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Abstract

We give an alternative presentation of braided monoidal categories. Instead of
the usual associativity and braiding we have just one constraint (the b-structure).
In the unital case, the coherence conditions for a b-structure are shown to be equiv-
alent to the usual associativity, unit and braiding axioms. We also discuss the next
dimensional version, that is, b-structures on bicategories. As an application, we
show how special b-categories result in the Yang-Baxter equation, and how special
b-bicategories produce Zamolodchikov’s tetrahedron equation. Finally, we define
a cohomology theory (the b-cohomology) which plays a role analogous to the one
abelian group cohomology has for braided monoidal categories.
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1 Introduction

Consider a not necessarily unital or associative algebra A with multiplication ARA —
A, (a,b) — ab such that

a(bc) = b(ac) Va,b,c € A . (1)

We call such algebras b-algebras. In general, a b-algebra is not even power-associative. If,
however, a b-algebra is commutative then it is associative:

a(bc) = a(cb) = c(ab) = (ab)c .

This situation occurs for example as a (very) special case of vertex algebras, see [4, §1.3.3].
Next, observe that if a b-algebra is right unital, al = a, then it is commutative:

ab = a(bl) = b(al) = ba .

Thus right unital b-algebras are nothing but commutative associative unital algebras. In
this paper we categorify this observation to arrive at an alternative description of braided
monoidal categories.

Categorical analogues of associative unital algebras are monoidal categories. On the
categorical level, commutativity is given by a coherent collection of isomorphisms, called
braiding [6]. Braided monoidal categories have applications in representation theory, low
dimensional topology and mathematical physics. In this paper we categorify b-algebras,
and we call the resulting structure a b-category. As for b-algebras, we find that a right
unital b-category is the same as braided monoidal category (Theorem [24]). Without unit,
the b-category structure is much weaker than that of being a braided monoidal category.
Yet, even for non-unital b-categories one can define braid group actions (an important
feature of braided monoidal categories).

The existence of braid group actions is one of our reason to choose the name “b-
category”. Another (related) reason lies in the application to two-dimensional conformal
field theory, and specifically in the paper [8]. There, so-called B-matrices are used to
express the monodromy of conformal four-point blocks. Similarly, the singular behaviour
of four-point blocks as insertion points approach each other is expressed through so-called
F-matrices. F-matrices describe the associator in the category of representations of the
corresponding vertex algebra. Our initial motivation was that the monodromy behaviour
may be easier to control than the singularities, and so we wanted to understand what
categorical structure the B-matrices would produce. (However, the results in this paper
are purely categorical and no further mention of conformal field theory will be made.)

We proceed to categorify once more and obtain b-structures on bicategories. This
additional step allows us to make two nice observations in examples we study:

Yang-Baxter and Zamolodchikov equations: Equip the category of vector spaces
with the tensor product functor (V,W) — V @ M ® W for a fixed vector space M. If
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one analyses b-structures in this case, one finds that they correspond to solutions to the
Yang-Baxter equation (Proposition B.3]).

If one carries out a similar construction in a one-object b-bicategory, one is lead to
Zamolodchikov’s tetrahedron equation [9] (Theorem [A.3]). The interpretations of Zamolod-
chikov’s tetrahedron equation as a structure of (a version of) a one-object braided monoidal
bicategory was one of the motivations for the study of braided monoidal bicategories [7].
We conjecture that a braided monoidal bicategory (in the sense of [I]) should naturally be
a b-bicategory and that this should relate the construction of Zamolodchikov operators on
both sides.

Finally, we show that b-functors between such one-object b-bicategories are controlled
by an “RLLL-relation” (Proposition .4]) which is also found in three-dimensional inte-
grable lattice models, see e.g. [2].

b-cohomology: Let us denote a set S with a binary operation satisfying (dl) as b-magma.
One can turn a b-magma S into a category by taking its only morphisms to be endomor-
phisms and defining S(s, s) to be a fixed abelian group B for all s € S. If this category
is endowed with the structure of a b-category we call it a categorical b-magma. One can
carry out an analogous construction to obtain a b-bicategory with objects S, only identity
1-morphisms, and a fixed abelian group B for all 2-morphism spaces.

In this way one is lead to introduce a cohomology theory — which we call b-cohomology —
whose cochains are maps S*™ — B. One verifies that categorical b-magmas are controlled
by H(S, B) (Proposition [5.3) and that the special class of b-bicategories described above
is controlled by H}(S, B) (Section (.2]).

The relation between categorical b-magmas and Hp(S, B) is completely analogous to
the one between pointed braided monoidal categories (or categorical groups) and abelian
(or Eilenberg-Mac Lane) cohomology H}, (A, B) for abelian groups [6]. Since every braided
monoidal category is a b-category one ends up with a comparison homomorphisms H, (A, B)
— H; (A, B) in degree 2 and 3. We conjecture that this homomorphism extends to all de-
grees.

This paper is organised as follows: In Section 2] we define b-categories and show that
unital b-categories are the same as braided monoidal categories. In Section [ we give
several examples of b-structures. In Section [l we study the categorified version, that is,
b-bicategories. In Section Bl we introduce b-cohomology and show how it relates to pointed
b-categories and b-bicategories. We conclude in Section [@] by listing some questions left
open by the treatment in this paper.

Acknowledgments

The authors would like to thank C. Schweigert for suggesting to look at pointed b-
categories. AD thanks the Department of Mathematics of Hamburg University for hospi-
tality during the visits in 2011-2013 which were supported by the Graduiertenkolleg 1670
of the Deutsche Forschungsgemeinschaft.



Conventions

We take the definitions of (braided) monoidal categories and functors from [6] as standard
with a slight modification - the associativity isomorphism « of a monoidal category and
the monoidal structure constraints of a functor, the isomorphisms ¢y : I — F(I) and
¢o: F(X)QF(Y) —» F(X®Y) from [6], are replaced by their inverses.

2 b-categories

2.1 Definition
A category C with a tensor product functor
®:CxC—C, (X,)Y) = XY

is called b-category if it comes equipped with a natural in XY, Z € C collection of isomor-

phisms
Bxyz: X@(YRZ) - YR(XRZ),

such that the diagram

1®8x,z,w

YR(X®(ZeW)) YR(Z(XQW))
W W
Xe(YR(ZoW)) Ze(Ye(XaW))

X@(Zo(Y W) X2 zo(Xa(Y @W))
(2)
commutes for all XY, Z, W € C.

A b-category C is symmetric if Bxy 70y xz =1forall XY, Z € C.

A functor F' : C — D between b-categories is a b-functor if it comes equipped with a
natural in X, Y € C collection of isomorphisms

such that the diagram

Fxygz 1®Fy,z

F(X®(Y®Z)) FX)®F(Y®Z) FX)®(F(Y)®F(Z)) (3)

F(Bx,v,z) Br(x),F(Y),F(2)

1®Fx, 7z

FYQ(X®Z)) — X% p(y)oF(X®Z) FOV)&(F(X)2F(Z))
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commutes for all XY, Z € C.

