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FURTHER REMARKS ON THE

“SMITH IS HUQ” CONDITION

NELSON MARTINS-FERREIRA AND TIM VAN DER LINDEN

Abstract. We compare the Smith is Huq condition (SH) with three com-
mutator conditions in semi-abelian categories: first an apparently weaker con-
dition which arose in joint work with Bourn and turns out to be equivalent
with (SH), then an apparently equivalent condition which takes commutation
of non-normal subobjects into account and turns out to be stronger than (SH).
This leads to the even stronger condition that weighted commutators in the
sense of Gran, Janelidze and Ursini are independent of the chosen weight,
which is known to be false for groups but turns out to be true in any two-
nilpotent semi-abelian category.

Introduction

It is well known that, when they exist, the normalisations of a pair of Smith-
commuting equivalence relations [33, 29] will always Huq-commute [17, 6] and that
the converse need not hold: counterexamples exist in the category DiGp of di-
groups [2, 4] and in the category Loop of loops [16]. A pointed Mal’tsev category
satisfies the Smith is Huq condition (SH) if and only if two equivalence relations
on a given object always centralise each other (= commute in the Smith sense) as
soon as their normalisations commute.

The condition (SH) is fundamental in the study of internal categorical structures:
it is shown in [25] that, for a semi-abelian category, this condition holds if and only
if every star-multiplicative graph is an internal groupoid. As explained in [18] and
in [16] this is important when characterising internal crossed modules; furthermore,
the condition has immediate (co)homological consequences [32].

Any pointed strongly protomodular exact category satisfies (SH) [6] (in particu-
lar, so does any Moore category [31]) as well as any action accessible category [8, 11]
(in particular, any category of interest [27, 28]). Well-known concrete examples are
the categories of groups, Lie algebras, associative algebras, non-unitary rings, and
(pre)crossed modules of groups.

In the present paper we restrict ourselves to the context of semi-abelian catego-
ries [19] and focus on three conditions which arose naturally in the study of (SH).
In Section 1 we prove that the condition
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(C̄) any change of base functor with respect to the fibration of points reflects
the centralisation of equivalence relations

introduced in [9] is equivalent to (SH) as soon as the surrounding category X is semi-
abelian (Theorem 1.1). On the way we actually prove a stronger result, namely that
under (SH) also the change of base functors

p˚ : pX Ó Bq Ñ pX Ó Eq for p : E Ñ B in X

with respect to the basic fibration ArrpXq Ñ X, which sends an arrow in X to its
codomain, reflect the centralisation of equivalence relations.

Section 2 recalls some definitions and (in Proposition 2.5) gives an overview of
conditions known to be equivalent to (SH). This is useful for the ensuing sections
where those conditions are modified.

In Section 3 we explore a condition (SSH) which turns out to be strictly stronger
than (SH). Instead of asking that the change of base functors p˚ : PtBpXq Ñ PtEpXq
with respect to the fibration of points ¶X : PtpXq Ñ X reflect the commutation of
normal subobjects, we shall assume that it reflects the commutation of all subob-
jects, or, equivalently, of all cospans in PtBpXq. Thus we obtain a kind of Smith

is Huq condition beyond the context where Smith commutators make sense, since
a monomorphism can generally not be obtained as the normalisation of a relation.
Proposition 3.1 gives a list of properties, equivalent to (SSH). These happen to be
implied by local algebraically cartesian closedness (LACC) [7] so that, for instance,
the category of groups satisfies it. On the other hand, we see that (SSH) is strictly
stronger than (SH), as the counterexample of Heyting semilattices (Example 3.8)
shows. This example also reveals that strong protomodularity [4] is not a sufficient
condition for (SSH).

The formulation of (SSH) in terms of weighted commutators [13] given in The-
orem 3.12 is slightly subtle. This naturally leads to the final Section 4 where we
look at a simplification. The resulting condition (W), which requires that weighted

commutators are independent of the chosen weight, turns out to be strictly stronger
than (SSH), since even the category of groups does not satisfy it ([13] and Ex-
ample 4.3). Nevertheless any so-called two-nilpotent semi-abelian category, such as
for instance the category Nil2pGpq of groups of nilpotency class 2, does. The main
result here is Proposition 4.1 which gives equivalent conditions.

