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Normalizers and split extensions

Dominique Bourn and James R.A. Gray

Abstract

We make explicit a larger structural phenomenon hidden behind the

existence of normalizers in terms of existence of certain cartesian maps

related to the kernel functor.

Introduction

Any basic textbook on Algebra, see for instance [19], defines as early as in
the first pages what is the normalizer of a subgroup H ⊂ G, and this would
suggest that this construction is of some consequence. But, beyond a few loose
connections with the notion of centralizers, it is not really used and worked out.
On the contrary, we shall show here that, in a very conceptual way, the existence
of normalizers has two strong structural consequences.

The second author introduced in [17] an abstract notion of normalizer in a

pointed category C as a universal decomposition U
u
 N

w
 T of the monomor-

phism U  T with u a normal monomorphism. We shall investigate here a
slightly stricter definition, dropping the condition that w is a monomorphism,
which in the category Gp of groups is equivalent to the previous one. So that
the category Gp has normalizers in this sense, and this is equally the case for
the category Rg of non commutative (non unitary) rings and R-Lie of Lie alge-
bras on a ring R. When a category E is cartesian closed, the category GpE of
internal groups in E has normalizers as well.

Not only this new approach forces, in any case, the second part w of the
universal decomposition to be necessarily a monomorphism, but it is hiding a
larger structural phenomenon concerning split extensions. In order to enter into
that, let us start with a pointed category C, let us denote by KPtC the category
whose objects are the split extensions in C:

0 // Kerf // kf // X
f

// // Y //oosoo
0

and morphisms are the natural morphisms between split extensions, and by
K : KPtC → C the kernel functor. We shall show here that C has normalizers
if and only if this functor K is fibrant on monomorphisms, namely if and only
if it has cartesian maps above any monomorphism.

This last property has two major structural consequences at the level of the
fibrations of points PC : PtC → C, where PtC is the category whose objects are
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the split epimorphisms and morphisms the commutative squares between them,
and where PC is the codomain functor, when the category C is protomodular,
namely when the change of base functors with respect to this fibration are
conservative [7]. First the category C is action accessible [10], i.e. satisfies a
certain classification property for the split epimorphisms with a given kernel,
see Section 3. Secondly the category C is fiberwise algebraically cartesian closed
[15], [16], [9], namely any change of base functor with respect to the fibration
of points along a split epimorphism admits a right adjoint.

This article is organized along the following lines:
Section 1 is devoted to the definition, the first examples of normalizers and
the characterization in terms of K-cartesian maps; Section 2 to the special
case of internal algebraic structures; Section 3 to the relationship with action
accessibility and Section 4 to the relationship with algebraic cartesian closedness
and fiberwise algebraic cartesian closedness.

1 Normal subobjects and normalizers

1.1 Normalizers

Let E be a finitely complete category. Let u : U  X be a monomorphism and
R an equivalence relation on X . Let us recall from [4] the following:

Definition 1.1. The monomorphism u in E is said to be normal to R if:
i) we have: u−1(R) = ∇U ;
ii) the induced internal functor

U × U // ũ //

p1
��

p0
��

R

d1
��

d0
��

U //
u

//

OO

X

OO

is a discrete fibration.

When E is the category of sets, an inclusion map U  X is normal to an
equivalence class of R on X in this sense if and only if U is either empty or is
one of the equivalence classes of R. In particular the inclusion ∅  X is normal
to every equivalence relation on X . When E is pointed, any map has a kernel,
and the kernel kh : K[h]  X of any map h : X → Y is normal to the kernel
equivalence relation R[h] of the map h. On the other hand, given an equivalence
relation d0, d1 : R ⇒ X the pullback diagram

U // u //

k

��

X

(0,1)

��
R //

(d0,d1)
// X ×X

(1)
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defines the normalization u : U → R of R, which is automatically normal to R
(see [4]). Furthermore if u : U  X is normal to R, then there exists k : U → R
such that (1) is a pullback. Now let v : U  T be any monomorphism in E.