A natural transformation a : ' — G between b-functors F, G : C — D is b-transformation
if the diagram

F(XaY)—2 ~ F(X)®F(Y) (4)
aX@Yl ; lax®ay
G(X®Y) 2L G(X)®G(Y)

commutes for all X,Y € C.

Composition of b-functors C Y. p-L£. ¢ is a b-functor with respect to the isomor-
phisms (FoG)xy : (FoG)(X®Y) = (FoG)(X)®(F oG)(Y) defined as the composition

F(Gx,y) Fax),aw)
e ———

F(G(X®Y))

F(GX)eG(Y)) FGEX)eFGEY)) . ()

2.2 Braid group action

Let X,Y € C be objects of a b-category. Denote X®"®Y = X®@(XQ(X®(...(X®Y)...).
Consider the following automorphisms of X®"®Y":

bi = Bx.x,xen—2gy, by = 1®Bx x xen-3gy, ... bpo1 =10.0100Fx xy. (6)

Proposition 2.1. Let C be a b-category and X,Y € C. Sending the Cozeter generators of
the braid group B, to b; defines a group homomorphism

B, — Aute(X®'QY) .
If C is symmetric, this homomorphism factors through the symmetric group S,.

Proof. The Coxeter relations b;b;1b; = b;11b;b;1+1 follow from the axiom (2). The commu-
tativity relations b;b; = b;b; for |i — j| > 1 follow from the naturality of 3. Clearly, b7 = 1
for symmetric C. 0J

Similarly one defines the pure braid group action P, — Aut¢(X;®...0X,RQY), where
X;,Y €C and X;®..0X,0Y = X1®(Xo®(X3R(...(X,QY)...).

2.3 Unital b-categories

A b-category C is unital if there is an object I € C (the unit object) together with a natural
in X € C collection of isomorphisms

pxiX®I—>X,

subject to conditions (§) and (@) below. To formulate the conditions succinctly, define the
collection of isomorphisms cxy : X®Y — Y®X as

1®p{/1 Bx,v,I 1®px

exy = (Xov Xe(Yel) Yo(X®I) vex). (1)



The data I, p have to make the two diagrams

CXY,ZW

/Y)(ZW) (ZW)(XY)\ (8)
Bxv,z,w Bzw,x,y

Z((XY)W) X((ZW)Y)
Z(W(XY)) X(Y(ZW))

Z(X(WY)) X
X(Z(WY))

Bx.,1,y

X(IY) I(XY) (9)

1cYJT TCXY,I
X(YI) (XY)I
Y y
XY

commutative for all XY, Z W € C.

Lemma 2.2. The natural collection ([{l) in a unital b-category fits into the following com-
mutative diagrams:

1®cx,z

Yo(X®Z) Y&(Z2X) (10)
X®(Y®Z) Z2(Y®X)
m , %X;
X@(ZeY) —2 - Za(X®Y)
X@(YRZ)—X2 _ (YoZ)0X — 222 L Xe(Y®RZ) (11)
Bx,v,z By,x,z
1®cx,z 1®cz x
YR(X®Z) Y®(ZeX) YR(X®Z)




Proof. Commutativity of (I0) is implied by commutativity of the following diagram:

1®cx,z

Y®(X®Z)

‘% 1(1px)

Bx.v.z YR (X(Z0I)) —X21 |y (Z0(X 1)) By.z.x

Tﬁx,ngﬂ BY,Z,X@Il
Xo(Yez) Y2 xeo(ve(Zel)) Zo(Yo(Xe) 'YX ze(yox)
l1®BY,Z,I 1®BX,Y,IT
1y, X@(Z8(Yel) ——— Z8(Xa(YeI)) 1ex.y

1(1py) “ m

Z®(XR®Y)

Y®(ZeX)

X®(Z®Y)

Bx,z,y

Commutativity of ([[TJ) is implied by the following pasting of the coherence (&) for X, I,Y, Z:

CXI1,YZ

(XD)(YZ) (YZ)(X1I)
Y((XD)Z) 2 v (x 7) 2502 X (v ) S (v )X X((Y2)I)
1CXJ,Zl/ o llcx,z cyz,xl y llcyz,f
Y(Z(XT) 2 v (ZX) X(Y2) X(I(Y2))

%

(Y (12))

lez,x By, x,z
18z x,1
Z)

Y(X(ZI) 22y (X

X
11pz
By, x,zI llez 1
)

X(Y(ZI

Here we use the definition of ¢ and the coherence ({3]). O

A b-functor F' : C — D between unital b-categories is unital if it comes equipped with
an isomorphism ¢ : F'(I) — I such that for every X € C the following diagram

Fx 1

F(X®I) F(X)®F(I) (12)
F(px)l l1®¢
F(X) T RX)eI

commutes.



Lemma 2.3. Let F' : C — D be a unital b-functor between unital b-categories. Then the
following diagram commutes for all XY € C:
F(X®Y) — 2 L p(X)®F(Y) (13)
F(CX,Y)\L J/CF(X),F(Y)
Fy, x
F(Y®X) FY)®F(X)
Proof. This follows from commutativity of the diagram
FX(YT)) ——— - F(X)F(Y1) F(X)(F(Y)F(I))
Wj 1F(py) e
1
FIXY) 2L p(X)F(Y) < R(X)(F(Y)D)
F(Bx,v,1) F(CX,Y)l CF(X),F(Y) lBF(X),F(Y),I Br(x),F(Y),F(I)
F El
FXY) - F(X)F(Y) 4 FXO(F(Y)])
Fllpx) |, 1) . 119
F(Y(X1T)) — FY)F(XI) = FY)(F(X)F(I))

Here is the first main result of the paper:

Theorem 2.4. (i) The structure of unital b-category is equivalent to the structure of braided
monoidal category.
(ii) The structure of symmetric unital b-category is equivalent to the structure of symmetric

monoidal category.
(iii) The structure of a unital b-functor between unital b-categories is equivalent to the

structure of braided monoidal functor.
We prove it in the next three sections.

Remark 2.5. Using Theorem [2.4] it is easy to see, for example, that 6)_(,11,Y = fr.x,y (since
c;(’ll = ¢r.x, see [0, Prop.2.1]). This is more cumbersome to check when starting directly

from diagrams (2), (8) and (@).
Remark 2.6. The constructions of Sections 2.4l and below give a functor

BMCat — BCat

from the 2-category of braided monoidal categories and braided monoidal functors to the
2-category of b-categories and b-functors. The constructions of Sections and below
promote this functor to an equivalence

BMCat — UBCat

with target the 2-category of unital b-categories and unital b-functors.



