.

Proof. This follows from the same argument as in the proof of [9, Corollary 6.6]. �

Lemma 6.10. Let S̃( ) : Gpd → ASmd and k : ASmd → qASmd be the
functors described in Section 2. For any morphism F : H → G in Gpd which is

injective on ob(H), φ := S̃(F ) : S̃(H) → S̃(G) is admissible.

Proof. We write (H̃, S, T ) and (G̃, S′, T ′) for S̃(H) and S̃(G). We choose an object

f in S̃(H), namely a morphism in H, σh ∈ S and (u, v) ∈ φ(σh) with u = φ(f) =

(S̃(F ))(f) = F (f). Suppose that φ(σh) ⊂ σk = {(w, z) | w−1z = k} for some

k ∈ mor(G). Then we see that v = uk. It follows from the definition of S̃(F )
that F (h) = φ(h) = k. Since uk = F (f)F (h), it follows from the injectivity of the
functor F on the objects that f and h is composable; that is, t(h) = s(f). We have
φ(f, fh) = (F (f), F (f)F (h)) = (u, v). This completes the proof. �

A schemoid extension gives an admissible morphism. More precisely, we have
the following result.

Proposition 6.11. Let (E , S̃, T̃ ) be the schemoid extension described in Theorem

5.5 whose underlying linear extension is of the form D+ → E
q
→ C. Then the proper

map q is admissible. Moreover, one has nq
σ = ♯Dg for any g ∈ q(σ) if C is basic;

see Lemma 6.5.

Proof. The result follows from the definition of a linear extension. �

Remark 6.12. Let (E , S̃, T̃ ) be the same schemoid extension as in Theorem 5.5. We

see that (E , S̃, T̃ ) is not in the category B in general. In fact, the extension is unital
if and only if Dg is trivial for any g ∈ mor(C). However, Proposition 6.7 allows one

to obtain the algebra map K(q) : K(E , S̃) → K(C, S) provided C is a finite basic
schemoid and Dg is a finite abelian group for any g ∈ mor(C).
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Corollary 6.13. Under the same assumption as in Remark 6.12, the algebra map

K(q) : K(E , S̃) → K(C, S) is an isomorphism if and only if the characteristic ch(K)
of K does not divide ♯Dg for any g ∈ mor(C). In particular, if ch(K) divides ♯Dg

for some g, then K(q) is trivial.

Proof. The fact that K(q)(sπ) = nq
πsq(π) = ♯Dgsq(π) and Theorem 5.5 yield the

result. �

We here summarize categories mentioned above and the functors between them
together with related categories. Let S be a wide subcategory of AS in the sense
of French [9] and A : S → Alg denote the functor defined in [9, Corollary 6.4]. Let

Top and Set∆
op

denote the category of topological spaces and that of simplicial
sets, respectively. Let Gpd′ be the subcategory of Gpd consisting of the same
objects and morphisms (functors) which are injective on the set of objects; see
Lemma 6.10. Then we have a commutative diagram
(6.1)

Gpd
S̃( )

≃ // (tASmd)0
R̃oo // ASmd

k // qASmd
U //

K( )

��

Cat
K

oo
N( ) //

Set∆
op

c
oo

| |
// Top

S∗( )oo

Gpd′

i′

OO

S̃( ) // B

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
K( )

,,❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨

Gr

i

OO

S( )

≃
//

S( )
11

(tAS)0

j(tAS)0

OO

// AS

j

OO

A( )
// Alg,

S

jS

OO

99sssssss A( )

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

where dots arrows denote the assignments in the objects but not functors and verti-
cal arrows are fully faithful functors defined by restricting the functor j to the source
categories; see Theorem 3.2. The arrows N( ) and c denote the functors induced
by the nerve construction and the categorification (categorical realization)[10], re-
spectively; see also [22]. Moreover, | | and S∗( ) are the realization functor and the
functor induced by the singular simplex construction, respectively. Observe that,
for the functors in two parallel lines, the lower arrow denotes the left adjoint for
the upper one and that the functor K is fully faithful as mentioned in Section 3.

