Skip to main content
Log in

Nerves of Trigroupoids as Duskin-Glenn’s 3-Hypergroupoids

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In this paper we deal with the simplicial nerve (Street’s geometric nerve) of bicategories and tricategories. We prove that if 𝔸 is a trigroupoid then Ner(𝔸) is a Kan simplicial set which moreover turns out to be a (Duskin-Glenn) 3-hypergroupoid, generalizing in this way, the analogous result for the simplicial nerve of bigroupoids, due to Duskin. We associate to any Kan simplicial set X, its homotopy bigroupoid Π2 X, and its homotopy trigroupoid Π3 X. We prove that there exists a simplicial map v:XNer2 X) which is a surjective weak 2-equivalence and an isomorphism if X is a Kan 2-hypergroupoid, giving another proof of Duskin’s characterization for the simplicial nerve of bigroupoids. In the 3-dimensional case, there also exists a simplicial map v : XNer3 X) that is a weak 3-equivalence but, in this case, not necessarily surjective, not even under the hypergroupoid hypothesis. As a corollary, we conclude that any Kan simplicial set with trivial homotopy groups at dimensions ≥ 4 is homotopy equivalent to the nerve of a trigroupoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bénabou J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar. Lecture Notes in Math, vol. 47, pp. 1–77. Springer-Verlag, Berlin-New York (1967)

    Book  Google Scholar 

  2. Berger, C.: Double loop spaces, braided monoidal categories and algebraic 3-type of space. Contemp. Math. 227, 49–66 (1999)

    Article  Google Scholar 

  3. Carrasco, P., Cegarra, A.M.: (Braided) tensor structures on homotopy groups and nerves of (braided) categorical groups. Comm. Algebra 24(13), 3995–4058 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carrasco, P., Cegarra, A.M., Garzón, A.R.: Nerves and classifying spaces of bicategories. Alg. Geom. 10, 219–274 (2010)

    Article  MATH  Google Scholar 

  5. Carrasco, P., Cegarra, A.M., Garzón, A.R.: Classifyng spaces for braided monoidal categories and lax diagrams of bicategories. Adv. Math. 226, 419–483 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cegarra, A.M., Heredia, B.A.: Geometric realizations of tricategories. arXiv:1203.3664v2 (2012)

  7. Curtis, E.B.: Simplicial homotopy theory. Adv. Math. 6, 107–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duskin, J.: Simplicial methods and the interpretation of triple cohomology. Memoir Amer. Math. Soc. 3(2), 1–135 (1975)

    MathSciNet  Google Scholar 

  9. Duskin, J.: Simplicial matrices and the nerves of weak n-categories I: Nerves of bicategories. Theory Appl. Cat. 9(10), 198–308 (2002)

    MathSciNet  Google Scholar 

  10. Glenn, P.: Realization of cohomology classes in arbitrary exact categories. J. Pure Appl. Algebra 25, 33–107 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goers, P.G., Jardine, J.F.: Simplicial homotopy theory. Progress in Math, vol. 174. Birkhäuser Verlag (1999)

  12. Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Amer. Math. Soc. 117(558) (1995)

  13. Gurski, N.: An algebraic theory of tricategories. University of Chicago, PhD thesis (2006)

  14. Gurski, N.: Nerves of bicategories as stratified simplicial sets. J. Pure Appl. Algebra 213, 927–946 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kan, D.M.: A combinatorial definition of the homotopy groups. Ann. Math. 67(2), 282–312 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelly, G.M., Street, R.: Review of the elements of 2-categories. In: Category Seminar. Lecture Notes in Math, vol. 420, pp. 75–103. Springer, Heidelberg (1974)

    Book  Google Scholar 

  17. May, J.P.: Simplicial Objects in Algebraic Topology. Van Nostrand, Princeton (1967)

    Google Scholar 

  18. Street, R.: The algebra of oriented simplixes. J. Pure Appl. Algebra 49, 283–335 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Street, R.: Categorical structures. In: Handbook of Algebra 1, pp. 529–577 North-Holland (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carrasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, P. Nerves of Trigroupoids as Duskin-Glenn’s 3-Hypergroupoids. Appl Categor Struct 23, 673–707 (2015). https://doi.org/10.1007/s10485-014-9374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-014-9374-7

Keywords

Mathematics Subject Classifications (2010)

Navigation