2.4 From braided monoidal categories to unital b-categories

Let C be a braided monoidal category with associativity axy z : X®(Y®Z) = (X®Y)®Z,
braiding cxy : X®Y — Y®X, and unit isomorphisms px : X ® I — X and Ax :
I ® X — X. Define the collection of isomorphisms fxy 7 : XY ®Z) - YR(X®Z) as

the composition

Bxy,z = <X®(Y®Z)

XY, Z

(X®Y)oZ

nyy®1

Due to one of the hexagon axioms, Sx v,z coincides with the composition

Bxy,z = < XR(Y®eZ)

cx

YZ

(YeZ) X

—1
Ay 7,x

The coherence (2]) for 8 follows from commutativity of the diagram

8l X((2Y)W)

la

15

YoX)eZ —"X ye(XeZ) ).
YR(Z0X) 22X | ye(XoZ) ) .
Y((ZX)W) < —Y(Z(XW))

(Z(Y X)W == Z((YX

(1e)1

1(cl)

)

— (X(2Y))W (Z(XY))W —— Z((XY)W) |15
(X2)Y)W — D (zx))w a
X(ZYW))—= (XZ)(YW) el (ZX)(YW)<"—Z(X(YW))
s



The b-structure we get is unital: we take the data I, p for a unital b-category as in the
braided category C. The original braiding of C coincides with the natural collection defined

by ([@):

PXQY

(X®Y)®[ ax vl X®(Y®I) W X®Y

@(,Y@ll \LBX,Y,I iCX,Y

(YoX)ol — X ye(Xel) —2  ~YeX

PYRX

The coherence (@) for the unit isomorphism p follows from commutative diagram

By,1,7
Y(1Z2) P (Y[)ZW([Y)Z - I(YZ)
lez 1[ ]CYZ,I
Y(ZI) S (Y 2)I
R YZ PY Z

Finally, commutativity of the coherence (§)) for the unital b-structure on C follows from
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the diagram:

lexy,w

If C is a symmetric monoidal category, the diagram

1

//—\

X®(Y®Z) X,Y,Z Y®(X®Z) By, x,z

OlX,Y,Z\L J/Oly,x,z

(XeY)®Z —2" L (YeX)oZ
\/’/

1

X(Y®Z)

lax,y,z

(X®Y)oZ

cy,x1

shows that it is symmetric as a b-category.
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2.5 From unital b-categories to braided monoidal categories

Let now C be a unital b-category. Define the collection of isomorphisms cxy : X®Y —
Y®X asin (7) and axyz: X@Y®Z) = (XQY)RZ as

—1

1®c e c
aX,y,Zz(X®<Y®Z> 2 X@(ZRY) s 2R (XY ) — (X®Y)®Z).

Note that the diagram (II]) implies that axy 7z coincides with the composition

1®cy,z Bx,z,y

XR(Z®Y)

071
axyz = (X®(Y®Z) Zo(X®Y) ——2 (X®Y)®Z) ,

The hexagon axioms follow from the commutative diagrams

X®YZ

(XQY)®Z —227 | 70(XoY)
Bx ZY
1®cy, x
axy,z Z®Y Z®(Y®X) az.x)y
1®CYZ
By, z,x (Z®X)®Y
ﬁyx z W
1®cx, z
100y s R(X®Z) R(ZX) S
m
R(2QY) — 57— (X®2)eY
and
Xe(YeZ) — 2 _ (YoZ7)RX
w
1®cy,z
ax.)y,z X®(Z®Y Ve X®Z ay,z,x
m\
(X@Y) Bx.zy (Z@X)
W BYZ X
1®cx,y
cx,y®1 X®Y) ) 1®cx,z
cY(X)X zZ
YRX)®Z ~— 17— YR(X®2Z)

In both cases the middle hexagon commutes by Lemma
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The pentagon axiom follows from the commutative diagram

(XY)(ZW)

XY

C(X\%
(X

Bzw,xy
18y, z,w lley,w \
" Bx,zyw 18x,w,y )
cz,w XY,z
CZ(‘M

Z(W(XY)) lexy.z (XY)2)W

18x,z,y
Bx,z,y1
ax,y,z1
W CX(ZY) W
lley,z ley,z1
X((YZ)W) W(X(Y2)] <2 (X (v 2))W

XY Z,W

Define the collection of isomorphisms Ay : I® X — X natural in X € C as the compo-

sitions
CI,x pPX
XR®I1

I®X X
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The axiom for the monoidal unit object follows from the commutative diagram

aX, 1Y

X®(IRY) (XQI)RY
m y
Xoyel) —2 ye(Xel)
1Ay l1®ﬁy l1®px

XY ooy YoX

Finally if C is a symmetric b-category the diagram

1

XOY T YOX —— Xov
1PYT Tlpx Tlpy
Xo(YRI) —20 | ye(Xel) —22 o Xe(Yel)

e

1

shows that it is symmetric as a monoidal category.

2.6 Unital b-functors vs braided monoidal functors

Here we prove the last part of the Theorem 2.4, Namely for a braided monoidal functor
we define its unital b-structure and visa versa. In both cases the structural isomorphisms
Fxy : F(X®Y) - F(X)®F(Y) and ¢ : F(I) — I are the same. We simply prove that

one set of coherence conditions is equivalent to the other.

Let F' : C — D be a braided monoidal functor with monoidal isomorphism Fxy :
F(X®Y) — F(X)®F(Y). The following diagram shows that this isomorphism is a b-

functor structure, i.e. the diagram (3)) commutes for Fy y.

Fxyz 1Fy,z

F(X(YZ))\) F(X)F(YZ) /@()(F(Y)F(Z))
Flax,y,z OF(X),F(Y),F
F((XY)2) =X F(XY)F(2) X (F(X)F(Y))F(2)
F(Bx,v,z) F(CX’Yl)l lF(CX’Y)l lcF(X),F(Y)l BF(x),F(Y),F(Z)
FIYX)2) 2252 p iy X)F(2) 225 (F(Y)F(X)F(2)
(ay,x,z) QF(Y),F(X),F
F(Y(XZ)) F(Y)F(XZ) o F(Y)(F(X)F(Z))

Unitality of F'is automatic.
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Now let F' : C — D be a unital b-functor. The braiding axiom for F' follows from
Lemma [2.3] The monoidal coherence for F' comes from commutativity of the diagram:

F(X(YZ)) e F(X)F(YZ) S F(X)(F(Y)F(Z))
F(ley,z) lerpyy,F(z
1F(cy,z)
F(X(2Y)) 22 F(X)F(2Y) —2F(X)(F(2)F(Y))
F(ax,y,z) F(BX,Z,Y)l lﬁF(X),F(Z),F(Y) OF(X),F(Y),F(Z)
F(Z(XY)) 22X p(2)F(XY) —22F(2)(F(X)F(Y))
XY,z ) CR(X)F(Y),F(

Fxy,z Fxy

F((XY)Z)

FXY)F(Z) (F(X)F(Y))F(Z)

The coherence ([I2)) gives one of the unit preservation axioms (the right one). The left unit
preservation axiom follows from

Fr x

FI®X) ’ F(I)®F(X)
%) c
F(X®I) — F(X)aF(1)

F(Ax) lhﬁ ¢1
F(pX) F(

X))@l
CI,F(X)
PF(X) \

[®F(X)

F(I),F(X

AF(X)

Thus the proof of Theorem [2.4] is complete.

2.7 Pre-unital b-categories

Here we define unital b-categories without the unit. This modification will be useful for
treating some of the examples.