1. A condition, equivalent to (SH)

In the article [9], it is shown that in a pointed Mal’tsev context, amongst the
conditions of Theorem 1.1 below, (i) and (ii) are equivalent—this is the article’s
Theorem 2.1—while (ii) implies (iii) (the article’s Proposition 2.2). We show that
when the surrounding category is semi-abelian, also the latter implication may be
reversed.

Theorem 1.1. In any semi-abelian category X, the following conditions are equiv-

alent:

(i) the Smith is Huq condition (SH);
(ii) condition (C): any change of base functor with respect to the fibration of

points reflects the commutation of normal subobjects;

(iii) condition (C̄): any change of base functor with respect to the fibration of

points reflects the centralisation of equivalence relations;

(iv) any change of base functor with respect to the basic fibration reflects the

centralisation of equivalence relations.

Proof. To see that (iii) implies (iv), consider equivalence relations R and S on an
object f : X Ñ Y of pX Ó Y q such that their pullbacks y˚pRq and y˚pSq along an
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arrow y : Y 1 Ñ Y centralise each other in pX Ó Y 1q.

Eqpf 1q ,2

f 1

1

��
f 1

0

��

Eqpfq

f1

��
f0

��
X 1

f 1

��

LR

x ,2 X

LR

f

��
Y 1

y
,2 Y

We write T and U for the inverse images of R and S along the kernel pair projec-
tion f1, considered as equivalence relations in PtXpXq. Then their pullbacks x˚pT q
and x˚pUq coincide with the inverse images of y˚pRq and y˚pSq along f 1

1. The equiv-
alence relations x˚pT q and x˚pUq centralise each other in PtX1pXq by left exactness
of pullback functors and by the assumption that y˚pRq and y˚pSq centralise each
other. Condition (iii) now implies that T and U centralise each other in PtXpXq.
As a consequence of [2, Proposition 2.6.15], the regular images R “ f1pT q and S “
f1pUq centralise each other in X and thus also in pX Ó Y q.

We now prove the implication (iv) ñ (i). Let R and S be equivalence relations
on an object X of X and K, L ⊳X their respective normalisations in X. Suppose
that K and L commute. Let Y be the quotient X{pK _Lq of X by the join K _L

of K and L. Then the quotient map f : X Ñ Y makes R and S equivalence relations
in pX Ó Y q. Let !Y : 0Ñ Y denote the unique morphism.

K _ L

��

✤ ,2 ,2 X

f
❴��

0
!Y

,2 Y

Since K and L still commute in K _ L “ Kerpfq “!˚Y pXq, a result due to Tomas
Everaert and Marino Gran (published as Proposition 4.6 in [12]) implies that the
equivalence relations !˚Y pRq and !˚Y pSq centralise each other in the semi-abelian
category pX Ó 0q. Condition (iv) now tells us that R and S centralise each other
in pX Ó Y q and thus also in X. �

Note that outside the Barr exact context, the current proof of (iv) ñ (i) fails,
because there a join of normal monomorphisms need no longer be normal. Using a
different technique, in his recent article [5], Bourn extends Theorem 1.1 to regular
Mal’tsev categories.

2. Further equivalent conditions

Let us now recall some further concepts and equivalent conditions which will be
used in the following sections.