In a strict sense, the functor S̃( ) : Gpd′ → B and the correspondence K( ) from
qASmd to Alg should be restricted to the full subcategory of finite groupoids and
to that of finite quasi-schemoids, respectively.

We conclude this section with an important remark.

Remark 6.14. Let (X,S) be an association scheme. Let E0 and E1 denote the
trivial and non-trivial extensions of j(X,S)× (Z/2)• in Example 5.10, respectively.
Corollary 6.13 implies that

K(E1) ∼= K(E0) ∼= K(j(X,S)× (Z/2)•) ∼= K(X,S).

as algebras if ch(K) 6= 2, where the last one denotes the Bose-Mesner algebra of
the association scheme (X,S). We see that the schemoids j(X,S) × (Z/2)• and
j(X,S) are not equivalent as a category; see Example 5.10. This implies that there
exist schemoids whose Bose-Mesner algebras are isomorphic to each other but not
the underlying categories.
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7. How to construct (quasi-)schemoids

In this section, we explain a way to construct a (quasi-)schemoid thickening a
given association scheme.

Let Z =
(
zij

)
be a square matrix of natural numbers. We call the matrix

Z transitive if zij , zjk ≥ 1, then zjk ≥ 1. Let C be a finite category; that is
♯mor(C) <∞. We can consider ob(C) an ordered set {i}i∈ob(C). We define a matrix

Z =
(
zij

)
, which is referred to as the matrix of the category C, by zij = ♯HomC(i, j).

Observe that the matrix is transitive. We recall a result due to Berger and Leinster.

Lemma 7.1. [7, Lemma 4.1] Let Z be a transitive square matrix of natural numbers
whose diagonal entries are at least 2. Then Z is the matrix of a category.

We will show that the category C constructed in the proof of Lemma 7.1 can
be endowed with a quasi-schemoid structure under appropriate assumption. To see
this, we recall the construction of the category C. Let Z be an m×m matrix

(
zij

)
.

For each pair (i, j) of objects such that zij ≥ 1, we choose an arrow φij : i → j

with φii 6= 1i for all i. Define the composite i
α
→ j

β
→ k by β ◦ α = φik if α 6= 1

and β 6= 1. Then we have a finite small category CZ . It is readily seen that Z is
the matrix of the category of C. We call the subset {φij}i,j∈ob(CZ) of mor(CZ) the
frame of CZ . The definition of the concatenation of morphisms in CZ above yields
the following lemma.

Lemma 7.2. In the category CZ , for a morphism α which is not in the frame
{φij}ij of the category CZ , if u ◦ v = α, then u = 1 or v = 1.

Proposition 7.3. Let F = {φij}i,j be the frame of the small category CZ con-
structed above. Let 1 be the subsets {1i}i∈ob(CZ). Then for any partition {Qλ}λ of
the set mor(CZ)\(F ∪ 1), the partition of mor(CZ)

Σ′ = {{φij} | i, j ∈ ob(CZ)} ∪ 1 ∪ {Qλ}λ

satisfies the concatenation axiom; see Definition 2.1. In consequence, (CZ ,Σ
′) is a

unital quasi-schemoid.

Proof. The intersection number p
{φij}
u,v is valid because {φij} is a set of single ele-

ment. Write J̃ = J\({φii} ∪ 1). For L = Qλ, J̃ , the usual argument shows that

pLuv = 0 for any u, v ∈ {{φij} | i, j} ∪ {Qλ}λ ∪ J̃ , pL1u = δLu = pLu1 and pL11 = 0. It
is readily seen that

p1uv =

{
1 if u = 1 = v
0 otherwise

This completes the proof. �

Proposition 7.4. Let S be a partition of the frame {φij}i,j of the finite cate-
gory CZ constructed above, namely {φij}i,j =

∐
σ∈S σ. Suppose that S satisfies

the concatenation axiom and that the condition (i) in Definition 2.2 for S holds.
Assume further that zij = zi′j′ =: zσ for any σ ∈ S, φij , φi′j′ ∈ σ. We define
σ̃ = {φλij}φij∈σ,λ=1,..,zij−1 for σ ∈ S. Then

