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Abstract

We characterize those varieties of universal algebras where every
split epimorphism considered as a map of sets is a product projec-
tion. In addition we obtain new characterizations of protomodular,
unital and subtractive varieties as well as varieties of right Ω-loops
and biternary systems.

Introduction

It is well known that in the category of groups if

0 // K
κ // A

α // B // 0

is a short exact sequence, then A and K ×B are bijective as sets, moreover
when α is split, i.e. for each split extension

K
κ // A

α // B
β

oo , αβ = 1B , κ = ker (α),

this bijection becomes a natural bijection K×B → A such that the diagram

K
〈1,0〉// K ×B

ϕ

��

π2 // B
〈0,1〉
oo

K
κ // A

α // B
β

oo

is a morphism of split extensions in the category Set, of sets, that is, αϕ =
π2, ϕ〈0, 1〉 = β, and ϕ〈1, 0〉 = κ. As shown by E. B. Inyangala, these
bijections exists in a more general setting of a variety of right Ω-loops (see
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[4, 5]), that is, a pointed variety of universal algebras V with constant 0 and
binary terms x+ y and x− y satisfying the identities:

x+ 0 = x (1)

x− x = 0 (2)

(x+ y)− y = x (3)

(x− y) + y = x (4)

Moreover, he showed that if a pointed variety V with constant 0 has binary
terms x+ y and x− y and there exist bijections (as above) constructed (in
the same way as for groups) using those terms, i.e. ϕ(k, b) = κ(k) + β(b)
and ϕ−1(a) = (λ(a), α(a)), where λ is the unique map such that κλ(a) =
a−βα(a) , then V is a variety of right Ω-loops and in particular the identities
(1) - (4) hold for x+y and x−y. In this paper we prove that if for a pointed
variety V there exist natural bijections as above, then V is a variety of right
Ω-loops (see Theorem 2.1).

For any category C let Pt(C) to be the category of split epimorphisms in C:
an object is a quadruple (A,B,α, β) where A and B are objects in C and
α : A → B and β : B → A are morphisms in C with αβ = 1B ; a morphism
(A,B,α, β) → (A′, B′, α′, β′) is a pair of morphisms (f : A → A′, g : B →
B′) such that in the diagram

A
α //

f
��

B
β

oo

g
��

A′
α′

// B′

β′

oo

α′f = gα and fβ = β′g. Throughout this paper for any objects A and
B we will denote by π1 and π2 the first and second product projections
respectively. We will use the same notation for the first and second pullback
projections and will write

(A ×
〈f,g〉

B,π1, π2)

for the pullback of f : A→ C and g : B → C as in the diagram

A ×
〈f,g〉

B
π2 //

π1

��

B

g

��
A

f
// C.

For any morphisms u :W → A and v : W → B with fu = gv we will write

〈u, v〉 : W → A ×
〈f,g〉

B
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for the unique morphism with π1〈u, v〉 = u and π2〈u, v〉 = v.

We prove that for a pointed variety V, if for each (A,B,α, β) in Pt(V) there
exists a natural bijection ϕ : K ×B → A, where κ : K → A is the kernel of
α, such that the diagram

K ×B
π2 //

ϕ

��

B
〈0,1〉
oo

A
α //

B
β

oo

is a morphism in Pt(Set), then V is a variety of right Ω-loops (see Corollary
2.2 ). There is a natural generalization of this condition for any variety
V, namely asking for each (A,B,α, β) in Pt(V) and for each morphism
f : E → B that there exists a bijection

ϕ : (A ×
〈α,f〉

E)×B → E ×A

natural in both (A,B,α, β) and f : E → B, such that the diagram

(A ×
〈α,f〉

E)×B
π2×1 //

ϕ

��

E ×B
〈βf,1〉×1

oo

E ×A
1×α // E ×B
1×β

oo

is a morphism in Pt(Set). It is clear that for a pointed variety this condition
implies the previous condition, since taking E to be the zero object and f
to be the unique morphism from E to B makes

π1 : A ×
〈α,f〉

E → A

the kernel of α. In Section 4 we prove that this condition is equivalent to
the same condition under the restriction that each f as above is an identity
morphism (see Theorem 4.6). We also prove that a variety satisfies this
condition if and only if it is a biternary system [7] that is there exist ternary
terms p(x, y, z) and q(x, y, z) satisfying the identities

p(x, x, y) = y (5)

p(q(x, y, z), z, y) = x = q(p(x, y, z), z, y). (6)