We call a b-category C pre-unital if it comes equipped with a natural (in X,Y € C)
collection cxy : X®Y — Y®X of isomorphisms satisfying the coherence axioms (8]), (10),

(1.
Proposition 2.7. A pre-unital b-category can be fully embedded into a unital b-category.

Proof. Let T be the one object one morphism category. Consider the disjoint union C =
CUZ. Extend the tensor product from C to C by X®I = X = I®X. Extend the b-structure
from C to C by

Bry.z = lygz, Bx1z = lxez, Bxyi=cxy .
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To see that C is a b-category we need to verify the b-axiom for the extended b-structure,
i.e. when some of the objects X, Y, Z, W in the diagram (2]) are I. Of all the cases the only
non-trivial is when W = [. In this case the diagram (2) is just (I0).

Finally define px to be the identity 1x. It is then straightforward (and tedious) to
check that C is a unital b-category. O

A b-functor F' : C — D between pre-unital b-categories is pre-unital if it satisfies the
coherence (I3)). It is straightforward to see that a pre-unital b-functor F' : C — D between
pre-unital b-categories extends to a unital b-functor F' : C — D between unital b-categories
via F([) = I, FI,X = FX,I = ]-F(X) and ¢ = 1[.

3 Examples of b-categories

Let k be a field. Here we look at (pre-unital) b-structures on the category Vect;, of (finite
dimensional) vector spaces over k. Denote by ® = ®; the standard tensor product of
vector spaces. Note that any k-linear tensor product on Vecty necessarily has the form

Q2 Vecty, X Vect, — Vecty, (U, V)= UyV =UMV

for some M € Vecty. Indeed, a k-linear tensor product on Vect, is determined by its value
(in this case M) on the pair (k, k) of one-dimensional vector spaces.

Below, we first recall from [3] the description of semi-groupal (monoidal without the
unit object) structures on Vecty, ®)s, and then turn to the description of b-structures.

Notation: For an operator P on M®?, the operator P;; on M®" is P acting on the i-th
and j-th components.

3.1 Semi-groupal structures on the category of vector spaces

A category C with a tensor product ® : C x C — C is semi-groupal if it is equipped with
a natural in X,Y, Z € C collection of isomorphisms axy z : X®(Y®Z) - (X®Y)®Z (an
associativity constraint) satisfying the pentagon axiom.

Proposition 3.1 ([3| Prop. 7.1]). An associativity constraint for Vecty, @y corresponds to
a solution ® € Aut),(M®?) of the pentagon equation:

D12P13Po3 = Doz Pa.
Remark 3.2. Explicitly the associativity for Vecty, @), gives an automorphism ® € Auty,(M®?):

MM = k@ (k@yk) —=2 o (k@ k) @k = MM
and has the following general form:
Ur @ (U@ Us) A2 (U1@0Usz)@0Us
U1@MUs@MU; ——2— U, @ M@Us @ M@Us
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3.2 b-structures on vector spaces and the Yang-Baxter equation

Proposition 3.3. A b-structure on Vecty, @y corresponds to a solution B € Aut(M®?)
of the hexagon equation:
Bi2By3Bia = Ba3B12Bas

Proof. By naturality a b-structure 3 for Vecty,®), is given by an automorphism B &€
Auty(M®?):

B,k k

M&M = k@ (k@pk) (k@umk)Rypk = MM
and has the following general form

BUl,UQ,US

Ur @ (U@, Us) Us®@p (U1 @ Us)

U, @MQUy,@MQUs — 22 U@ MU, M®Us

Here t : U;®U; — Us®U is the ordinary interchange of tensor factors. In particular,

Brkksoak = Brrar = Bia € Auty,(M®?).

Combining this with
1e®n Bk = Bos € Auty(M®?)

we see that the coherence (2)) for 5 is equivalent to the hexagon equation for B. Indeed,
by naturality the general coherence is equivalent to the specialisation of the coherence
diagram (2)) to X,Y, Z, W = k, which in the equational form is

Branr © (1@Bk k) © Brxs = (1@Brk k) © Brpm © (1Bkkk) -
]

A k-linear autoequivalence of Vecty has to be the identity. A b-functor structure on
Id : Vecty — Vect,, amounts to an automorphism g : M — M such that

(929)B = B(g®g) -

Composition of b-functors corresponds to composition of automorphisms M — M.

3.3 Pre-unital b-structures on the category of vector spaces

Proposition 3.4. A structure of a pre-unital b-category on Vecty, @ corresponds to a
solution B € Aut,(M®?) of the hexagon equation together with a solution C' € Aut,(M) of

B(1®C)B = (1eC)B(1eC),  B(1®C?*B = (C*®1) (14)
and

B23C3Bl2B23C2B32 = 0102332t23 . (15)
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Proof. Let ((,c) be a structure of pre-unital b-category on Vecty, ®,,. By naturality, the
collection ¢ is given by an automorphism C' € Auty(M):

C= (M:k@Mk; k®Mk:M> ,
and has the following general form
U1®nmUs Tt U @0 Uy
@MU, 22201 1), 9 M&U,

In particular,
Ck,k®Mk = Ck,M = (1®C)t, Ck®Mk,k = CM,k = (C@l)t - Autk(M®2)

Combining it with
Li®@ycrr = (10C) € Auty(M®?)

we see that the coherences (I0) and (1) for 5 and ¢ are equivalent to the equations (I4]).
Indeed, by naturality the general coherences are equivalent to the specialisations of the
coherence diagrams (I0), (II) to X, Y, Z, W = k, which in the equational form are

Brkk © (1&ck k) © Prir = (1&ck ) 0 Prrr o (1&ck k),
Breek © (1®¢k 1)? © Br gk = Cark © Chou-
Finally the coherence (§]) is equivalent to the equation
(1®cak) © Brig © v = (1®Bk k) © (101®¢k k) © Brpm © (10Fk ki) © (1&cark) © Barje -

Using that ¢y = Cotis, Barkx = Bastiz € Auty(M®?) we get the condition (IH). O

3.4 Categorical b-magmas

Let us call a b-category C categorical b-magma if C is a groupoid and the tensor product
maps on automorphisms

C(X,X) = C(XQY,XQY) « C(Y,Y)

are isomorphisms for all X,Y € C. The last condition implies that the automorphism
groups C(X, X) are isomorphic for all X € C and must be abelian (by the Eckmann-Hilton
argument). Clearly, the set m(C) of isomorphisms classes of objects of a categorical b-
magma C is a b-magma with the binary operation [X][Y] = [X®Y]. Denote by m1(C) the
automorphism group C(X, X) of an object X € C.

Choose representatives s : my(C) — C of the isomorphism classes of objects, as well
as isomorphisms t,, : s(z)®s(y) — s(zy) for each pair =,y € m(C). The coherence
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isomorphisms of a b-category evaluated on objects give rise to non-zero scalars r(z,y, z) €
m(C) via
oy ltgt
(2,9, 2) Loayz)) = (S(év(yZ)) — s(x)s(yz) — s(z)(s(y)s(2))
Lta,.