Σ = {1} ∪ S ∪ S̃

satisfies the concatenation axiom and hence the pair (CZ ,Σ) is a unital quasi-

schemoid, where 1 = {1i}i∈ob(CZ) and S̃ = {σ̃}σ∈S,σ̃ 6=φ.
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Proof. We first observe that for any f, g ∈ mor(C), f ◦ g ∈
∐

σ∈S σ if f and g are
composable and f ◦ g 6= 1i for some i. Moreover, it is immediate that if f ◦ g = 1i
then f = g = 1i. Thus we have i) p111 = 1, ii) p1uv = 0 for u, v ∈ S ∪ S̃, iii) pσ̃11 = 0,

iv) pσ̃1τ̃ = δσ̃τ̃ = pσ̃τ̃1, v) p
σ̃
uv = 0 for u, v ∈ S ∪ S̃, vi) pσ̃1τ = 0 = pσ̃τ1, vii) p

σ
11 = 0,

viii) pσ1τ̃ = 0 = pστ̃1 and ix) pσ1τ = δστ = pστ1. The assumption on the entries zij
enables us to obtain the following equality; see the figure below.
x) pστµ̃ = pστµ · (zµ − 1),

xi) pσµ̃τ = (zµ − 1) · pσµτ ,

xii) pσµ̃τ̃ = (zµ − 1) · pσµτ · (zτ − 1).

•
φij //

**❚❚❚
❚❚❚

❚❚

  ❇
❇❇

❇❇
❇❇

❇❇
❇ •

tt❥❥❥❥
❥❥❥

❥

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤nn

qq

•

•

It is immediate that the condition (i) in Definition 2.1 holds for the partition Σ.
We have the result. �

Let (X,P = {Pl}l=0,..,s) be an association scheme with X = {1, ...,m}, where
P0 = {(i, i) | i ∈ X}. Let Rl denote the adjacency matrix associated with Pl; that
is, the (i, j) entry Rl(i, j) of Rl is defined by

Rl(i, j) =

{
1 if (i, j) ∈ Pl

0 otherwise

Thickening the given association scheme, we can obtain an association schemoids.

Theorem 7.5. With the same notation as above, for positive integers z0, ..., zs, we
define an m×m matrix Z by

Z = z0R0 + z1R1 + · · ·+ zsRs + diag(1, 1, ..., 1).

Let S = {σl}l=0,1,..,s be a partition of the frame {φij}ij of the category CZ , where
σ0 = {φii | i = 1, ...,m} and σl = {φij | (j, i) ∈ Pl}. Then S satisfies the
concatenation axiom. In consequence, the pair (CZ ,Σ) with Σ defined in Proposition
7.4 is a unital quasi-schemoid. Moreover, if z0 = · · · = zs, then (CZ ,Σ) admits a
unital schemoid structure.

Proof. Since (X,P ) is an association scheme, we see that S satisfies the concate-
nation axiom and that the condition (i) in Definition 2.2 holds. Proposition 7.4
implies that (CZ ,Σ) is a unital quasi-schemoid.

Suppose that z0 = · · · = zs. For any objects i, j, let M(i, j) be the subset of
mor(CZ) consisting of morphisms f which satisfies the condition that s(f) = i,
t(f) = j and f 6= φij . Then there exists a bijection θ : M(i, j) → M(j, i). With
the bijection, we define a contravariant functor T : CZ → CZ with T 2 = 1CZ

by
T (φij) = φji and for f which is not in the frame, by T (f) = θ(f). We then have
an association schemoid (CZ ,Σ, T ). �

For an association scheme (X,P ), we may write SCz0,...,zs(X,P ) for the quasi-
schemoid (CZ ,Σ) constructed via the procedure in Theorem 7.5. In what follows,
we denote by SCz(X,P ) the induced association schemoid SCz,...,z(X,P ).
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Proposition 7.6. Let (X,P ) be an association scheme. With the same notation as
in Proposition 7.4, we define a functor Φ : SCz0,...,zs(X,P ) → j(X,P ) by Φ(φλij) =

φij for any φλij ∈ S ∪ S̃, where φ0ij = φij and X is considered as a directed complete
graph with φij ’s as edges provided φii = 1i. Then Φ is an admissible map in the
sense of Definition 6.2.