Definition 1.2. We say that v has a normalizer when there is a pair (u,Rv)
with u : U  X normal to Rv and factorization w : X → T such that v = w.u
which is universal with respect to this kind of specific decomposition of v. We
say that E has normalizers when any monomorphism v has a normalizer.

Proposition 1.3. Suppose that E is pointed and v has a normalizer; then the
factorization w is necessarily a monomorphism.

Proof. Let us consider the kernel equivalence relation of w:

R[w]
p1

//
p0 //

Xoo
w

// T

We define the equivalence relation Rv�R[w] on the object R[w] as the inverse
image of (Rv × Rv) along (p0, p1) : R[w]  X × X . Accordingly (see [4]), its
normalization is the pullback of v × v : U × U  T × T along this same map
(p0, p1), namely the factorization (u, u) : U  R[w]. According to the universal
property of (u,Rv), there is a unique factorization of the map w.p0 through X ;
thus we get p1 = p0 and w is a monomorphism.

Examples. It is easy to check that the pointed categories Gp of groups, Rg of
non commutative non unitary rings and R-Lie of Lie algebras on a ring R have
normalizers in this sense.

1.2 Normalizers and split extensions

From now on, we shall suppose that the category E is pointed. As usual we
denote by PtE the category whose objects are the split epimorphisms in E with
a given splitting, and maps those pairs of maps between these data such that
the squares obtained by considering the split epimorphisms and the splittings
alone commute, and by PE : PtE → E the functor associating with any split
epimorphism its codomain, which is a fibration whose PE-cartesian maps are
the pullbacks of split epimorphisms. When E is pointed, we shall denote by
KPtE the category of split extensions, namely of split epimorphisms with a
chosen kernel, and by K : KPtE → E the functor associating with any split
extension the domain of its kernel. The functor K is not only left exact, but it
creates pullbacks and equalizers. On the other hand, it is clear that the forgetful
functor H : KPtE → PtE is a fully faithful and essentially surjective, namely
that it determines a weak equivalence of categories, making the functor PE ◦H
a split fibration. On the other hand, the functor K has a canonical section
J : E → KPtE associating with any object T the following split extension:

T // (0,1T )// T × T
pT0 // Too
sT0

oo
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Proposition 1.4. Let v : U  T be any monomorphism in E. Then v has a
normalizer if and only if the map v : U  T = KJ(T ) admits a K-cartesian
map above it.

Proof. Suppose v has a normalizer (u,Rv) we are going to show that the fol-
lowing right hand side map (w, w̃, v) (with w̃ = (w.d0, w.d1)) in KPtE is a
K-cartesian map above v:

U

ka
��

//
v

//U

(0,u)
��

// v // T

(0,1)
��

A

a
��

f̃

//Rv

d0
��

// w̃ // T × T

pT0
��

B

b

OO

f
//X // w //

s0

OO

T

sT0

OO

So, suppose we have a map (f, f̃ , v) between the above extremal split extensions
of E; we have to find a factorization in KPtE between the two left hand side split
extensions which induces 1U at the level of kernels. The map f̃ is necessarily
of the form (f ◦ a, t) for some t : A → T satisfying t ◦ b = f . Moreover the
commutation at the upper level means that t ◦ ka = v where ka is normal
to R[a]. The universal property of the normalizer determines a factorization
τ : A → X such that w ◦ τ = t, τ ◦ ka = u and τ is underlying a map of
equivalence relation:

R[a]
τ̃ //

p1
��

p0
��

Rv

d1
��

d0
��

A
τ

//

OO

X

OO

The factorization required for a K-cartesian map will be given by:

A

a
��

τ̃◦(b◦a,1)// Rv

d0
��

B
τ◦b

//

b

OO

X

s0

OO

since we have: w◦τ ◦b = t◦b = f and w̃ ◦ τ̃ ◦ (b◦a, 1) = (f ◦a, t) by composition
with pT0 and pT1 ; moreover we get τ̃ ◦ (b ◦ a, 1) ◦ ka = (0, u) by composition by
the monomorphism w̃ which implies that this factorization induces 1U at the
level of kernels.