2.1. Huq-commuting arrows in a category of points. When

A

f �$❄
❄❄

❄❄
❄❄

❄❄
❄❄

α ,2 D

p

��

C

g
z�⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

γlr

B

β

LR

r

Zd❄❄❄❄❄❄❄❄❄❄❄
s

:D⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

(A)

is a cospan in PtBpXq, it is easily seen that α and γ Huq-commute if and only if
there exists a morphism ϕ : AˆB C Ñ D in X such that ϕ˝e1 “ α and ϕ˝e2 “ γ.
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Here e1 “ x1A, s˝fy and e2 “ xr˝g, 1Cy are the morphisms in the pullback

AˆB C
π2

,2

π1

��

C
e2lr

g

��
A

f ,2

e1

LR

B
r

lr

s

LR

induced by the sections r and s, respectively.
In other words, α and γ commute in PtBpXq precisely when the triple pα, β, γq is

admissible with respect to pf, r, g, sq in the sense of [26] and the first author’s
thesis [22]. These data are usually pictured in the shape of a diagram

A
f ,2

α
�$❄

❄❄
❄❄

❄❄
❄ B

r
lr

s
,2

β

��

C
glr

γ
z�⑧⑧
⑧⑧
⑧⑧
⑧⑧

D

(B)

where f˝r “ 1B “ g˝s and α˝r “ β “ γ˝s .

2.2. Weighted commutation. Recall from [13] that a weighted cospan px, y, wq
in X is a diagram

W

w

��
X

x
,2 D Y.

y
lr

(C)

It was shown in [26] that the morphisms x and y commute over w in the sense
of [13] if and only if the triple

`@

w
x

D

, w,
@

w
y

D˘

is admissible with respect to the

quadruple
`@

1W
0

D

, ιW ,
@

1W
0

D

, ιW
˘

. Reformulating this in terms of points, we see
that the cospan

W `X

@

1W
0

D

�$❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

x 1W 0
w x y ,2 W ˆD

πW

��

W ` Y

@

1W
0

D

z�⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

A

1W 0
w y

E

lr

W

x1W ,0y

LR

ιW

Zd❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

ιW

:D⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

(D)

Huq-commutes in PtW pXq if and only if x and y commute over w.
Conversely, we may view admissibility in terms of weighted commutativity as

follows: again by [26], given a diagram such as (B), it will be admissible if and only
if x “ α˝kerpfq and y “ γ˝kerpgq commute over w “ β : W “ B Ñ D.

2.3. Higgins commutators. By Theorem 1 in [26], for proper morphisms x

and y—which means that their images are normal subobjects [3]—this commut-
ation of x and y over w may be reformulated in terms of Higgins commutators as
the condition that both commutators

rImpxq, Impyqs and rImpxq, Impyq, Impwqs

are trivial. Let us explain how to read this by recalling the needed definitions
from [15, 21, 16].
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If k : K Ñ D and l : LÑ D are subobjects of an object D, then the (Higgins)
commutator rK,Ls ď D is the image of the induced morphism

K ˛ L
✤ ,2ιK,L ,2 K ` L

A

k
l

E

,2 D,

where

K ˛ L “ Ker
`@

1K 0

0 1L

D

: K ` LÑ K ˆ L
˘

.

It is easily seen that k and l Huq-commute if and only if rK,Ls vanishes.
If also m : M Ñ D is a subobject of D, then we may define the ternary com-

mutator rK,L,M s ď D as the image of the composite

K ˛ L ˛M
✤ ,2ιK,L,M ,2 K ` L`M

B

k
l
m

F

,2 D,

where ιK,L,M is the kernel of the morphism

K ` L`M

C

iK iK 0

iL 0 iL
0 iM iM

G

,2 pK ` Lq ˆ pK `Mq ˆ pL `Mq.

The objects K ˛ L and K ˛ L ˛M are co-smash products in the sense of [10].
A key result here is the decomposition formula for the Higgins commutator of a

join of two subobjects [15, 16]:

rK,L_M s “ rK,Ls _ rK,M s _ rK,L,M s.

This result is used in [16, 26] to prove that when k and l are normal monomorphisms,
they commute over m if and only if

rK,Ls “ 0 “ rK,L,M s.

2.4. The equivalent conditions. We shall say that a cospan px, yq

X
x ,2 D Y

ylr

is proper when x and y are proper (= have normal images). The following prop-
osition gives an overview of conditions which are known to be equivalent to (SH)
and which will be used later on.