Proof. The result follows from the construction of the quasi-schemoid (CZ ,Σ). �

Remark 7.7. Under the same notation as in Proposition 7.4, we consider an equation
of the form φε

′

kj ◦ φ
ε
ik = φij , where ε

′ = 0, 1, ε = 0, 1 and φ0lm = φlm. For given

elements φεik and φij , a solution φε
′

kj of the equation is exactly one in an element of

{1}, S or S̃. Moreover, we see that if the equation f ◦ g = φ1ij has a solution, then
one of f and g should be the identity. This yields that the association schemoid
SCz(X,P ) satisfies the condition (P) in Remark 6.8 if z = 1 or 2.

Remark 7.8. Let Φ : SC1(X,P ) → j(X,P ) be the admissible map in Proposition
7.6. Then the induced map K(Φ) : K(SC1(X,P )) → A(X,P ) is not an isomor-
phism. In fact, we see that dimA(X,P ) + 1 = dimK(SC1(X,P )).

Remark 7.9. We recall U : qASmd → Cat the forgetful functor described in the
diagram (6.1). Then the classifying space BC of the category C = USCz(X,P ) is
a contractible. To see this, we choose an object i of C and consider the functor
π : C → • and ι : • → C, where • denotes the trivial category with the one
object ∗ and ι(∗) = i. It is immediate that π ◦ ι = 1•. We may define a natural
transformation η : ι◦π → 1C by η(k) = φik for k ∈ ob(C). In fact, for any φλkl : k → l
in C, we see that

η(l) ◦ ((ι ◦ π)(φλkl)) = φil ◦ 1i = φil = φλkl ◦ φik = φλkl ◦ η(k).

Then we see that B(π) ◦B(ι) = 1B• and B(ι) ◦B(π) ≃ 1BC. This implies that BC
is homotopy equivalent to the space of a point and hence to B(Uj(X,P )); see the
comments described before Corollary 5.8. On the other hand, Remark 7.8 states
that Kj(X,S) is not isomorphic to KSC1(X,P ).

It is important to recall Corollary 6.13 and the results in Examples 5.9 and

5.10. In some case, a linear extension D+ → (C, S̃, T̃ )
q
→ j(X,P ) gives rise to an

isomorphism K(q) : K(C, S̃)
∼=
→ Kj(X,P ) = A(X,P ) while the classifying space

B(U(C, S̃)) is not homotopy equivalent to B(Uj(X,P )).

The following theorem ensures that the construction in Theorem 7.5 is functorial.

Proposition 7.10. Let z be a positive integer. Then the correspondence sending
an association scheme (X,P ) to the association schemoid SCz(X,P ) gives rise to a
functor SCz( ) : AS → ASmd. Moreover, association schemes (X,P ) and (X ′, P ′)
are isomorphic if and only if so are schemoids SCz(X,P ) and SCz(X

′, P ′).

Proof. Let {φij} and {ψlm} be the frames of SCz(X,P ) and of SCz(X
′, P ′), respec-

tively. Let f : (X,P ) → (X ′, P ′) be a morphism of association schemes. With the
same notation as in Proposition 7.4, we define SCz(f)(φ

λ
ij) = ψλ

lm for λ = 0, ...., z

if f(φij) = f(ψlm), where φ0ij = φij and ψ0
lm = ψlm. Then SCz( ) is a well-defined

functor. This yields the first part of the assertion. As for the latter half, the ”only if
part” is immediate. Suppose that F : SCz(X,P ) → SCz(X

′, P ′) is an isomorphism
of schemoids. Since F (φij) = F (φjj ◦φij) = F (φjj)◦F (φij), it follows from Lemma
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7.2 that F sends elements in the frame of SCz(X,P ) to those of SCz(X
′, P ′). This

completes the proof. �

Example 7.11. Let H(2, 2) be the Hamming scheme of type (2, 2); that is, H(2, 2) =
({0, 1}2, {T0, T1, T2}), where Ti denotes the set of the pair of words with the Ham-
ming metric i; see Section 8. Pictorially, we have

• oo //
__

��

OO

��

•OO

��
• oo //��

??