We have now to prove the converse. First let us observe that anyK-cartesian
map above a monomorphism is necessarily a monomorphism. It is a consequence
of the fact that the functor K creates pullbacks; for that consider the following
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right hand side K-cartesian map of split extensions:

U

k
��

1U
//

1U //
U

kf
��

// v // T

kf′

��
R[w′]

R(f)
��

p1
//

p0 //
X

f

��

w′

// X ′

f ′

��
R[w]

R(s)

OO

p1
//

p0 //
Y

w
//

s

OO

Y ′

s′

OO

Complete it with the kernel relations of the horizontal maps; this determines the
unique left hand side vertical split extension. The uniqueness of the factorization
through the K-cartesian map (w,w′, v) in KPtE implies that p0 = p1 at the two
levels, and accordingly that w and w′ are monomorphisms.

Now suppose that v : U  T = KJ(T ) admits a K-cartesian map above it:

U

kU
��

// v // T

(0,1)
��

Rv

d0
��

// w̃ // T × T

pT0
��

X //
w

//

s0

OO

T

sT0

OO

The map w̃ is necessarily of the form (w ◦ d0, δ1) with δ1 : Rv → T such that
δ1 ◦ s0 = w and δ1 ◦ kU = v. Let us show that δ1 factors through w by a
(unique) map d1 : Rv → X ; then, since w and w̃ are monomorphisms, the pair
(d0, d1) : Rv ⇒ X will be a relation, actually a reflexive relation since, from
w ◦ d1 ◦ s0 = δ1 ◦ s0 = w, we shall get d1 ◦ s0 = 1X . For that, let us consider the
following diagram of vertical split extensions:

U

(0,kU )
��

//
v

//U

kU
��

// v // T

(0,1)
��

R[d0]

p0

��

(δ1◦p0,δ1◦p1)
//Rv

d0
��

// w̃ // T × T

pT0
��

Rv

s0

OO

δ1

//X // w //

s0

OO

T

sT0

OO
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Since we have a K-cartesian map, we get a factorization:

U

(0,kU )
��

U

kU
��

R[d0]

p0

��

d2 // Rv

d0
��

Rv

s0

OO

d1

// X

s0

OO

such that w ◦ d1 = δ1 and w̃ ◦ d2 = (δ1 ◦ p0, δ1 ◦ p1), namely w ◦ d0 ◦ d2 = δ1 ◦ p0
and δ1 ◦ d2 = δ1 ◦ p1; and since w is a monomorphism, we get d0 ◦ d2 = d1 ◦ p0
and d1 ◦ d2 = d1 ◦ p1. These equalities on d2 show that (d0, d1) : Rv ⇒ X is
actually an equivalence relation on X . Finally, since kU is the kernel of d0, the
monomorphism u = d1 ◦kU : U  X is normal to Rv, and w ◦u = w ◦d1 ◦kU =
δ1 ◦ kU = v.

It remains to show that (u,Rv) has the universal property of a normalizer.
Let v = h ◦u′, with u′ normal to S another decomposition of v. Let us consider
the following diagram of split extensions with h̃ = (h ◦ d0, h ◦ d1):

U

(0,u′)
��

//
v

//U

(0,u)
��

// v // T

(0,1)
��

S

d0
��

h̃

//Rv

d0
��

// w̃ // T × T

pT0
��

X ′

s0

OO

h
//X // w //

s0

OO

T

sT0

OO

According to the universal property of aK-cartesian map, we get a factorization:

U

(0,u′)
��

U

(0,u)
��

S

p0
��

h̃′

//

d1

rr

Rv

d0
��

d1

rrX ′

s0

OO

h′

// X

s0

OO

such that w ◦h′ = h and w̃ ◦ h̃′ = h̃. From that we get w ◦d1 ◦ h̃′ = pT1 ◦ w̃ ◦ h̃′ =
pT1 ◦ h̃ = h ◦ d1 = w ◦ h′ ◦ d1; accordingly d1 ◦ h̃′ = h′ ◦ d1, and h′ determines a
map S → Rv of equivalence relation, as desired.