Bs(@),5(v).5(2) s(y)(s(2)s(z)) —=5 s(y)(s(x2)) LN s(y(zz)) = S(Jf(yz))) :

The coherence axiom for the isomorphisms evaluated on objects amounts to the equation

for all x,y, z,w € my(C).
A different choice of section s’ : my(C) — C and isomorphisms t/, , : s'(7)®s'(y) — s'(xy)
produces in general a different set of values 7}, . To relate r’ to b, pick isomorphisms

uy @ s(x) — §'(x). These determine constants ¢, , €m (C) (z,y € mo(C)) Via @y Ugy Oty y =
th, © (uz®uy). One computes that, independent of the choice of u’s, for all x,y, z € m(C),

(2,9, 2) = Gy o Gy e Qyoe Gy T2, Y, 2) -

A b-functor F' : C — C' between categorical b-magmas gives rise to a morphism f :
7m0(C) — mo(C’) of b-magmas. Assume we have chosen sections s, s’ and isomorphisms ¢, ¢/
for C and C’, and that in addition we have fixed isomorphisms h, : s'(f(z)) — F(s(z)).
The coherence isomorphisms of F' : C — C’ evaluated on objects determine a collection of
constants ¢(z,y) € m(C") (z,y € m(C)) via

Fltzy), F(s(z) ® s(y)) REGRION F(s(r)) ® F(s(y))

a(z.y) Lotsny = (3 (F(ay)) =5 F(s(ay))
B () @ 5 () T () f9) = S () )

The coherence axiom (3] for a b-functor evaluated on objects now amounts to the equation

r'(f(x), f(y), f(2) q(y, 2) q(x,y2) = q(=, 2) q(y, v2) r(2,y, 2)

for all x,y, z € m(C).

Let F': C — C' be another b-functor as above and let a : F = F be a b-transformation.
Since a is invertible £ induces the same map f : mo(C) — m(C’) as F. The b-transformation
a gives rise to constants p(z) for all x € m(C) via

ple) = (5'(F@) 225 Fs(e) 2 Fs(a) 25 (f(2))) .

The coherence condition () for a b-transformation becomes q(x, y)p(x)p(y) = p(z,y)§(x, y).
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4 b-bicategories

Here we define a bicategorical analogue of b-category. By a tensor product on a bicategory
C we will mean a functor

CxC—C, (X,)Y) —» X®Y .

In particular for any 1-morphisms f: X — Y, g: Z — W we a have an invertible 2-cell

X@Z —22 o XoW
fo1 Usyg fo1
Y®ZL > YW (16)

with bi-multiplicativity property for the collection s.

4.1 Definition

A bicategory C is a b-bicategory if it is equipped with a tensor product together with a
pseudo-natural in X, Y, Z € C collection of 1-equivalences

Bxyz: XRY®Z) - YR(X®7Z),
and natural in X, Y, Z, W € C collection of 2-isomorphisms

1®8x,z,w

YR(XR(ZQW)) YR(Z(XQW))
W w
XY (ZeW)) Vvxv,zw ZR(Yd(X®W))
X@(Z(YQW)) Even Z(X (Y W)

(17)
Pseudo-naturality of § means that for all 1-morphisms f: X —-Y, g: Z —>W, h:U =V
we have an invertible 2-cell

Bx,z,u

X®(ZxU) Z(X®U)
f@gh Yosgn f®g&h
Yo(WaV) G We(YeV) (18)
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with tri-multiplicativity property for the collection b. The 2-isomorphisms (I7) and (18]
must be such that the following two pastings of 2-cells agree (the squares in the pasting
schemes below are filled with the 2-cells b 1 5):

BX,Y,Z(UVX(Y(Z(UV)))

Pt 18zuv
Y(X(Z(UV T
(X (Z4( )))%,U,V v X(Y(U(ZV))
1x,2,0v Y(X(U(ZV))) vazv
Y(Z(X(UV))) x 20y 18x,u,zv X(U(Y(ZV)))
- 7 YX,Y,U,ZV
18x,u,v =
' Y(U(X(ZV))) Bx,uv(zv) 1Pv.zv
18x,z Y,U,X(ZV)
YUKV, ., \ XV
\ 15X YZVU(X(Y(ZV) )
Y(U(Z(XV)) U(Y(X
By,z,u(xv) By zv Bx,u,z(yV)
By, u,z(xV) 5X zv
Z(Y(U(XV)))WZ v UV (Z(XV)) v UX(Z(YV)))
By xv y 18x,z,yv
Y, Z, XV
2(U(Y (X oy VXV
Z,U, Y(XV)U
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and

BX,Y,Z(UWX(Y(Z(UV))) 18z,u,v

<~ \
Y(X(Z(UV)) P X(Y(Uzv))

18x,z,uv
VX, Y Z,UvV 1By,u,zv
X Z( UV )) 1'YY:Z>U v

Bx,z,yUV) 18y,u,v X(U(Y(ZV)))
By,z,xUV) Y, 7
18x U/ lﬁx YUV UV))) X(Z(U >>>w\v o
18y,u,v Bx,z,u(YV) X(U(Z(YV)))
Z(X(U(YV))) Bx,u,z(yV)
By, z,uxv) ey MX S0 “/X,Z:»I;»YV :
18x,u,yv U(X(Z(YV)))
1BYUXV wfﬂ Z( ( ( V))MV) 18x,z,yv
Z(UY(XV))) U(Z(X(YV)))

e

5z,m 1Bx,v,v
U(Z(Y(XV)))

Remark 4.1. Note that 1-; 2-, and 3-dimensional coherences (1-morphisms (3, 2-cells v and
the above coherence for them) naturally take the shapes of the 1-, 2-, and 3-dimensional
permutohedra [10].

A functor F : C — D between b-bicategories is a b-functor if it comes equipped with
a pseudo-natural in X,Y € C collection of equivalences

and a natural in X,Y, Z € C collection of 2-isomorphisms

FXQYRZ)) — %7 p(X)QF(Y®Z) — e p(X)@(F(Y)RF(Z))
F(Bx,v,z) TT OX,y,Z BF(x),F(Y),F(Z)
FYQ(X®Z)) — X% | p(Y)oF(X®Z) — 2 p(Y)o(F(X)@F(Z))
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such that the pasting of 2-cells

F(18x,z,w)

/F/(}//(X(ZW))) F(Y(Z(XW@\
F(Bx,v,zw (By,z,xw)
F(X(Y(ZW)))\ VFevx,v,z,w) /F/("Z(Y(XW)))
F(1By,z,w) F(18x,v,w
Fyy o) F(X(Z(YW))) — 22 _ bz (vyV))) P
F(X)F(Y(ZW)) Fx, z(yw) Fz xyw) F(Z)F(Y(XW))
LF (By,z,w) 1@/’
1Fy,zw F(X)F(Z(YW)) ¢X<Z:,YW F(Z)F(X(YW)) 1Fy, xw
F(X)(F(Y)F(ZW)) Frw 1w F(Z)(F(Y)F(XW))
1¢;:Z,W 1¢;,:Y,W
WEs FX)(F(Z)F(YW)) —— F(Z)(F(X)F(YW)) Ny
FX)(FY)(F(Z)F(W))) 1Py w 1Py w F(Z)(F(Y)(F(X)F(W)))
15F<xm\ /‘{(X:F(Y),F(W)