However, there are other generalizations that may be considered. In a va-
riety V with constants, for each X, let θX : 1 → Xn be a map (natural
in X) such that the composite with each product projection πi : X

n → X
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gives a constant. We could then consider the following condition: for each
(A,B,α, β) in Pt(V) there exists a natural split epimorphism (in the cate-
gory of sets)

ϕ : (An ×
〈αn,θB〉

1)×B → A

with splitting

ψ : A→ (An ×
〈αn,θB〉

1)×B

such that in the diagram

(An ×
〈αn,θB〉

1)×B

ϕ

��

π2 //
B

(〈θA,1〉!B)×1
oo

A
α //

ψ

OO

B
β

oo

the upward and downward directed sub-diagrams are morphisms in Pt(Set).
We prove in Section 3 that this condition is equivalent to V being a proto-
modular variety [2] of type n, that is, a variety V with constants e1, . . . , en,
binary terms s1(x, y), . . . , sn(x, y) and an n + 1-ary term p(x1, . . . , xn, z)
satisfying the identities:

si(x, x) = ei i ∈ {1, . . . , n} (7)

p(s1(x, z), . . . , sn(x, z), z) = x. (8)

Note that requiring ϕ to be a bijection gives the addition conditions

si(p(x1, ..., xn, y), y)) = xi for all i ∈ 1, ..., n. (9)

In order to study these conditions simultaneously we make a further gener-
alization described in Section 1.

1 The general setting

In this section we replace a forgetful functor from a variety into the category
of sets (or pointed sets) with an abstract functor (satisfying certain condi-
tions) and consider a generalization allowing us to study simultaneously
both generalizations discussed in the introduction.

For a set n, a category D with finite products and products indexed over
n, and for functors F,G,H : C → D we denote by Fn the n indexed product
of F with itself and by G×H the product of G andH in the functor category
D
C.

Throughout this section we will assume that:
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1. A is a category with finite products;

2. m and n are sets;

3. X is a category with finite limits and products indexed by the sets m
and n;

4. U : A → X is a functor preserving finite products;

5. θ : Um → Un is a natural transformation.

Let ∆ : A → Pt(A) be the functor sending X in A to (X ×X,X, π2, 〈1, 1〉)
and let DA be the functor Pt(A) → A taking (A,B,α, β) to B. Let
V : Pt(A) → Pt(X) and W : Pt(A) → Pt(X) be the functors sending
(A,B,α, β) in Pt(A) to

((U(A)n ×
〈U(α)n,θB〉

U(B)m)×U(B), U(B)m ×U(B), π2 × 1, 〈U(β)nθB, 1〉 × 1)

and
(U(B)m × U(A), U(B)m × U(B), 1× U(α), 1 × U(β))

respectively.
From the beginning of the next section we will consider the case where A

is a variety, X is the category of sets, U is the usual forgetful functor from
the variety to the category of sets, m = {1, . . . ,m}, n = {1, . . . , n}, and θ is
constructed from n m-ary terms of A. In particular when A is pointed with
constant 0, n = {1}, m = ∅, and θ : Um → Un is the natural transformation
with component at X θX(1) = 0 (where 1 is the unique element in Um(X)),
it can be seen that

π1 : U(A)n ×
〈U(α)n,θB〉

U(B)m → U(A)

is up to isomorphism the image under U of the kernel of α and the bijections
mentioned at the start of the introduction become components of a natural
transformation V →W .

Lemma 1.1. Each of the following types of data uniquely determine each
other:

(a) a natural transformation τ : V →W ;

(b) a natural transformation τ : V∆ →W∆;

(c) natural transformations ρ : (Un×Um)×U → U and ζ : Um×U → Um;
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Proof. For each (A,B,α, β) inPt(A) andX in A, let (ϕ1(A,B,α,β)
, ϕ0(A,B,α,β)

) =
τ(A,B,α,β) and (ϕ1X , ϕ0X ) = τX . The diagram

PX × U(X)
〈U(π1)nπ1,π2〉×1

vv♠♠♠♠♠♠♠♠♠♠♠♠

π2×1

��

ϕ1X // U(X)m × U(X ×X)
1×〈U(π1),U(π2)〉

zzttttttttt

1×U(π2)