The following observation which is completely invisible at the level of nor-
malizers, will be needed later on:

Proposition 1.5. Let E be a finitely complete category. Then the K-cartesian
monomorphisms are stable under pullbacks along PE-cartesian maps.
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Proof. Let (m,µX , µY ) be a K-cartesian map and let (m, νX′ , νY ′) be the map
in KPtE obtained by pulling back (m,µX , µY ) along (1K[f ], x, y), where (y, x)
is a PE-cartesian map:

U

kf̄

��

// m // K[f ]

kf

��

U

k

��

//
m

//

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥ U

⑤
⑤
⑤
⑤
⑤
⑤

⑤
⑤
⑤
⑤
⑤
⑤

kf̄′

��

// m // K[f ′]

✉
✉
✉
✉
✉
✉

✉
✉
✉
✉
✉
✉

��

X̄

f̄

��

// µX // X

f

��

V

φ

��

v
II

v̄

44

X ′
x′

<<
③
③
③
③
③

f̄ ′

��

// νX′ // X ′

x

99
s
s
s
s
s
s
s

f ′

��

Ȳ

s̄

OO

//
µY

// Y

s

OO

W

σ

OO

w

II
w̄

44

Ȳ ′

y′

==
③
③
③
③
③

s̄′

OO

//
νY ′

// Y ′

y

99
s
s
s
s
s
s
s

s′

OO

Now let (m, v, w) be a map in KPtE. The map (m,x ◦ v, y ◦ w) determines
a factorization (1U , v̄, w̄) through the K-cartesian map (m,µX , µY ) which it-
self produces the desired factorization through the pullback (m, νX′ , νY ′) of
(m,µX , µY ).

1.3 Some examples of normalizers

1.3.1 Normal subobject and normalizer

In the category Gp of groups, it is clear that if a normal subobject u is normal
to an equivalence relation R, then its normalizer is (u,R). More generally we
get the following:

Proposition 1.6. Let C be a pointed category. The following are equivalent:

(a) For each reflexive relation R on X, the map of split extensions

U = K[d0]
u //

k

��

X

(0,1)

��
R

(d0,d1) //

d0

��

X ×X

pX0
��

X

s0

OO

X

sX0

OO

is K-cartesian;

(b) C is Mal’tsev [8, 9] and every normal monomorphism is normal to exactly
one equivalence relation.
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Proof. (b) ⇒ (a) Since C is a Mal’tsev category the reflexive relation R is an
equivalence relation and u is normal to R. Let us show that it coincides with
its normalizer. Suppose that u = h ◦ v : U  T → X with v normal to S.
The unique possible factorization is obviously h; so we have to show that h
determines a map of equivalence relations S → R. Since C is Mal’tsev the
relation R′ defined by the pullback

R′

(d′0,d
′

1)

��

// R

(d0,d1)

��
T × T

h×h
// X ×X

is an equivalence relation. It is easy to check that there is a map U×U → S∩R′

such that the square at the top of the diagram

U × U // S ∩R′

��
U × U

p0

��

// S

s0

��
U

v
// T

commutes and is therefore a pullback. It follows that the composite of the two
squares in the diagram above is a pullback, and therefore that v is normal to
S∩R′. It follows by assumption that the inclusion S∩R′ ⊂ S is an isomorphism.
The composite S ∼= S ∩R′ → R′ → R gives the desired factorization.

(a) ⇒ (b) The proof of Proposition 1.4 shows that R is actually an equivalence
relation and, accordingly, that C is a Mal’tsev category. Moreover, if two equiv-
alence relations R and R̄ has the same normalization u, then the two associated
K-cartesian maps above u show that the two equivalence relations R and R̄ are
isomorphic.

Remark 1.7. Since every pointed protomodular category is Mal’tsev and by
Theorem 6 in [4] every normal monomorphism is normal to exactly one equiva-
lence relation it follows from Proposition 1.6 that Condition (a) of Proposition
1.6 holds in every pointed protomodular category, which can also be proved easily
using Lemma 5.1 of [8].