Proposition 2.5. In any semi-abelian category X, the following conditions are

equivalent:

(i) the Smith is Huq condition (SH);
(ii) for every morphism p : E Ñ B in X, the pullback functor

p˚ : PtBpXq Ñ PtEpXq

reflects Huq-commutativity of proper cospans;

(iii) for every object B of X, the kernel functor Ker: PtBpXq Ñ X reflects Huq-

commutativity of proper cospans;

(iv) for any diagram such as (B) above in which α and γ are regular epimorph-

isms, if α˝kerpfq and γ˝kerpgq commute in D, then there exists a morphism

ϕ : AˆB C Ñ D such that ϕ˝e1 “ α and ϕ˝e2 “ γ;

(v) for any weighted cospan px, y, wq such that px, yq is proper, the morphisms

x and y commute over w as soon as they Huq-commute;

(vi) for any given proper cospan px, yq, the property of commuting over w is

independent of the chosen weight w making px, y, wq a weighted cospan;

(vii) for any weighted cospan px, y, wq such that px, yq is proper,

rImpxq, Impyqs “ 0 ñ rImpxq, Impyq, Impwqs “ 0.
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Proof. The equivalence between (i) and (ii) is part of Theorem 1.1. Variations on
the equivalences between (ii), (iii) and (iv) are dealt with in Proposition 3.1 below,
and those between (v), (vi) and (vii) in Theorem 3.12. The assumption in (iv) that
α and γ are regular epimorphisms is there to ensure that α˝kerpfq and γ˝kerpgq are
proper. We are left with recalling that also the equivalence between (i) and (vi) is
known [13, 26]. �

3. The stronger condition (SSH)

The characterisation of the Smith is Huq condition in terms of the fibration of
points obtained in [9] and recalled above immediately leads to a stronger condition
(which we shall denote (SSH), even though it does not involve Smith commutators)
and to the question whether or not the conditions (SH) and (SSH) are equivalent
to each other. Indeed, by Theorem 1.1 we may write

(SH) any change of base functor with respect to the fibration of points reflects
the commutation of normal subobjects;

(SSH) any change of base functor with respect to the fibration of points reflects
commutation (of arbitrary pairs of arrows)

and clearly (SSH) ñ (SH). In this section we give an overview of conditions which
characterise (SSH), together with some examples (of categories which satisfy (SSH))
and a counterexample (showing that (SSH) is strictly stronger than (SH)). Since
they need some more work, the conditions involving weighted commutativity are
treated only later on in the section, starting from 3.9.

Proposition 3.1. In any semi-abelian category X, the following conditions are

equivalent:

(i) for every morphism p : E Ñ B in X, the pullback functor

p˚ : PtBpXq Ñ PtEpXq

reflects Huq-commutativity of arbitrary cospans;

(ii) for every object B of X, the kernel functor Ker: PtBpXq Ñ X reflects Huq-

commutativity of arbitrary cospans;

(iii) for any diagram such as (B) above, if α˝kerpfq and γ˝kerpgq commute

in D, then there exists a morphism ϕ : AˆB C Ñ D such that ϕ˝e1 “ α

and ϕ˝e2 “ γ;

(iv) condition (i) or condition (ii), restricted to cospans of monomorphisms.

Proof. Condition (ii) is the special case of (i) where p is !B : 0Ñ B. The following
standard trick shows (ii) ñ (i). For any p : E Ñ B we have the induced inverse
image functors

PtBpXq
p˚

,2 PtEpXq
!
˚

E ,2 Pt0pXq – X.

Clearly !˚E˝p˚ “!˚B “ Ker. By assumption, this functor reflects Huq-commutativity.
But the kernel functor !˚E also preserves Huq-commutating pairs of morphisms, and
these two properties together give us (i).