��

(U(X)n × U(X)m)× U(X)

π2×1

''

pX
// U(X)m × (U(X) × U(X))

1×π2

$$
U(X)m × U(X)

〈U〈1,1〉nθX ,1〉×1

OO

ϕ0X

//

〈θX ,1〉×1

[[

U(X)m × U(X),

1×U〈1,1〉

OO

1×〈1,1〉

VV

in which

PX = U(X ×X)n ×
〈U(π2)n,θX〉

U(X)m

and
pX = 〈ζX(π2 × 1), 〈ρX , ρX(〈θXπ2, π2〉 × 1)〉〉,

is a commutative diagram of morphisms in Pt(X), and shows the relation-
ship between τ and ρ and ζ. The commutative diagrams

(U(A)n ×
〈U(α)n,θB〉

U(B)m)× U(B)GF

@A

〈π1,U(β)mπ2〉×U(β)

//

ϕ1(A,B,α,β) //

(U(〈1,βα〉)n×U(β)m)×U(β)
��

U(B)m × U(A)

U(β)m×U(〈1,βα〉)

��

ED

BC✤✤
✤✤
✤✤
✤✤
✤✤
✤✤
✤✤
✤✤=<

:;✤ ✤
✤ ✤
✤ ✤
✤✤
✤✤
✤✤
✤✤
✤ ✤

(U(A×A)n ×
〈U(π2)n,θA〉

U(A)m)× U(A)
ϕ1∆(A)

=ϕ1A

//

〈U(π1)nπ1,π2〉×1

��

U(A)m × U(A×A)

U(α)m×U(π1)

��
(U(A)n × U(A)n)× U(A)

〈U(α)mζA(π2×1),ρA〉
// U(B)m × U(A)

U(B)m × U(B)
ϕ0(A,B,α,β) //

U(β)m×U(β)
��

?>

89✥✥
✥✥

✥✥
✥✥

✥✥
✥✥
✥GF

@A✥✥
✥✥
✥✥
✥✥
✥✥

✥✥
✥

U(Bm × U(B))

U(β)m×U(β)
��

ED

BC✤ ✤
✤ ✤
✤ ✤
✤✤
✤✤
✤ ✤
✤=<

:;✣✣
✣✣
✣✣
✣✣
✣✣
✣✣
✣

U(A)m × U(A)
ϕ0∆(A) //

U(α)m×U(α)
��

U(A)m × U(A)

U(α)m×U(α)
��

U(B)m × U(B)
ϕ0∆(B) //

〈ζB ,ρB(〈θB ,1〉×1)〉 ++❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱
U(B)m × U(B)

U(B)m × U(B)

show the relationships between τ and τ , and τ and ρ and ζ.
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Lemma 1.2. Each of the following types of data uniquely determine each
other:

(a) a natural transformation γ :W → V ;

(b) a natural transformation γ :W∆ → V∆;

(c) natural transformations σ : Um×(U×U) → Un, η : Um×U → Um and
ǫ : Um × U → U with components at each X in A making the diagram

U(X)m × U(X)
1×〈1,1〉//

ηX

��

U(X)m × (U(X) × U(X))

σX

��
U(X)m

θX

// U(X)n

(10)

commute.

Proof. For each (A,B,α, β) inPt(A) andX in A, let (ψ1(A,B,α,β)
, ψ0(A,B,α,β)

) =

γ(A,B,α,β) and (ψ1X , ψ0X ) = γX . The diagram

PX × U(X)
〈U(π1)nπ1,π2〉×1

vv♠♠♠♠♠♠♠♠♠♠♠♠

π2×1

��

U(X)m × U(X ×X)
ψ1Xoo

1×〈U(π1),U(π2)〉

zzttttttttt

1×U(π2)

��

(U(X)n × U(X)m)× U(X)

π2×1

''

U(X)m × (U(X) × U(X))
qX

oo

1×π2

$$
U(X)m × U(X)

〈U〈1,1〉nθX ,1〉×1

OO

〈θX ,1〉×1

[[

U(X)m × U(X),
ψ0X

oo

1×U〈1,1〉

OO

1×〈1,1〉

VV

in which

PX = U(X ×X)n ×
〈U(π2)n,θX〉

U(X)m

and
qX = 〈〈σX , ηX(1× π2)〉, ǫX(1× π2)〉,

is a commutative diagram of morphisms in Pt(X), and shows the relation-
ship between γ and σ, η and ǫ. The equations