•

where white arrows from a vertex to itself, the black arrows and dots arrows are
in T0, T1 and T2, respectively. By applying Theorem 7.5, we obtain an association
quasi-schemoid (CZ ,Σ) constructed by the 4× 4 matrix with data of the partition

Z = n0R0+n1R1+n2R2+diag(1, 1, 1, 1) =




n0 + 1 n1 n1 n2

n1 n0 + 1 n2 n1

n1 n2 n0 + 1 n1

n2 n1 n1 n0 + 1


 .

The schemoid (CZ ,Σ) can be represented by the picture

•
$$

×n0 ::
h(s3�E

�O
�Y +k 6v

oo ×n1 //
__

×n2

��

OO

×n1

��

•
zz

×n0dd
6v +k �Y

�O
�Es3h(OO

×n1

��
•
$$

×n0 ::
h(s3�E

�O
�Y +k 6v

oo
×n1

//��
×n2

??

•
zz

×n0dd
6v +k �Y

�O
�Es3h(

with 4 white identities.
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8. Appendix: A schemoid and a toy model for a network

In this section, we relate a schemoid with a toy model for a network.
Let F be a set of q elements and X the product set F

n. Then we obtain the
Hamming scheme H(n, q) = (X, {Rk}k=1,...,n) which is one of crucial association
schemes; that is, with the Hamming metric ∂(x, y) = ♯{i | xi 6= yi} for x = (xi)
and y = (yi), Rk is defined by Rk := {(x, y) ∈ X ×X | ∂(x, y) = k}.

A main problem in coding theory is to estimate the maximal size of any subset
(code) C of X such that no two elements in C have the Hamming metric less
than a given value. We here refer to elements in X as passwords. Though the
problem considering the maximal size of such a set originates in the study of error
correcting code, the importance of the problem also comes from other reason. In
fact, when an administrator distributes passwords among users, he or she should
need more passwords which are different from one another with appropriate large
metric. Someone of users might use a wrong password w which differs from correct
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one a little bit. If w is a password of another someone, that gives rise to an
inadvisable circumstance.

It is significant to mention that upper-bounds of the maximal size of such a code
are considered by using the Bose-Mesner algebra of an association scheme; see [8].

After determining a maximal code C, a system of a community begins to work.
We can consider the whole Hamming scheme or a code C a complete graph with
passwords as vertices. If one changes the password to some other one along edges,
then directions would be needed. It is natural to regard such directed edges as
morphisms connecting the passwords (vertices, objects). Thus a categorical notion
appears in the system.

In order to explain such notion a little more, a toy model which an administrator
constructs is given here using undefined terminology. For vertices x, y and z in a
directed graph, the concatenation of directed edges (morphisms) (z, x) and (x, y)
is defined by (z, x) ◦ (x, y) = (z, y).

•(z,x)

uu❧❧❧
❧❧
❧❧❧

❧

• •

(x,y)ii❙❙❙❙❙❙❙❙❙
(z,y)

oo

The administrator might establish a rule which prohibits users from changing freely
the passwords via edges. If he or she only admits changes of the passwords through
odd number of directed edges, then the equality (z, x) ◦ (x, y) = (z, y) above is
inconvenient. Thus a blow-up of the set of edges is needed. We attach some edges
to the graph as the diagram below.

•(z,x)0

vv♠♠♠
♠♠
♠♠
♠

(z,x)1

��• •

(x,y)0
hh◗◗◗◗◗◗◗◗

(x,y)1

~~

(z,y)0

oo

(z,y)1

__

Here 0, 1 ∈ Z/2. Then a natural concatenation is given by

(1) (z, x)1 ◦ (x, y)1 = (z, y)1+1 = (z, y)0 6= (z, y)1.