FX)FZ)EX)FW))) —~ F(Z)(F(X)(FY)F(W)))

F(X),F(2),F(Y)F(W)
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coincides with the pasting

F(18x,z,w)

FY(X(Z2W))) FY(2(XW)))

F(X(Y(ZW))) Fy,x(zw) Fy,z(xw) F(Z(Y(XW)))

1F(Bx,z,w)
- 0 s

Fx yzw) F(Y)F(X(ZW)) F(Y)F(Z(XW)) Fzyxw)

= by, Z,XW

FOOFPY (2w e 1w F(Z)F(Y(XW))

1Fy,zw F(Y)F(X)F(ZW)) 1¢;——Z’WF(Y) (F(Z)F(XW)) 1Fy, xw

Br(x),F(Y),F(Z (Y),F(2Z),F(XW

§
A

F(X)(F(Y)F(ZW)) 1P 1Py F(Z)(F(Y)F(XW))

| FOYFXO)(FZ)FOE)) — FOF@)FX)FW)) |k

F(X),F(2),F(W)
F(X),F(Y),F(Z)F(W) Br(v),F(2),F(X)F(

FX)(F)(F(Z)FW))) Yreca,ren.re,ron) FZ)(FY)(FX)FW)))

18r(v),F(2),F( Br(x),F(v),F(W)

FX)FZ)EX)EW))) —~ F(X)(F(Z)(FY)F(W)))

F(X),F(2),F(Y)F(W)

\

The composition of b-functors C DS E is again a b-functor with isomor-
phisms (Go F)xy : (Go F)(X®Y) — (Go F)(X)®(G o F)(Y) defined as in (5l). The
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natural 2-cells for the composition G o F' are defined by the pasting

(GF)x,vz

(GF)(X(YZ)) GF(X)G
GF(X)F(YZ))
G(1Fy,z)
G(F(X)(F(

(GF)(Bx,v,z)

1(GF)y,z

—

F(YZ) GF(X)(GF(Y)GF(Z))
1G(Fy,z)
1GFr(y),F(2)
(GF)(X)G(F(Y)F(Z))

BGF(x),GF(Y),GF(Z)

1 G(bx,v.2) MNorx), P, F2)
GFY)F(X)F(Z)))
Gry),F(X)F(2)
GF(Y)F(XZ)) (GF)(Y)G(F(X)F(Z))
G(Fy,xz) GFr(y),F(x2) 1Gr(x),F(2)
\ 1G(Fx,z)
(GF)Y(X2) g (GE)YNGF)(XZ) — g GF(Y)(GF(X)GF(2)
(20)

Here ¢ is the structure 2-cell of F' and v is the structure 2-cell of G. It is straightforward
to verify that this 2-isomorphism satisfies the coherence axiom.

A pseudo-natural transformation a : ' — G of two b-functors F, G : C — D between
b-bicategories is b-transformation if it comes equipped with a collection of 2-isomorphisms

F(X&Y) — 2 p(X)@F(Y)
axey Jaxy ax®ay
GX@Y) —5— G(X)BG(Y)



natural in XY € C such that the pasting

Fxyz

F(X(YZ)) F(X)F(

F(Bx,v,z) o Br(x),F(v),F(2) \Mz
X,Y,Z
1Fx 7z
\U,a ayaxz Ula ayaxaz
Y,XZ X,Z
ay (X Z) Ba(x),6(v),6(2)

GY)(G(X)G(2))

Gy,xz 1Gx,z
(21)
coincides with
F(X(Y 7)) — V(Y Z) —2 F(X)(F(Y)F(Z)
F(Bx,v,z) axayyz axayaz
F(Y(X2)) GX(Y 7 (X)G(Y Z) — L G(X)(G(Y)G(2))
Y(XX / Tz /(x) G(v),G(2)
G(Y(XZ2)) Gvs G(Y)G(XZ) 1Cx.2 (YNG(X)G(2))
(22)
for any X,Y, Z € C.
A modification
T
F(X) Pmx G(X)
\7/

between pseudo-natural b-transformations is a b-modification if the pasting

FX®Y) — 2 p(X)@F(Y)
a,X®Y mgy XY O!j?y ax®ay
G(XQY) —5— G(X)G(Y)
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coincides with
FX®Y) — 2 p(X)@F(Y)

ey O‘Z?Y o Bay mxgmy ax@ay
GXOY) —5—=GX)RG(Y)

for any X,Y € C.

Remark 4.2. Tt is straightforward to see that pseudo-natural b-transformations and b-
modifications are composable and are compatible with the composition of b-functors. In
other words b-bicategories, b-functors, pseudo-natural b-transformations and b-modifications
form a tri-category [5]. In particular the 2-category of b-endofunctors, pseudo-natural b-
transformations and b-modifications for a fixed b-bicategory is a monoidal 2-category.

4.2 One object b-bicategories and Zamolodchikov’s tetrahedron
equation

Let B be an object of a monoidal category £ equipped with a half braiding t5 x : B&X —
X®B (i.e. B is in the monoidal centre of £), such that ¢ is symmetric in the sense that
(tp.)* = 1. We say that an endomorphism Z : B®3 — B®3 satisfies the Zamolodchikov
tetrahedron equation (see e.g. [T, section 1.7] or [2]) if the following holds in £(B®5, B¥):

Zl24Z13SZ236Z456 = Z456Z23GZI35Z124 .
Here 2124 = tgl(Z®1>t3, etc.

By a weak b-bicategory we will mean a b-bicategory with 3 being not necessarily equiv-
alences but just 1-morphisms.

Here we look at a weak b-bicategory C with only one object I. By & = C(I,I)
we denote the category of endomorphisms, i.e. the category with objects being morphisms
I — I in C and with morphisms being 2-cells in C. Composition of morphisms in C makes

£ a monoidal category. We express the composition of 1-morphisms [ ATEB 1% Iin
C(I,1) as tensor product AQ B®C' in & (rather than in the opposite order). This will be
important when translating pasting diagrams into compositions of morphisms in €. Since
I®(I®I) = I the 1-morphism f; s is an object B € £. Pseudo-naturality 2-cells (I8)) for /5
(with only one of the 1-morphisms f, g, h being non-identical) correspond to a half-braiding
tpx : B®X — X®DB, which in the following we will assume to be symmetric in the above
sense.

Theorem 4.3. The data of a weak b-bicategory C with only one object I and with category
of endomorphisms & = C(1,1) such that tzB7B =1 is equivalent to a pair (B, Z) consisting
of an object B € £ and a solution Z € E(B®*, B®3) of the Zamolodchikov tetrahedron
equation.
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Proof. Upon the identification I®(I®(I®I)) = I both 1®p; ;1 and S5 1 1er coincide with
B. Thus the source and the target of v, are B®3 and Y1111 1s an isomorphism S :
B®3 — B®3 in the category &.