γ∆(X) = γX

and

ψ1(A,B,α,β)
= 〈〈σA(U(β)m × U(〈1, βα〉)), ηB (1× U(α))〉ǫB(1× U(α))〉,

7



and the commutative diagram

U(B)m × U(B)

U(β)m×U(β)
��

?>

89✥✥
✥✥
✥✥

✥✥
✥✥
✥✥

✥GF

@A✥✥
✥✥
✥✥

✥✥
✥✥
✥✥
✥

U(B)m × U(B)
ψ0(A,B,α)oo

U(β)m×U(β)
��

ED

BC✤ ✤
✤✤
✤✤
✤ ✤
✤ ✤
✤ ✤
✤=<

:; ✣✣
✣✣
✣✣
✣✣
✣✣
✣✣
✣

U(A)m × U(A)

U(α)m×U(α)
��

U(A)m × U(A)
ψ0∆(A)oo

U(α)m×U(α)
��

U(B)m × U(B) U(B)m × U(B)
ψ0∆(B)oo

〈ηB ,ǫB〉ss❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

U(B)m × U(B)

show the relationships between γ and γ, and γ and σ, η and ǫ.

From the two lemmas above we easily prove the following corollaries.

Corollary 1.3. Each of the following types of data uniquely determine each
other:

(a) a natural transformation τ : V →W with 1DX
◦ τ = 1Dm

A
×DA

;

(b) a natural transformation ρ : (Un × Um) × U → U with component at
each X in C making the diagram

(U(X)n × U(X)m)× U(X)
ρX // U(X)

U(X)m × U(X)

π2

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
〈θX ,1〉×1

OO

(11)

commute.

Corollary 1.4. Each of the following types of data uniquely determine each
other:

(a) a natural transformation γ :W → V with 1DX
◦ γ = 1Dm

A
×DA

;

(b) a natural transformation σ : Um × (U × U) → Un with component at
each X in C making the diagram

U(X)m × (U(X) × U(X))
σX // U(X)n

U(X)m × U(X)
π1

//

1×〈1,1〉

OO

U(X)m

θX

OO

(12)

commute.
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Corollary 1.5. Each of the following types of data uniquely determine each
other:

(a) natural transformations τ : V → W and γ : W → V with 1DX
◦ τ =

1Dm

A
×DA

and 1DX
◦ γ = 1Dm

A
×DA

and such that τγ = 1W ;

(b) natural transformations ρ : (Un×Um)×U → U and σ : Um×(U×U) →
Un with components at each X in C making the diagrams (11), (12) and

U(X)m × (U(X) × U(X))

π1π2

))❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

〈〈σ,π1〉,π2π2〉
��

(U(X)n × U(X)m)× U(X)
ρX

// U(X)

(13)

commute.

Corollary 1.6. Each of the following types of data uniquely determine each
other:

(a) natural transformations τ : V → W and γ : W → V with 1DX
◦ τ =

1Dm

A
×DA

and 1DX
◦ γ = 1Dm

A
×DA

and such that γτ = 1V ;

(b) natural transformations ρ : (Un×Um)×U → U and σ : Um×(U×U) →
Un with components at each X in C making the diagrams (11), (12) and

(U(X)n × U(X)m)× U(X)

〈π2π1,〈ρX ,π2〉〉
��

π1π1

))❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

U(X)m × (U(X) × U(X))σX
// U(X)n

(14)

commute.

Corollary 1.7. Each of the following types of data uniquely determine each
other:

(a) natural transformations τ : V → W and σ : W → V with 1DX
◦ τ =

1Dm

A
×DA

and 1DX
◦ γ = 1Dm

A
×DA

and inverse to each other;

(b) natural transformations ρ : (Un×Um)×U → U and σ : Um×(U×U) →
Un with components at each X in C making the diagrams (11), (12),
(13) and (14) commute.

We now consider the case where m = ∅ and n = {1}, the results proved
here will be used in Section 2.

9



When m = ∅ and n = {1}, the functors V andW are up to isomorphism
the functors Ṽ , W̃ : Pt(A) → Pt(X) sending (A,B,α, β) to

((U(A) ×
〈U(α),θB 〉

1)× U(B), U(B), π2, 〈〈θA, 1〉!U(B), 1〉)

and
(U(A), U(B), U(α), U(β))

respectively.