Using only the directed edges of the form (∗, ∗)1, a system of a network that he or
she requires may be constructed. Indeed, such a system, which has both structures
of an association scheme and a small category, seems to be a schemoid. Observe
that the concatenation law (1) is realized in a linear extension of a category due
to Baues and Wirsching [6]. In fact, let Eη be the extension in Remark 6.14 for
η = 0, 1. Then we see that

(f, a, a′) ◦ (g, b, b′) = (f ◦ g, a+ b, η∆(a, b) + a′ + b′),

where ∆( , ) : Z/2×Z/2 → Z/2 is a 2-cycle defined by ∆(1, 1) = 1 and ∆(s, t) = 0
for (s, t) 6= (1, 1).

The administrator might use the extension E0 and morphisms of the form (∗, 0, 1)
only to construct a system because (f, 0, 1) ◦ (g, 0, 1) = (f ◦ g, 0, 0) 6= (f ◦ g, 0, 1). If
he or she uses the extension E1 and morphisms of the same form (∗, 0, 1), then one
has (f, 0, 1) ◦ (g, 0, 1) = (f ◦ g,∆(1, 1)+ 1+1) = (f ◦ g, 0, 1) and hence all users can
change their passwords freely.
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[1] I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative
algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student
Texts, 65. Cambridge University Press, Cambridge, 2006.

[2] S. Bang and M. Hirasaka, Construction of association schemes from difference sets, European
J. Combin. 26 (2005), 59-74.

[3] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings
Lecture Note Ser. 58, London, Benjamin, 1984.

[4] H. J. Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, 15. Cam-
bridge University Press, Cambridge, 1989.

[5] H. J. Baues and W. Dreckmann, The cohomology of homotopy categories and the general
linear group, K-Theory 3 (1989), 307-338.

[6] H. J. Baues and G. Wirsching, Cohomology of small categories, J. Pure Appl. Algebra 38

(1985), 187-211.
[7] C. Berger and T. Leinster, The Euler characteristic of a category as the sum of a divergent

series, Homology, Homotopy and App. 10 (2008), 41-51.
[8] P. Delsarte, An algbebraic approach to the association schemes of coding theory, Philips Res.

Reports Suppl. 10, 1973.
[9] C. French, Functors from association schemes, J. Combin. Theory Ser. A 120 (2013), 1141-

1165.
[10] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Math-

ematik und ihrer Grenzgebiete, Band 35 Springer-Verlag New York, Inc., New York 1967.
[11] A. Hanaki, A category of association schemes, J. Combin. Theory Ser. A 117 (2010), 1207-

1217.
[12] A. Hanaki and M. Yoshikawa, Thin coherent configurations and groupoids, preprint (2012).
[13] A. Hida, private communication.
[14] F. Jaeger, Towards a classification of spin models in terms of association schemes, Adv. Stud.

Pure Math., 24 (1996), pp. 197-225.
[15] F. Jaeger, M. Matsumoto and K. Nomura, Bose-Mesner algebras related to type II matrices

and spin models J. Algebr. Comb. 8 (1998), 39-72.
[16] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Am. Math.

Soc. 12 (1985), 103-111.
[17] D. M. Latch, The uniqueness of homology for category of small categories, J. Pure Appl.

Algebra 9 (1977), 221-237.
[18] B. Mitchell, Rings with several objects, Adv. Math. 8 (1972), 1-161.
[19] K. Nomura, Spin models constructed from Hadamard matrices, J. Comb. Theory Ser. A 68

(1994), 251-261.
[20] I. Ponomarenko and P. -H. Zieschang, Preface, European Journal of Combinatorics, 30 (2009),

1387-1391.
[21] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin.

1 (4) (1992), 363-388.
[22] R. W. Thomason, Cat as a closed model category, Cahirs de topologie et géométrie
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