Recall a paragroup [11] is a set X equipped with a binary operation satisfying
the cancellation rule (y/x)/(z/x) = (y/z) as well as x/(x/x) = x and x/x = y/y.
A non empty paragroup X determines a group structure defined by x/x = 1
and x.y = x/(1/y). Accordingly the variety Pgr of paragroups is obtained by
adding the empty set to the category of groups. It is no longer a protomodular
category, but still is a Mal’tsev category. Besides the group monomorphisms,
the only other monomorphisms are the initial maps αX : ∅  X which are all

8



normal to any equivalence relation R on X . But the normalizer of this map is
the pair (αX ,∇X) where ∇X is the indiscrete equivalence relation. Accordingly
Pgr is a (non-pointed) example of a Mal’tsev category with normalizers in which
a normal monomorphisms u can be normal to an equivalence relation R, but
(u,R) is not the normalizer of u.

1.3.2 A glance at topological groups

Recall from [5]:

Proposition 1.8. A subobject A  B is normal in the category of topological
groups if and only if:

1. forgetting the topological structure A is a normal subgroup of B;

2. the map φ : A × B → A; (a, b) 7→ b−1ab is continuous as a map of
topological spaces.

Next we give an alternative description of a normal subobject.

Lemma 1.9. A subobject A B is normal in the category of topological groups
if and only if for each open set U of A

(a) for each b in B the set bUb−1 is an open subset of A;

(b) for each a in U there exists V open in B and Ua open in A such that:

(i) 1 is in V ;

(ii) a is in Ua;

(iii) for each b ∈ V b−1Uab is contained in U .

Proof. Suppose A  B is normal. Let b be an element of B and let U be an
open set of A. It easily follows from Proposition 1.8 that for each b the map
A → A a 7→ b−1ab is continuous and so the set bUb−1 is open in A. Since φ is
continuous φ−1(U) is open in A × B we have for each a in U that (a, 1) is in
φ−1(U), it follows that there exist open sets Ua and V , of A and B respectively,
such that a ∈ Ua, 1 ∈ V and Ua × V is in φ−1(U). It follows that for each b in
V , b−1Uab is a subset of U as required. Conversely, clearly condition (a) applied
to the open set A proves that A considered as a subgroup of B is normal. Let U
be an open set of A. For each (a′, b′) ∈ φ−1(U) we have by (b) for a = (b′)−1a′b′

in U that there exists V open in B and Ua open in A such that:

(i) 1 is in V ;

(ii) a is in Ua;

(iii) for each b ∈ V b−1Uab is contained in U .

The proof is completed by checking that (a′, b′) ∈ (b′Ua(b
′)−1)×(b′V ) ⊆ φ−1(U).
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Proposition 1.10. The normalizer of a subobject A  B in the category
of topological groups exists if the condition (b) of Lemma 1.9 holds. More-
over,under this condition it is defined by

N = {b ∈ B|∀U open in A, the sets bUb−1 and b−1Ub are open in A}

with the topology induced by B.

Proof. It follows from Lemma 1.9 that we only need to show that N is a sub-
group of B, which is easy.

The following example shows that the normalizer of a monomorphism may
exist even if Condition (b) of Lemma 1.1 does not hold, moreover the topology
of the normalizer A→ B may not be induced by the topology on B:

Example 1.11. Since the category of topological groups is a regular category
[2] and since in regular Mal’tsev categories normal monomorphisms are stable
under regular images [7] it follows that we need only show that the normalizer
of monomorphism is terminal amongst those factorizations where the second
morphism is a monomorphism. Let G be the free group on {x, y}, and let Gd
and Gi be G with the discrete and indiscrete topology respectively. We will show
that the normalizer of the inclusion of Gd in Gi exists and is Gd. Suppose Gd is
normal in Gt (a topological group with underlying group G). It is easy to show
that only the elements in 〈x〉 (the subgroup generated by x) commute with x,
and similarly only the elements 〈y〉 commute with y. It follows from Condition
(b) of Lemma 1.9 applied to the open sets {x} and {y}, that there exist open
sets Vx, Vy in Gt and Ux, Uy in Gd such that:

(i) 1 is in Vx and Vy;

(ii) x is in Ux and y is in Uy;

(iii) for all b ∈ Vx b
−1Uxb is contained in {x} and for all b ∈ Vy b

−1Uyb is
contained in {y}.