Corollary 1.8. Each of the following types of data uniquely determine each
other:

(a) a natural transformation τ : Ṽ → W̃ with 1DX
◦ τ = 1DA

and with
component at each (A,B,α, β) in Pt(A) such that the diagram

U(A) ×
〈U(α),θB 〉

1
〈1,θB !〉// (U(A) ×

〈U(α),θB 〉
1)× U(B)

ϕ1(A,B,α,β)

��
U(A) ×

〈U(α),θB 〉
1

π1
// U(A)

(15)

commutes;

(b) a natural transformation ρ : U × U → U with component at each X in
A making the diagram

U(X)
1U(X)

''◆◆◆◆◆◆◆◆◆◆◆

〈1,θX !〉
��

U(X) × U(X)
ρX // U(X)

U(X)

1U(X)

77♣♣♣♣♣♣♣♣♣♣♣
〈θX !,1〉

OO
(16)

commute.

Corollary 1.9. Each of the following types of data uniquely determine each
other:

(a) a natural transformation γ : W̃ → Ṽ with 1DX
◦ γ = 1DA

and with
component at each (A,B,α, β) in Pt(A) such that the diagram

U(A) ×
〈U(α),θB 〉

1
〈1,θB !〉// (U(A) ×

〈U(α),θB 〉
1)× U(B)

OO
ψ1(A,B,α,β)

U(A) ×
〈U(α),θB 〉

1
π1

// U(A)

(17)

commutes;

10



(b) a natural transformation σ : U × U → U with component at each X in
A making the diagram

U(X)
1U(X)

''◆◆◆◆◆◆◆◆◆◆◆

〈1,θX !〉
��

U(X)× U(X)
σX

// U(X)

U(X)
!U(X)

//

〈1,1〉

OO

1

θX

OO (18)

commute.

Corollary 1.10. Each of the following types of data uniquely determine
each other:

(a) natural transformations τ : Ṽ → W̃ and γ : W̃ → Ṽ with 1DX
◦ τ = 1DA

and 1DX
◦ γ = 1DA

inverse to each other and with components at each
(A,B,α, β) in Pt(A) making the diagrams (15) and (17) commute;

(b) natural transformations ρ : U × U → U and σ : U × U → U with
component at each X in A making the diagrams (16), (18),

U(X) × U(X)

〈σX ,π2〉
��

π1

''◆◆◆◆◆◆◆◆◆◆◆

U(X) × U(X)
ρX

// U(X)

(19)

and
U(X) × U(X)

〈ρX ,π2〉
��

π1

''◆◆◆◆◆◆◆◆◆◆◆

U(X) × U(X)σX
// U(X)

(20)

commute.

In the sections that follows we use the fact that the set of natural trans-
formation Un → U (where n = {1, . . . , n} and U is the forgetful functor
from a variety to sets) is in bijection with the set of n-ary terms of the vari-
ety. Since this is no longer true for arbitrary internal varieties (every term
determines a natural transformation but not conversely) the results in the
sections that follow hold only partially in arbitrary internal varieties, i.e.
the existence of certain terms determine natural transformations between
appropriate V and W but not conversely.

11



2 Pointed varieties

In this section we apply the results from Section 1 to the special case where
A = V is a pointed variety, X = Set∗ is the category of pointed sets, U is
the usual forgetful functor, m = ∅, n = {1}, and θ is constructed using the
constant of V.

For any category C we define SplExt(C) to be the category of split
extensions: an object is a sextuple (K,A,B, κ, α, β) where K, A and B are
objects in C and κ : K → B, α : A→ B and β : B → A are morphisms in C

with (K,κ) the kernel of α and αβ = 1B ; a morphism (K,A,B, κ, α, β) →
(K ′, A′, B′, κ′, α′, β′) is a triple (u, v, w) of morphisms u : K → K ′, v : A→
A′ and w : B → B′ such that in the diagram

K
κ //

u
��

A
α //

v
��

B
β

oo

w
��

K ′

κ′
// A′

α′

// B′

β′

oo

vκ = κ′u, α′v = wα and vβ = β′w.

Theorem 2.1. Let V be a pointed variety and let P,Q : SplExt(V) →
SplExt(Set∗) be the functors taking (K,A,B, κ, α, β) to (U(K), U(K) ×
U(B), 〈1, 0〉, π2, 〈0, 1〉) and (U(K), U(A), U(B), U(κ), U(α), U(β)) respectively.

