Skip to main content
Log in

Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Reliable semantics for software systems has to follow the semantics-as-instance principal (fibred semantics) rather than the semantics-as-interpretation principal (indexed semantics). While amalgamation of interpretations is simple and nearly always possible, amalgamation of instances is very much involved and not possible in many cases. A condition when two compatible instances (a span of pullbacks) are amalgamable, is presented for presheaves, i.e. functor categories SET 𝒮. Based on this individual condition we prove further a total condition for amalgamation which simultaneously yields a necessary and sufficient condition for pushouts to be Van Kampen squares. As a necessary and adequate basis to achieve these results we provide a full revision and adaption of the theory of descent data in topoi for applications in diagrammatic specifications including graph transformations. Especially, we characterize Van Kampen squares in arbitrary topoi by pullbacks of categories of descent data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, M., Wells, C.: Category Theory for Computing Sciences. Prentice Hall International Series (1990)

  2. Barr, M., Wells, C.: Toposes, triples and theories. Repr Theory Appl Categories 12, 1–287 (2005). http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf

    Article  MathSciNet  Google Scholar 

  3. Claßen, I., Große-Rhode, M., Wolter, U.: Categorical concepts for parameterized partial specifications. Math. Struct. Comput. Sci. 5(2), 153–188 (1995). doi:10.1017/S0960129500000700

    Article  MATH  Google Scholar 

  4. Diskin, Z.: Databases as diagram algebras: specifying queries and views via the graph-based logic of sketches. Tech. Rep. 9602, Frame Inform Systems/LDBD, Riga. http://citeseer.ist.psu.edu/116057.html (1996)

  5. Diskin, Z.: Towards algebraic graph-based model theory for computer science. Bull. Symb. Log. 3, 144–145 (1997). Presented (by title) at Logic Colloquium’95

    Google Scholar 

  6. Diskin, Z., Kadish, B.: A graphical yet formalized framework for specifying view systems. In: Advances in Databases and Information Systems, vol. 2(5) pp. 123–132. ACM SIGMOD Digital Anthology: ADBIS’97 (1997)

  7. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling. ENTCS 203/6, 19–41 (2008). doi:10.1016/j.entcs.2008.10.041

    Google Scholar 

  8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformations. Springer, Berlin (2006)

    Google Scholar 

  9. Ehrig, H., Grosse-Rhode, M., Wolter, U.: Applications of category theory to the area of algebraic specification in computer science. Appl. Categ. Struct. 6, 1–35 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. Springer, Berlin, Heidelberg (1985)

    Book  MATH  Google Scholar 

  11. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifications and Constraints, EATCS Monographs on Theoretical Computer Science, vol. 2. Springer, Berlin, Heidelberg, New York (1990)

    Book  Google Scholar 

  12. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph transformation. Lect. Notes Comput. Sci. 3256, 161–177 (2004). doi:10.1007/978-3-540-30203-2_13

    MathSciNet  Google Scholar 

  13. Freyd, P.: Aspects of topoi. Bull. Aust. Math. Soc. 7, 1–76 (1972). doi:10.1017/S0004972700044828

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover, New York (1984)

    MATH  Google Scholar 

  15. Grothendieck, A.: Techniques de descente et théoremes d’existence en géometrie algébraique, I. Géneralités. Séminaire Bourbaki 190 (1959)

  16. Grothendieck, A.: Catégories fibrées et descente, exposé vi, in: Revêtements étales et groupe fondamental (SGA1). Lect Notes Math. 224, 145–194 (1971)

    MathSciNet  Google Scholar 

  17. Heindel, T., Sobocinski, P.: Van Kampen colimits as bicolimits in span. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) Algebra and Coalgebra in Computer Science, Lecture Notes in Computer Science, vol. 5728, pp. 335–349. Springer, Berlin. doi:10.1007/978-3-642-03741-2_23 (2009)

  18. Janelidze, G., Tholen, W.: Facets of descent, i. Appl. Categ. Struct. 2, 245–281 (1994). doi:10.1007/BF00878100

    Article  MATH  MathSciNet  Google Scholar 

  19. Johnstone, P.: Sketches of an Elephant—A Topos Theory Compendium, vol. 1. Oxford Science, Oxford (2002)

    Google Scholar 

  20. König, H., Wolter, U., Löwe, M.: Characterizing Van Kampen squares via descent data. In: Golas, U., Soboll, T. (eds.) Proceedings of ACCAT 2012, pp. 61–81. EPTCS. doi:10.4204/EPTCS.93.4 (2012)

  21. Lack, S., Sobociński, P.: Toposes are adhesive. Lect. Notes Comput. Sci. 4178, 184–198 (2006). doi:10.1007/11841883_14

    Google Scholar 

  22. Lawvere, F.: An elementary theory of the category of sets. In: Proceeding of the National Academy of Sciences of the U.S.A., vol. 51, pp. 15061510 (1964)

  23. Löwe, M.: Van-Kampen pushouts for sets and graphs. Tech. rep., University of Applied Sciences, FHDW Hannover (2010)

  24. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  25. Makkai, M.: Generalized sketches as a framework for completeness theorems. J. Pure Appl. Algebra 115, 49–79, 179–212, 214–274 (1997)

    Google Scholar 

  26. McLarty, C.: Elementary Categories, Elementary Toposes. Clarendon Press (1995)

  27. Pedicchio, M., Tholen, W.: Categorical Foundations: Topics in Order, Topology, Algebra, and Sheaf Theory. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  28. Reichel, H.: Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  29. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-merge approach to version control in MDE. J. Logic Algebraic Program. 79(7), 636–658 (2010). doi:10.1016/j.jlap.2009.10.003

    Article  MATH  MathSciNet  Google Scholar 

  30. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification and transformation of constraints in MDE. J. Logic Algebraic Program. 81/4, 422–457 (2012). doi:10.1016/j.jlap.2012.03.006

    Article  MathSciNet  Google Scholar 

  31. Soboczińsky, P.: Deriving process congruences from reaction rules. Tech. Rep. DS-04-6, BRICS Dissertation Series (2004)

  32. Wolter, U.: An algebraic approach to deduction in equational partial Horn theories. J. Inf. Process. Cybern. EIK 27(2), 85–128 (1990)

    Google Scholar 

  33. Wolter, U., Diskin, Z.: From indexed to fibred semantics-the generalized sketch file-. Reports in Informatics 361, Department of Informatics, University of Bergen (2007)

  34. Wolter, U., König, H.: Fibred amalgamation, descent data, and Van Kampen squares in topoi. Tech. Rep. Report No 404, Department of Informatics, University of Bergen (2012). http://www.ii.uib.no/publikasjoner/texrap/pdf/2012-404.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Wolter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolter, U., König, H. Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi. Appl Categor Struct 23, 447–486 (2015). https://doi.org/10.1007/s10485-013-9339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9339-2

Keywords

Mathematics Subject Classifications (2010)

Navigation