We see that Ux = {x} and Uy = {y}, and Vx ⊂ 〈x〉 and Vy ⊂ 〈y〉, and therefore
that {1} = Vx ∩ Vy is open, and so Gt = Gd.

1.4 A characterization

The next step will consist in showing that the existence of normalizers in E is
equivalent to the fact that the functor K is fibrant on monomorphisms, namely
to the fact that there are K-cartesian maps above any monomorphism in E.

Lemma 1.12. Let U : F → E be any left exact functor creating pullbacks.
Let v : Y  X be a U -cartesian monomorphism in F and t : X ′  X any
monomorphism such that U(v) factors through U(t), by means of a map w.
Then there exist a U -cartesian map above w.

10



Proof. Since U creates pullbacks, there exists a pullback diagram in F (the
diagram on left hand side below) whose image under U is the pullback diagram
on the right hand side below:

Y ′ // v
′

//

s

��

X ′

t

��

U(Y ) // w // U(X ′)

U(t)
��

Y //
v

// X U(Y ) //
U(v)

// U(X)

It easily follows that the map v′ is U -cartesian above w.

Theorem 1.13. Let E be a pointed finitely complete category. Then it has
normalizers if and only if the functor K is fibrant on monomorphisms.

Proof. If the functor K is fibrant on monomorphism, E has normalizers by
Proposition 1.4. The converse is a consequence of Proposition 1.4, Lemma 1.12,
and of the fact that any split extension can be embedded in some J(T ), see the
following diagram:

K[a]

ka
��

// ka // A

(0,1)
��

A

a
��

// (b◦a,1A) // A×A

pA0 ��
B

b

OO

//
b

// A

sA0

OO

Choosing a kernel functorKer : PtE → E is to specify an equivalence of cate-
goryKPtE ≃ PtE, and saying thatK : KPtE → E is fibrant on monomorphisms
is equivalent to saying that Ker : PtE → E is quasi-fibrant on monomorphisms,
namely that any monomorphism in E determines a Ker-cartesian map up to a
unique isomorphism.

2 Internal groups in E

In this section, we shall show that, when a category E is cartesian with finite
limits, the category GpE of internal groups in E has normalizers. So let us
suppose that E is cartesian closed; recall, see e.g. Lemma 1.5.2 in [18], that
it is equivalent to saying that the pullback functor along any terminal map
τU : U → 1 has a right adjoint; it implies, more generally, that the pullback
functor along any projection pT : T × U → T has a right adjoint (denoted by
πpT ).

Now let T be an internal group in E. We shall denote by ψT : T × T → T
and ψ̃T : T × T → T the maps defined by the formulae ψT (x, y) = x ◦ y ◦ x−1

and ψ̃T (x, y) = x−1 ◦ y ◦ x. When v : U  T is any subobject, we denote by

11



ψv : T × U → T , ψ̃v : T × U → T the restrictions ψv(t, u) = t ◦ u ◦ t−1 and
ψ̃v(t, u) = t−1 ◦ u ◦ t. Let us denote by cTv : CTv  T × U the inverse image of
v : U  T along ψv and c̃Tv : C̃Tv  T ×U the inverse image of v along ψ̃v. Let
us consider now the projection pT : T × U → T and denote by wv : Xv  T
and w̃v : X̃v  T the subobjects πpT (c

T
v ) and πpT (c̃

T
v ).

Lemma 2.1. Let E be a cartesian closed category, T an internal group and
v : U  T any subobject. Then there is factorization ψ:

U

v
��

Xv × U
wv×U

//

ψ

44

T × U
ψv

// T

meaning that: ∀(t, u) ∈ Xv × T , we have t.u.t−1 ∈ U . Accordingly Xv is a
submonoid of T . The same holds for X̃v, and the intersection X = Xv ∩ X̃v is
a subgroup of T .