Condition (ii) is the special case of (iii) where in the diagram (B) induced by (A),
the arrow β has a retraction p. We only need to check that the morphism ϕ

induced by (iii) is a morphism of points, of which the domain is p “ f˝πA “
g˝πB : AˆB C Ñ B with section β “ e1˝r “ e2˝s : B Ñ AˆB C. Now

p˝ϕ˝e1 “ p˝α “ f “ f˝πA˝e1 “ p˝e1

and, similarly, p˝ϕ˝e2 “ p˝e2, so that p “ p˝ϕ. Furthermore, ϕ˝β “ ϕ˝e1˝r “
α˝r “ β.
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For the converse, it suffices to rewrite Diagram (B) in the shape

A

f �$❄
❄❄

❄❄
❄❄

❄❄
❄❄

xα,fy ,2 D ˆB

πB

��

C

gz�⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

xγ,gylr

B

xβ,1By

LR

r

Zd❄❄❄❄❄❄❄❄❄❄❄
s

:D⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

and consider it as a cospan pxα, fy, xγ, gyq in PtBpXq. So condition (iii) is an instance
of the kernel functors reflecting Huq-commutativity in the case where the point
which is the codomain of the cospan is a product.

Finally, we can restrict (i) and (ii) to cospans of monomorphisms, because two
arrows commute if and only if their regular images do [2, Proposition 1.6.4]. �

Definition 3.2. We say that X satisfies condition (SSH) when it satisfies the
equivalent conditions of Proposition 3.1.

It is clear that (SSH) implies (SH), the difference between the two essentially
being that the former works for all subobjects where the latter uses normal sub-
objects. To find examples of categories where (SSH) holds we may rely on the
following:

3.3. Even stronger conditions. It is shown in [7] that if a morphism p in a
protomodular category is algebraically exponentiable (that is, the pullback functor
p˚ : PtBpXq Ñ PtEpXq has a right adjoint) then p˚ reflects commuting pairs of ar-
rows. More precisely, this means that if a category is pointed protomodular and
one of the conditions

(i) X is algebraically cartesian closed (ACC)
(ii) X is fibre-wise algebraically cartesian closed (FWACC)
(iii) X is locally algebraically cartesian closed (LACC)

holds then, respectively,

(i) pB Ñ 0q˚ for each B

(ii) pullback functors along effective descent morphisms
(iii) all pullback functors

reflect commuting pairs. Hence (LACC) implies (SSH) via (i) in Proposition 3.1.

Examples 3.4. The categories Gp of groups and LieR of Lie algebras over a com-
mutative ring R are (LACC), hence satisfy (SSH).

Another class of examples will be treated in Section 4. It is easy (and illustrative,
we believe) to make the groups case explicit:

Example 3.5. We show that when X is the category Gp of groups, the normalisa-
tion functor does reflect admissibility for all diagrams (B). In what follows we use
additive notation, also for non-abelian groups. Consider in Gp the diagram

X
k ,2

A
k1

lr
f ,2

α
�$❄

❄❄
❄❄

❄❄
❄ B

r
lr

s
,2

β

��

C
glr

γ
z�⑧⑧
⑧⑧
⑧⑧
⑧⑧ l1

,2 Y
llr

D

in which k “ kerpfq, l “ kerpgq and where k1, l1 are the unique functions (not
homomorphisms) with the property that kk1 “ 1A´ rf and ll1 “ ´sg`1C (so that
k1k “ 1X and l1l “ 1Y ). Note that

a “ kk1paq ` rfpaq and c “ sgpcq ` ll1pcq
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for all a P A, c P C.
Assuming that αk and γl commute, we have to construct a suitable group ho-

momorphism ϕ : AˆB C Ñ D to show that pα, β, γq are admissible. We define

ϕpa, cq “ αkk1paq ` γpcq

and prove that ϕpa` a1, c` c1q “ ϕpa, cq ` ϕpa1, c1q. Note that

k1pa` a1q “ 1Apa` a1q ´ rfpa` a1q

“ kk1paq ` rfpaq ` kk1pa1q ` rfpa1q ´ rfpa` a1q

“ kk1paq
loomoon

PX

` rfpaq ` kk1pa1q ´ rfpaq
loooooooooooooomoooooooooooooon

PX

.

Now for all x P X , b P B, we have that

αkprpbq ` kpxq ´ rpbqq “ βpbq ` αkpxq ´ βpbq.