(a) V is a unital variety [1] if and only if there exists a natural transforma-
tion P → Q with component at (K,A,B, κ, α, β) of the form

U(K) // U(K)× U(B)
π2 //

��✤
✤
✤

U(B)
〈0,1〉
oo

U(K) // U(A)
U(α) //

U(B);
U(β)

oo

(b) V is a subtractive variety [6] if and only if there exists a natural trans-
formation Q→ P with component at (K,A,B, κ, α, β) of the form

U(K) // U(A)
U(α) //

��✤
✤
✤

U(B)
U(β)

oo

U(K) // U(K)× U(B)
π2 //

U(B);
〈0,1〉
oo

12



(c) V is a variety of right Ω-loops if and only if there exists a natural iso-
morphism P → Q with component at (K,A,B, κ, α, β) of the form

U(K) // U(K)× U(B)
π2 //

��✤
✤
✤

U(B)
〈0,1〉
oo

U(K) // U(A)
U(α) // U(B).
U(β)

oo

Proof. It is easy to see that to give a natural transformation P → Q as
in (a) above is the same as to give a natural transformation Ṽ → W̃ as
in (a) of Corollary 1.8 which, by Corollary 1.8, is uniquely determined by
a natural transformation ρ : U × U → U with components making the
diagram (16) commute. And, such a natural transformation determines
and is determined by a binary term + such that for each x, y in X, an
algebra, x + y = ρX(x, y). The commutativity of (16) then implies that
x+ 0 = x = 0 + x. The statements (b) and (c) follow from Corollaries 1.9,
and 1.10 in a similar way.

Corollary 2.2. Let P̃ , Q̃ : Pt(A) → Pt(X) be the functors sending (A,B,α, β)
in Pt(A) to (U(K × B), U(B), U(π2), U(〈0, 1〉)) (where K = Ker(α)) and
(U(A), U(B), U(α), U(β)) respectively. V is a variety of right Ω-loops if and
only if there exists a natural bijection P̃ → Q̃ with component (A,B,α, β)
of the form

U(K ×B)
U(π2) //

��✤
✤
✤

U(B)
U(〈0,1〉)
oo

U(A)
U(α) // U(B).
U(β)

oo

Proof. It follows from Corollary 1.7 that a natural bijection P̃ → Q̃ as above
is completely determined by and determines binary terms ρ(x, y) and σ(x, y)
satisfying the identities σ(x, x) = 0, ρ(σ(x, y), y) = x and σ(ρ(x, y), y) = x.
Setting x+ y = ρ(σ(x, 0), y) and x− y = ρ(σ(x, y), 0) determines terms that
satisfy the right loop identities.

Remark 2.3. In fact it can be shown that V is a variety of right Ω-loops if
and only if there exists a natural isomorphism P̃ → Q̃.

3 Protomodular varieties

In this section we give a new classification of protomodular varieties by
applying the results from Section 1 to the case where A = V is an arbitrary
variety with constants, X = Set is the category of sets, and U is the usual
forgetful functor.
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Theorem 3.1. V is a protomodular variety if and only if for some m =
{1, . . . ,m}, n = {1, . . . , n} and θ there exist natural transformations τ :
V → W and γ : W → V with τγ = 1W and with components at each
(A,B,α, β) in Pt(C) of the form

(U(A)n ×
〈U(α)n,θB〉

U(B)m)× U(B)
π2×1 //

��✤
✤
✤

U(B)m × U(B)
〈U(β)mθB,1〉×1
oo

U(B)m × U(A)
1×U(α) //

OO✤
✤
✤

U(B)m × U(B).
1×U(β)

oo

Proof. It follows from Corollary 1.5 that natural transformations τ : V →W

and γ : W → V as above determine terms

ρ(x1, . . . , xn, y1, . . . , ym, z) and σi(y1, . . . , ym, x, z) i ∈ n

satisfying the identities

σi(y1, . . . , ym, x, x) = θi(y1, . . . , ym) i ∈ n

ρ(σ1(y1, . . . , ym, x, z), . . . , σn(y1, . . . , ym, x, z), y1, . . . , ym, z) = x.