Each of the pasting diagrams of the coherence condition for v gives a composition of tensor
products of the identity with S (possibly conjugated with braiding). Since all the paths
(the sequences of successive 1-morphisms) of each pasting diagram have length six each
factor in the products is an automorphism of B¥%. Note that squares of the form

BI,I,I®3

J®6 J®6
1®Br1,1,1 *U’bl,l,BInyI 1®Br1,1,1
J®6 J®6
Br1,1@3

correspond to the half-braiding tp 5 : B®B — B®B. Thus the equational form of two
pasting diagrams (specialised at X =Y =2 =U =V = [) is as follows

t354565234 (t1t4) S2345456 = S1235345 (tats)S3455123t5 - (23)

Substituting S = t1tyt1Z we get (by pulling all ¢’s to the right and changing the indices of
the Z’s accordingly)

tatatstatotstotitatotstotatsts 219421352936 Las6
= titatitstatstotststatstitotits Zase Zase Z135 2124 -

Finally since the words in t’s on the two sides are equal in the symmetric group Sg, we get
the Zamolodchikov tetrahedron equation. O

By a weak b-functor we will mean a b-functor F' : C — D between (weak) b-bicategories
with Fxy being not necessarily equivalences but just 1-morphisms.

Now we look at weak b-endofunctors of a weak b-bicategory C with only one object I.
The 1-morphism F;; in (I9) with F' = Id is an object C' € £. Pseudo-naturality 2-cells for
Fr 1 gives a half-braiding t¢c x : C®X — X®C. In what follows we assume that the half-
braiding for B, tp ¢ : BQC — C®DB, and the half-braiding for C, t¢p : C®B — BC,
are inverse to each other.

Proposition 4.4. Let C, I, &£, as well as B and Z be as in Theorem[4.3 The structure
of weak b-functor on the identity functor Id : C — C such that the half-braidings tp o and
tep are each other’s inverses amounts to a pair (C, L) consisting of an object C' € € and
an automorphism L : C®2@B — C®2®B such that

LioaLn3s Loze Zase = Zase Loz L13s Li24 (24>
n 5(C®3®B®3, C®3®B®3).
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Proof. All vertices in the diagram for ¢ are equal to I and both 1®F;; and Fy g1
coincide with C'. Replacing also ;7 = B € £, we see that the source of ¢y is B (C®?
while the target is C®?®B. The 2-cell ¢ is an isomorphism M : BRC®? — C®?®@B in
the category &.

In the pasting diagrams of the coherence condition for ¢;;; the cells F(vy; ) and
Yr(),F(),F(1),F(1) are given by the morphism S : B®* — B®3 from the proof of Theorem
13 Cells labelled by ¢ (and their tensor products with the identity) correspond to instances
of the isomorphism M : BRC®? — C®?2®B. Squares with opposite sides labelled by 5 and
F correspond to one of the half-braidings tp ¢ : BRC — C®B or tcp : C®B — BC.
The coherence for ¢; 1 can be reformulated as the commutativity of the diagram

Bo3ces 52 pescws B ppopoc M. ppo®3p M oo BCB

M345l ltlm

BBCCBC CBCCBB

tots lM234
M35 M2z

BCBCCBX% Bo#3pp M2 00 BOBB -2~ 0®3p®3 546 _ @3 pe3

or, in equational form,

M3 (tr1ts) Moza MysetsSi23 = Sasets Moz Mays (tats) Mays -
Define L = titot; M. Rewriting the above equation as

ts M ypg Mgy (t184) Mogy Sase = S123 Myt (fats) Mgy Myt

one sees that this has the same index structure as (23)) in the proof of Theorem [4.3] so that
by the same argument as used there, one arrives at (24)). O

Remark 4.5. Equation (24]) appears in integrable three-dimensional lattice models of sta-
tistical mechanics [2]. Our interpretation allows one to see a 2-categorical structure on
solutions of the equation (24)). Indeed, b-functors from Proposition [£.4] are composable
and form a monoidal 2-category (the sub-2-category from Remark [£.2)). The correspond-
ing structure of a monoidal bicategory can be described in terms of pairs (C, L):

- A morphism (C,L) — (C',L’) is an object D € & together with an isomorphism
d: C®D®* — D®C' satisfying coherence conditions coming from (21)) and (22).

- A 2-morphism (D,d) — (D', d’) (between two morphisms (C, L) — (C’,L’)) is a mor-
phism f: D — D’ in £ such that the following diagram commutes:

CeD®? %+ DxC’
1®f®2l lf@l
C®D/®2 LD’@C’
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- The composition of b-functors corresponds to the tensor product (C, L)®(C’, L) defined
as (C®C',L|L"), where L|L' is the composition tyL195L5,st2. In particular, L|L' is a
solution of the equation (24)), which is not obvious.

5 b-cohomology

The coherence conditions of b-functors, b-categories and their bicategorical versions moti-
vate the definition of a certain cochain complex, whose cohomology we call b-cohomology.

5.1 Definition

Let A be a b-magma and B be an abelian group (with multiplicatively and additively
written operations respectfully). Let C"(A, B) = Maps(A*™, B) be the (additive) abelian
group of maps A*"™ — B. For n > 2 define the map

d:C"(A, B) = C"" (A, B)

by

n

d(0) (@1, ooy T, ) = Y (=1)'6:(0) (w1, oory @, )

i=1
where §;(¢) (1, .., Tp, ) = (X1, ooy Tyy ovvy Tpy ;) — (1, vy Tjy ooy Ty, &) and ~ above a vari-
able means its omission.

For example, for ¢ € C*(A, B), r € C*(A, B) and s € C*(A, B),
d(’f’)(.ﬁ(}, Y, z, U)) = _T(yv 2, LUU)) + T<y7 2, w) + T(QE, 2, yw) - T’(SL’, Z, U))
—r(z,y, 2w) + r(z,y,w) ,
d(s)(x,y, z,u,v) = —=s(y, z, w, xv) + s(y, z,u,v) + s(z, z, u, yv) — s(x, z,u, v)

— s(z,y,u, 2v) + s(x,y,u,v) + s(x,y, z, uv) — s(z,y, z,v) .
Lemma 5.1. The map d : C"(A, B) — C""'(A, B) is a differential, i.e. d> = 0.