Hence, on the one hand,

ϕpa` a1, c` c1q

“ αkk1pa` a1q ` γpc` c1q

“ αkpkk1paq ` rfpaq ` kk1pa1q ´ rfpaqq ` γpcq ` γpc1q

“ αkk1paq ` αkprpbq ` kk1pa1q ´ rpbqqq ` γpsgpcq ` ll1pcqq ` γpc1q

“ αkk1paq ` βpbq ` αkk1pa1q ´ βpbq ` βpbq ` γll1pcq ` γpc1q

“ αkk1paq ` βpbq ` αkk1pa1q ` γll1pcq ` γpc1q,

where fpaq “ b “ gpcq, while on the other hand

ϕpa1, c1q ` ϕpa1, c1q “ αkk1paq ` γpcq ` αkk1pa1q ` γpc1q

“ αkk1paq ` βpbq ` γll1pcq ` αkk1pa1q ` γpc1q.

Since, by assumption, γll1pcq ` αkk1pa1q “ αkk1pa1q ` γll1pcq, these two expressions
are equal to each other, and ϕ is a homomorphism.

3.6. (SSH) is strictly stronger than (SH). We now consider the question whether
or not (SSH) and (SH) are equivalent. It turns out that the answer is “no”, via the
following counterexample. We first show that all arithmetical categories satisfy
(SH), then we prove that the arithmetical Moore category HSLat of Heyting semi-
lattices does not satisfy (SSH).

3.7. All arithmetical categories satisfy (SH). An exact Mal’tsev category is
called arithmetical [30, 2] when every internal groupoid is an equivalence relation.
This implies that the Smith commutator rR,SsS of two equivalence relations R and
S on an object D is their intersection R ^ S. It is also well known [2] that if
the category is, moreover, pointed, then the only abelian object is the zero object,
and (assuming that binary sums exist) the Higgins commutator rX,Y s of normal
subobjects X , Y ⊳ D is the intersection X ^ Y . Since the normalisation functor
preserves intersections, it follows that any pointed arithmetical category with binary
sums has the Smith is Huq property.

Two examples of this situation which are relevant to us are the category HSLat

of Heyting (meet) semi-lattices and DLat of distributive lattices. The latter is only
weakly Mal’tsev [23, 24], but it is easily seen that it fits the above picture, hence
(trivially) satisfies Smith is Huq. On the other hand, the category HSLat is semi-
abelian [20]—in fact it even is a Moore category [31]—and satisfies the conditions
of Theorem 1.1, but nevertheless does not satisfy (SSH). This tells us that the
conditions of Proposition 3.1 are strictly stronger than the Smith is Huq property.
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Furthermore, they are not even implied by the strong protomodularity condition [4],
which by definition all Moore categories satisfy.

Example 3.8. A concrete counterexample is the diagram (B) in HSLat defined as
follows: A “ D “ t0, 1

2
, 1u and B “ t0, 1u with the natural order and implication

pñ q “

#

q if p ą q

1 otherwise,

and C is the boolean algebra

1

⑧⑧
⑧ ❄❄

❄

a b

0

❄❄❄ ⑧⑧⑧

with  a “ b; the tables

A 0 1

2
1

f 0 1 1

α 0 1

2
1

B 0 1

r 0 1

s 0 1

β 0 1

C 0 a b 1

g 0 0 1 1

γ 0 1 1 1

determine the morphisms between them. Let X “ t 1
2
, 1u and Y “ tb, 1u be the

kernels of f and g, respectively. Then their direct images along α and γ become
t 1
2
, 1u and t1u, which Huq-commute in D. On the other hand, the triple pα, β, γq

is not admissible with respect to pf, r, g, sq. Indeed, as an ordered set, the pullback
of f and g is given by the following diagram.

p1, 1q

⑧⑧
⑧⑧ ❄❄

❄❄

p1, bq p1
2
, 1q

❄❄
❄❄

p1
2
, bq

❄❄❄❄
⑧⑧⑧⑧

p0, aq

p0, 0q

❄❄❄❄
⑧⑧⑧⑧

Hence if a function ϕ as in the definition of admissibility exists, then necessarily

ϕp0, aq “ ϕprgpaq, aq “ γpaq “ 1

and ϕp1
2
, 1q “ ϕp1

2
, sfp1

2
qq “ αp1

2
q “ 1

2
; but this function cannot preserve the order.