For any constant e we may form new terms ei = θi(e, . . . , e) i ∈ n, si(x, z) =
σi(e, . . . , e, x, z) i ∈ n, and p(x1, . . . , xn, z) = ρ(x1, . . . , xn, e, . . . , e, z). It
easy to check that these terms make V a protomodular variety. The converse
follows from Corollary 1.5 with m = ∅.

Remark 3.2. The results in this section can easily be extended to V an
infinitary variety, with m and n possibly infinite sets, giving, by Theorem
2.1 of [3], a new classification of infinitary protomodular varieties.

Remark 3.3. It could also be interesting to study when γτ = 1V (without
τγ = 1W ) which can be seen to be equivalent to the existence of ρ and σ as
above, satisfying the identities:

σi(y1, . . . , ym, x, x) = θi(y1, . . . , ym) i ∈ n

ρ(θ1(y1, . . . , ym), . . . , θn(y1, . . . , ym), y1, . . . , ym, x) = x

σi(y1, . . . , ym, ρ(x1, .., xn, y1, .., ym, z), z) = xi i ∈ n

instead.

4 General varieties

In this section we consider the case where A = V is a variety, X = Set is
the category sets, and U is the usual forgetful functor.

For a variety V consider the condition:

14



Condition 4.1. There exist ternary terms p and q satisfying the identities:
p(x, x, y) = y and p(q(x, y, z), z, y) = x = q(p(x, y, z), z, y).

It is easy to see that q(x, x, y) = y follows from the conditions above, as
remarked in [7], where such a variety was called a biternary system.

Remark 4.2. It is easy to see that if a variety V satisfies Condition 4.1 then
every regular epimorphism f : E → B is up to bijection a product projection
π2 : X × B → B for some X (since for each b and b′ choosing e and e′ in
f−1({b}) and f−1({b′}) respectively gives a bijection p(−, e, e′) : f−1({b}) →
f−1({b})).

Proposition 4.3. For a variety V the following conditions are equivalent:

1. V satisfies Condition 4.1;

2. There exist ternary terms p̃ and p̃ satisfying the identities: p̃(x, x, y) =
y = q̃(x, x, y), p̃(x, y, y) = x = q̃(x, y, y) and p̃(q̃(x, y, z), z, y) = x =
q̃(p̃(x, y, z), z, y);

3. There exists a quaternary term u satisfying the identities: u(a, b, b, a) =
b and u(u(a, b, c, d), b, d, c) = a;

4. There exists a quaternary term ũ satisfying the identities: ũ(a, b, b, a) =
b = ũ(a, a, b, a) and ũ(a, b, c, c) = a = ũ(ũ(a, b, c, d), b, d, c);

If in addition V has at least one constant, those conditions are further equiv-
alent to:

5. For each constant e there exist binary terms x+ y and x− y satisfying
the right loop identities (for that constant e).

Proof. The implications 2 ⇒ 1 and 4 ⇒ 3 are trivial.
1 ⇒ 2 : Given p and q define p̃(x, y, z) = p(q(x, y, y), y, z) and q̃(x, y, z) =
p(q(x, y, z), z, z).
2 ⇒ 4 : Given p̃ and q̃ define ũ(a, b, c, d) = p̃(q̃(a, b, c), d, b).
3 ⇒ 1 : Given u define p(x, y, z) = u(x, z, z, y) and q(x, y, z) = u(x, y, z, y).
If in addition V has at least one constant.
2 ⇒ 5 : Given p̃ and q̃ for each constant e define x + y = p̃(x, e, y) and
x− y = q̃(x, y, e).
5 ⇒ 1 : Given x + y and x − y for some constant e define p(x, y, z) =
q(x, y, z) = (x− y) + z.

Remark 4.4. It follows that a variety satisfying Condition 4.1 is a Mal’tsev
variety.
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Theorem 4.5. (a) If V satisfies Condition 4.1, then for n = {1}, m =
{1} and θ = 1U there exists a natural isomorphism τ : V → W with
component at each (A,B,α, β) in Pt(C) of the form

(U(A)n ×
〈U(α)n,θB〉

U(B)m)× U(B)
π2×1 //

��✤
✤
✤

U(B)m × U(B)
〈U(β)mθB ,1〉×1
oo

U(B)m × U(A)
1×U(α) // U(B)m × U(B);
1×U(β)

oo

(b) If for some n = {1, . . . , n}, m = {1, . . . ,m} and θ there exists a natural
isomorphism τ : V → W with component at each (A,B,α, β) in Pt(C)
of the form

(U(A)n ×
〈U(α)n,θB〉

U(B)m)× U(B)
π2×1 //

��✤
✤
✤

U(B)m × U(B)
〈U(β)mθB ,1〉×1
oo

U(B)m × U(A)
1×U(α) // U(B)m × U(B),
1×U(β)

oo

then V satisfies Condition 4.1.