Proof. Consider the following diagram where any square is a pullback:

P

c

��

// CTv

cTv
��

γT
v // U

v

��
Xv × U

wv×U
//

pXv

��

T × U

pT
��

ψv

// T

Xv wv

// T

The Beck-Chevalley commutation associated with the lower left hand side pull-
back asserts that we have a natural isomorphism w∗

v .πpT ≃ πpXv
.(wv × U)∗.

Since wv is a monomorphism, we have w∗

v .πpT (c
T
v ) = w∗

v(wv) ≃ 1Xv
. Ac-

cordingly πpXv
(c) = πpXv

.(wv × U)∗(cTv ) is an isomorphism. Now c being a
monomorphism, it is a subobject of the terminal object in E/(Xv × U) whose
image by the functor πpXv

is the terminal object; the map c is consequently
itself an isomorphism and we get the desired factorization ψ.

Let us show now that Xv is stable under the group operation of T . Let us
denote it by m : T × T → T and let us consider the following diagram:

Xv × U

ψ

��
CTv

cTv
��

γT
v // U

v

��
Xv ×Xv × U

pXv×Xv

��

wv×wv×U
//

Xv×ψ
66
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

T × T × U
m×U

//

pT×T

��

T × U

pT
��

ψv

// T

Xv ×Xv
wv×wv

// T × T
m

// T

12



Since the right hand side lower square is a pullback, we get the Beck-Chevalley
isomorphismm∗.πpT ≃ πpT×T

.(m×U)∗. We are looking for a map from wv×wv
tom∗(wv) = m∗.πpT (c

T
v ) ≃ πpT×T

.(m×U)∗(cTv ) that is equivalent to a map from
p∗T×T (wv×wv) = wv×wv×U to (m×U)∗(cTv ) = (m×U)∗.ψ∗

v(v). It is produced
by the map ψ.(Xv×ψ) since we have v.ψ.(Xv×ψ) = ψv.(m×U).(wv×wv×U).
So Xv is a submonoid of T . The same proof holds for X̃v which becomes a
submonoid as well. Accordingly X = Xv ∩ X̃v is a submonoid of T which, by
definition, is stable under the passage to inverse; consequently it is a subgroup
of T .

Proposition 2.2. Let E be cartesian closed category; then the category GpE of
internal groups in E has normalizers.

Proof. Let T be an internal group and, now, v : U  T any subgroup. Let us
show that there is factorization: u : U  X = Xv ∩ X̃v such that v = w.u.
Consider the following diagram where ε is the universal arrow associated with
wv = πpT (c

T
v ):

U

v

��

uv

��

U × U
pU0oo

ψU

��

uv×U

��

χ // CTv

cTv

||

γT
v // U

v

��

Xv

wv

��

Xv × U
pXv

oo

wv×U
��

ε

::
✈
✈
✈
✈
✈
✈
✈
✈

T T × U
pT

oo
ψv

// T

The identity v.ψU = ψv.(v × U) produces a factorization χ : U × U → CTv such
that cTv .χ = v×U and γTv .χ = ψU . By the universal property of wv = πpY (c

T
v ),

this map χ produces a unique factorization uv : U → Xv such that v = wv.uv
and ε.(uv×U) = χ. This factorization is a map of monoids since so is u and wv
is a monomorphism. The same proof holds for the map w̃v : X̃v → T which leads
to a factorization v = w̃v.ũv. Whence the factorization v = w.u with w : X  T
a subgroup according to the previous lemma. By the Yoneda lemma a subgroup
u : U  X is normal in GpE if and only if the map ψu : X × U → X factors
through u (or equivalently ψ̃u : X × U → X factors through u). Accordingly,
the monomorphism u is normal, since the factorization map ψ̄ : X × U → U

given by the composite X × U  Xv × U
ψ
→ U produces this factorization.