3.9. Conditions in terms of weighted commutators. Given X ď D and
w : W Ñ D a morphism, we say that X is w-normal when Impwq normalises X ,
which means that rImpwq, Xs ď X . It is explained in [21] that X is normal if and
only if it is 1D-normal. Proposition 4.11 in [15] further tells us that the following
are equivalent:

(i) Impwq normalises X ;
(ii) X is normal in the join Impwq _X ;
(iii) Impwq _X acts on X by conjugation.

We call rImpwq, Xs _X the w–normal closure of X in D. In particular [15],
the 1D–normal closure of D is the ordinary normal closure, i.e., the smallest normal
subobject of D containing X . On the other hand, the 0–normal closure of x is x
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itself. Freely using [16, Proposition 2.21], we may see that in general

rImpwq, rImpwq, Xs _Xs

“ rImpwq, rImpwq, Xss _ rImpwq, Xs _ rImpwq, rImpwq, Xs, Xs

ď rImpwq, Xs

ď rImpwq, Xs _X

so that the w–normal closure of X in D is indeed w-normal, while its minimality
is clear.

Given a weighted cospan px, y, wq as in (C), we shall say that the cospan px, yq
is w-proper if and only if the images of x and y are w-normal. That is to say,

rImpwq, Impxqs ď Impxq and rImpwq, Impyqs ď Impyq.

So a 1D-proper cospan px, yq is nothing but a proper cospan in the sense of 2.4,
while any cospan is 0-proper.

Lemma 3.10. Suppose that px, y, wq is a weighted cospan as in (C). Then the

image of the morphism
@

w
x

D

˝κW,X : W 5X Ñ D is the w–normal closure of Impxq

in D. In particular,
@

w
x

D

˝κW,X factors over Impxq if and only if x is w-proper.

W 5X
✤ ,2κW,X ,2

ξ

��

W `X
@

w
x

D

��
Impxq ,2 ,2 D

Proof. The inclusions in the split short exact sequence

0 ,2 W ˛X ✤ ,2 ιW,X ,2 W 5X
@

0
1X

D

˝κW,X

✤ ,2 X ,2lrηW
Xlr

0

are jointly regular epic, which implies that

Imp
@

w
x

D

˝κW,Xq “ Imp
@

w
x

D

˝ιW,Xq _ Impxq “ rImpwq, Impxqs _ Impxq.

In other words, the unique dotted lifting in the diagram

pW ˛Xq `X

@ ιW,X

ηW
X

D

✤ ,2

❴��

W 5X

sz

@

w
x

D

˝κW,X

��
rImpwq, Impxqs _ Impxq ,2 ,2 D

is necessarily a regular epimorphism. The morphism x being w-proper means pre-
cisely that the w–normal closure of Impxq in D is Impxq itself. �

Lemma 3.11. Suppose that px, y, wq is a weighted cospan as in (C). If px, yq is a

w-proper cospan, then
@

w
x

D

˝κW,X : W 5X Ñ D and
@

w
y

D

˝κW,Y : W 5Y Ñ D

Huq-commute if and only if do x and y.

Proof. By Lemma 3.10, these morphisms have Impxq and Impyq as their respective
images. The result now follows form [2, Proposition 1.6.4]. �

Theorem 3.12. In any semi-abelian category X, the following are equivalent:

(i) the condition (SSH);
(ii) for any weighted cospan px, y, wq such that the cospan px, yq is w-proper,

the morphisms x and y commute over w as soon as they Huq-commute;
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(iii) for any cospan px, yq, the property of commuting over w is independent of

the chosen weight w for which the cospan px, yq is w-proper;

(iv) for any weighted cospan px, y, wq such that the cospan px, yq is w-proper,

if rImpxq, Impyqs “ 0 then rImpxq, Impyq, Impwqs “ 0.