Proof. (a) Let n = m = {1} and θ = 1U . Given ternary terms p and q as in
Condition 4.1, it is easy to check that ρ = p and σ(x, y, z) = q(y, z, x)
define natural transformations making the diagrams (11), (12), (13)
and (14) commute. Therefore by Corollary 1.7 determine a natural
isomorphism V →W , as required.

(b) If for some n = {1, . . . , n}, m = {1, . . . ,m} and θ there exists an isomor-
phism V →W then by Corollary 1.7 there exist terms ρ(x1, . . . , xn, y1, . . . , ym, z)
and σi(y1, . . . , ym, x, z) i ∈ n satisfying the identities:

σi(y1, . . . , ym, x, x) = θi(y1, . . . , ym)

ρ(σ1(y1, . . . , ym, x, z), . . . , σn(y1, . . . , ym, x, z), y1, . . . , ym, z) = x

σi(y1, . . . , ym, ρ(x1, .., xn, y1, .., ym, z), z) = xi.

Let p and q be the terms defined by

p(x, y, z) = ρ(σ1(y, . . . , y, x, y), . . . , σn(y, . . . , y, x, y), y, . . . , y, z)

q(x, y, z) = ρ(σ1(z, . . . , z, x, y), . . . , σn(z, . . . , z, x, y), z, . . . , z, z).

It is easy to check that p and q satisfy the desired identities as in Con-
dition 4.1.
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Recall that for any category C the functor DC is the functor Pt(C) → C

taking (A,B,α, β) to B.

Theorem 4.6. Let V and W be the functors defined in Section 1 with
A = V, X = Set, U the usual forgetful functor, n = m = {1} and θ = 1U .
Let P,Q : (A ↓ DA) → Pt(X) be the functors sending (E, (A,B,α, β), f) to

(U(A ×
〈α,f〉

E)× U(B), U(E) × U(B), U(π2)× 1, U(〈βf, 1〉) × 1)

and
(U(E) × U(A), U(E) × U(B), 1× U(α), 1 × U(β))

respectively. The following are equivalent:

1. There exists an isomorphism τ : V → W with component at each
(A,B,α, β) in Pt(A) of the form

(U(A)n ×
〈U(α)n,θB〉

U(B)m)× U(B)
π2×1 //

��✤
✤
✤

U(B)m × U(B)
〈U(β)mθB ,1〉×1
oo

U(B)m × U(A)
1×U(α) //

U(B)m × U(B);
1×U(β)

oo

2. There exists an isomorphism χ : P → Q with component at each
(E, (A,B,α, β), f) in (A ↓ DA) of the form

(U(A ×
〈α,f〉

E)× U(B)
U(π2)×1 //

��✤
✤
✤

U(E)× U(B)
U(〈βf,1〉)×1

oo

U(E)× U(A)
1×U(α) //

U(E)× U(B);
1×U(β)

oo

3. V satisfies Condition 4.1.

Proof. The equivalence of 1 and 3 follows from Theorem 4.5. It is easy
to show that 2 ⇒ 1 since P and Q composed with the functor sending
(A,B,α, β) in Pt(A) to (B, (A,B,α, β), 1B ) in (A ↓ DA) are up to natural
isomorphism the functors V and W respectively. We will show that 3 ⇒ 2.

Let p and q be ternary terms as in Condition 4.1. It is easy to check that
χ with component at each (E, (A,B,α, β), f) defined by χ(E,(A,B,α,β),f) =
(ϕ(E,(A,B,α,β),f), 1U(B)) where ϕ(E,(A,B,α,β),f)((a, e), b) = (e, p(a, βf(e), β(b)))

is an isomorphism with inverse χ−1
(E,(A,B,α,β),f) = (ψ(E,(A,B,α,β),f), 1U (B))

where ψ(E,(A,B,α,β),f)(e, a) = ((q(a, βα(a), βf(e)), e), α(a)).
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