Proof. First we need to show that §; o §; = §;41 0 ; for @ < j. Indeed,

0i(05(e)) (15 ey Tpyr, T)
= §;()(T1, ey Tiy ooy Tpg1, i) — 05(C) (21, oo Ty ooy Tg1, T)
= C(ZL’ ,...,ZL/’\Z',...,ZL’/J'E,...,In+1,Ij+1(IZ‘ZL’)) — C(Il,...,l/’\i,...,fﬁ/j;,...,In+1,$ix)

1
— (T4 ooy Tiy ooy Ty oo Tt L1 )+ C(Z1, ooy Tiy ooy Tyt ooy Tpg1, )
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and

0j+1(0i(c)) (@1, .., Ty, T)
52( @1y ooy Tty ooy Tl Tjg1Z) — 0:(€) (T4, ooy Tty ooy Tg1, )
(T, oy Ty oo, x/]\H, Tt 1, T (Tj512)) — (@1, oy Tiy oy Tygds ooy Tl Tj41T)
(:171,... ey T gy eoey T 1y Ti) A+ (X1 oy Tiy ooy Tty ooy T 1, T) -

The two sides coincide because of the identity x;1(2;x) = z;(x;412). Now

n+l n
DN YEITII DR IR pI R
=1 j=1 1<i<j<n 1<5<i<n+1
Y CTaeh Y C)Ves
1<i<j<n 1<i<i<n+1
= — Z (_1)24-]52 o 5j + Z (—].)H_](;Z o 5]' =0.
1<j<i<n+1 1<j<i<n+1

O

We call the cohomology H; (A, B) of the complex Cy(A, B) = (C*(A, B),d) the b-
cohomology of A with coefficients in B.

Remark 5.2. The formula defining the differential d on C™ makes sense for n = 1 as
well (and would read d(a)(z,y) = —a(zy) + a(y)), but the resulting degree 2 cohomology
does not match the examples of b-magma algebras or b-functors discussed below. These
examples instead suggest to extend the cochain complex Cj(A, B) to the first degree by
defining d : C'(A, B) — C*(A, B) as

d(p)(z,y) = p(x) — p(zy) + p(y) (25)

for all p € C'(A, B). One verifies that indeed d* = 0. One can define H'(A, B) = Z'(A, B).

5.2 Realisations of low dimensional b-cohomology

Let A be a b-magma. By a b-magma algebra over a field k we mean the vector space kA
equipped with the bilinear multiplication defined on basis elements as (x,y) — xy. By
construction, a b-magma algebra is a b-algebra.

Similarly to the relation between twistings of the multiplication of group algebras and
the second group cohomology there is a relation between twistings of the multiplication
of b-magma algebras and the second b-cohomology. Namely, one can try to twist the
multiplication by a 2-cochain ¢ € C?*(A4,k*) and ask if (z,y) — q(z,y)zy is again a
b-algebra. One finds the condition q(y, z)q(z,yz) = q(x, 2)q(y, rz), which amounts to
d(g) = 0.

Isomorphisms which preserve the A-grading act by rescaling the basis elements. Thus,
the b-magma algebras obtained from kA by twisting with ¢ and ¢’ are A-grading preserving
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isomorphic iff ¢'(z,y)p(xy)~! = q(z, y)p(x)p(y) for some p € C1(A, k*). This amounts to
q' = qdp.

Thus HZ(A, k*) describes twisted b-magma algebras up to grading-preserving isomor-
phisms.

Similarly one can twist the identity homomorphism of b-magma algebra kA by a 1-
cochain p € C'(A, k*) and ask if z — p(z)z is again a homomorphism. One finds the
condition p(xy) = p(x)p(y), which amounts to d(p) = 0.

Thus H}(A, k) describes grading-preserving automorphisms of the b-magma algebra
kEA.

One categorical level up, in analogy to the relation between braided categorical groups
(certain braided monoidal groupoids) and abelian group cohomology [6] there is a relation
between the categorical b-magmas discussed in Section 3.4l and b-cohomology. Indeed, the
calculations in Section 3.4] can be summarised as follows.

Proposition 5.3. Let S be a b-magma.

(i) Equivalence classes of categorical b-magmas with the set mo(C) = S of isomorphisms
classes of objects and typical automorphism group w1 (C) correspond to orbits of the auto-
morphism group of S on the b-cohomology group H(mo(C),m1(C)).

(ii) The isomorphism class of a b-functor F' : C — D between two categorical b-magmas
corresponds to a homomorphism of b-magmas mo(F) : mo(C) — mo(D) together with an
element of the b-cohomology group HE(mo(C), m1(D)).

Remark 5.4. The relation between b-categories and braided monoidal categories provides
examples of homomorphisms from abelian group cohomology to b-cohomology. Namely,
for abelian groups A and B the assignments

C;b(AvB) _>CI(A7B> ) f'_>f7 Cgb(AuB) —>02(A,B) ) gHgv
C3(A,B) = C*A,B), (a,c)—b,

where b(z,y, z) = a(z,y, 2) + c(z,y) — a(y, z, z), define homomorphisms between cohomol-
ogy groups:

H;b(Av B) — Hbl(Au B)v Hgb(Av B) — Hb2(A7 B)v Hgb(Av B) — Hg(Av B) .

Finally, on the b-bicategorical level, consider the following instance of a bicategorical
b-magma: the set of objects is a b-magma S, the set of 1-morphisms x — y (z,y € 5)
is empty unless z = y. For & = y there is a unique 1-morphism 1, and the 2-morphisms
1, = 1, are given by a fixed abelian group B. Since the endomorphism categories are
one-object braided monoidal categories, the braiding is necessarily trivial, i.e. the structure
morphisms in (6] are all identities.

We necessarily have (,,. = 1,,,, which implies that the corresponding 2-cells (I8)
are identities as well. The structure maps 7, 4,,. are given by a cochain s(w, z,y, z) from
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C*(S, B). The coherence condition for v becomes, for x,y, z,u,v € S,

s(z,y, z,v)s(x, y, u, 2v)s(y, z, u, zv)s(x, z,u, v)

= s(y, z,u,v)s(z, 2, u, yv)s(z,y,u,v)s(z,y, z,uv) ,

in other words, ds = 0. Let us denote this b-bicategory by B(S, B, s).

We can now ask if B(S, B,s) and B(S, B,s') are equivalent via a b-functor whose
underlying functor of bicategories is the identity functor. To equip the identity functor
with a b-structure we need to choose F,, and ¢, , .. For I, , the only choice available is
1,,, while the ¢’s are given by a 3-cochain r subject to the coherence condition

T(y, Z? w)r(zﬁ Z? yw)r(zﬁ y’ w)s(zﬁ y’ Z? w) = s/(x7 y? Z? w)/r(x7 y? Zw)/r(x? Z’ w)r(y’ Z? zw) )

that is, s’ = sdr.
Altogether we see that H;'(S, B) describes b-bicategories of the form B(S, B, s) up to
equivalences induced by b-functors whose underlying functor of bicategories is the identity.

6 Concluding remarks

Here we briefly list some questions which are left open in this paper and to which we would
like to return in the future:

e The relation between b-categories and braided monoidal categories should have a
bicategorical version. It should be reasonably straightforward (if tedious) to extend
the arguments of Section 2.4 to bicategories, i.e. to show that a braided monoidal
bicategory has a b-bicategory structure. To extend the constructions of Section
one first needs to define unital b-bicategory.

e [t seems plausible that there should exist higher analogues of b-categories and b-
bicategories, whose coherences are governed by higher dimensional permutohedra. If
this is the case, their one object versions should correspond to higher dimensional
versions of Zamolodchikov’s tetrahedron equation.

e [t is quite reasonable to expect that the comparison homomorphisms between abelian
group cohomology and b-cohomology from Remark 5.4l should extend to all degrees.
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