Proof. Since x and y Huq-commute if and only if they commute over zero [13], it
is clear that (ii) and (iii) are equivalent. The equivalence between (iii) and (iv) is
a direct consequence of [26, Theorem 2].

(ii) ñ (i) via Condition (iii) in Proposition 3.1 as explained in Subsection 2.2
above. To prove the converse, consider a weighted cospan px, y, wq such that the
cospan px, yq is w-proper. The image through the kernel functor of the induced
cospan (D) in PtW pXq will commute if and only if

@

w
x

D

˝ker
@

1W
0

D

: W 5X Ñ D Huq-

commutes with
@

w
y

D

˝ker
@

1W
0

D

: W 5Y Ñ D in X. By Lemma 3.11, this is equivalent
to x and y Huq-commuting in X. Hence (ii) follows from Condition (ii) in Propo-
sition 3.1. �

Part of the above argument is worth repeating for later use:

Lemma 3.13. If px, y, wq is a weighted cospan as in (C) and x and y commute

over w, then the w–normal closures of Impxq and Impyq in D Huq-commute.

Proof. By Lemma 3.10, the w–normal closures in question are the respective images
through the kernel functor of the induced cospan (D) in PtW pXq. �

4. When is the weighted commutator independent

of the chosen weight?

The rather subtle condition on weighted cospans needed in Theorem 3.12 natur-
ally leads to the question when, for all weighted cospans, weighted commutativity
is independent of the chosen weight. It it known that this does not even happen
in the category of groups (see Example 4.3 and also [13] where further examples
are given); it will, however, do happen in any so-called two-nilpotent semi-abelian
category.

Essentially repeating the proof of Theorem 3.12, we find:

Proposition 4.1. In any semi-abelian category X, the following conditions are

equivalent:

(i) for any weighted cospan px, y, wq, the morphisms x and y commute over w

as soon as they Huq-commute;

(ii) for any given cospan px, yq, the property of commuting over w is independ-

ent of the chosen weight w making px, y, wq a weighted cospan in X;

(iii) for any given weighted cospan px, y, wq in X, if rImpxq, Impyqs “ 0 then

rImpxq, Impyq, Impwqs “ 0;

(iv) any of the above, restricted to cospans of monomorphisms. �

Definition 4.2. We say that X satisfies condition (W) when it satisfies the equiv-
alent conditions of Proposition 4.1.

The category Gp of groups does not satisfy (W), as shows the following example.

Example 4.3. Consider the cyclic group of order two C2 as a subgroup of the
symmetric group on three elements S3 via a monomorphism x : C2 Ñ S3. Then x

commutes with x over 0 since C2 is abelian. (W) in the guise of Condition (i) in
Proposition 4.1 would imply that x commutes with x over 1S3

, which gives us a
contradiction with S3 being non-abelian. Indeed, the normal closure of x is 1S3

itself, so that we would have rS3, S3s “ 0 by Lemma 3.13.
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As an example of a non-abelian category satisfying (W) we find the semi-abelian
variety Nil2pGpq of groups of nilpotency class 2, in which all ternary commuta-
tors vanish, because rrX,Xs, Xs and rX,X,Xs coincide in the category Gp. This
is clearly true in general once we adopt the following definition due to Manfred
Hartl [14].

Definition 4.4. A semi-abelian category is called two-nilpotent if all ternary
co-smash products in it are trivial.

This condition is equivalent to all ternary Higgins commutators vanishing. It is
clear that such categories (trivially) satisfy (iii) in Proposition 4.1, so (W) holds in
all two-nilpotent categories. Examples include categories of modules over a square
ring, and in particular categories of algebras over a nilpotent algebraic operad of
class two [1].

5. Overview

condition
weighted commutator

independent of
chosen weight w for

inverse image functors
reflect commutation of

counterexample holds for

(W) all cospans — — Gp two-nilpotent categories

(SSH) w-proper cospans all cospans — HSLat (LACC) categories

(SH) proper cospans proper cospans equivalence relations Loop, DiGp categories of interest
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