It remains to show that the universal property holds. So let v = w′.u′

be a decomposition with u′ a normal monomorphism. We are looking for a
factorization from w′ to w = wv ∩ w̃v = πpT (c

T
v ∩ c̃Tv ) which is equivalent to

a factorization from p∗T (w
′) = w′ × U to cTv ∩ c̃Tv . We get a factorization from

13



w′ × U to cTv by the dotted arrow in following diagram:

CTv

cTv

��

γT
v // U

u′

��
X ′

w′

��
X ′ × U //

w′
×U

//

ψ̄

22

pX′

��

ψu′

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

44

T × U

pT
��

ψv

// T

X ′ //
w′

// T

which is produced by the factorization ψ̄ given by the normal monomorphism
u′; and we get a factorization from w′×U to c̃Tv by the dotted arrow in following
diagram:

C̃Tv

c̃Tv

��

γ̃T
v // U

u′

��
X ′

w′

��
X ′ × U //

w′
×U

//

˜̄ψ

22

pX′

��

ψ̃u′

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

44

T × U

pT
��

ψ̃v

// T

X ′ //
w′

// T

produced by the factorization ˜̄ψ given by the normal monomorphism u′

Corollary 2.3. Let E be a locally cartesian closed category. For each object B
in E, the category Gp(E/B) = Gp(PtBE) has normalizers.

For regular cartesian closed categories, the existence of normalizers can be
proved another way. In [3] it was shown that for any cartesian closed category
D, each split extension functor in the category GpD is representable; and in [17]
it was shown that for a protomodular category C, the category C has normaliz-
ers whenever each split extension functor in C2 is representable. However even
when C is protomodular the normalizers considered there have a different uni-
versal property, they were universal amongst those factorizations where the first
morphism is a normal monomorphism (in the sense of being a kernel of some
morphism) and the second is a monomorphism. These two definitions coincide
when the category is exact protomodular. It can be checked that replacing nor-
mal monomorphism (in sense of being a kernel) with normal monomorphism
(in sense of Definition 1.1), the proof of the implications (c) ⇒ (b) ⇒ (a) in
Theorem 3.7 lifts. We have:

14



Proposition 2.4. Let V be any semi-abelian variety of universal algebras such
that for any cartesian closed category D, with finite limits, each split extension
functor in the category V(D) of internal such algebras in D, is representable.
For each finitely complete regular cartesian closed category E the category V(E)
has normalizers.

Proof. It is easy to check that if E is a regular category, then V(E) is a regular
category, and it is certainly a Mal’tsev category. Since in regular Mal’tsev cate-
gories normal monomorphisms are stable under regular images [7] it follows that
we need only show that the normalizer of monomorphism is terminal amongst
those factorizations where the second morphism is a monomorphism. Since E

is cartesian closed and has finite limits, it follows that the category of maps
E2 is cartesian closed, and so by assumption each split extension functor in the
category V(E2) is representable. Since V(E2) ∼= V(E)2 it follows from remarks
preceding the proposition that V(E) has normalizers.

Remark 2.5. In addition to the category of groups, the category of Lie algebras
(over a fixed commutative ring) satisfies the assumptions of Proposition 2.4
[3] and so for each finitely complete regular cartesian closed category E the
categories of internal such algebras in E have normalizers.

3 Action accessibility

In this section we shall show that any exact protomodular category with nor-
malizers is action accessible in the sense of [10].

3.1 Action distinctive categories

Recall from [6] that a Mal’tsev category C has centralizers of equivalence rela-
tions if and only if it is action distinctive, namely if and only if for any object
(f, s) in PtC, there is a greatest PC-cartesian equivalence relation D[f, s] on
(f, s) called its distinctive equivalence relation and denoted by

DX [f, s]

Df

��

δX1

//

δX0 //
X

f

��

oo

DY [f, s]
δY1

//

δY0 //
Ds

OO

Y

s

OO

oo
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The centralizer of an equivalence relation R on X is then given by the lower level
of the distinctive equivalence relation of the split epimorphism (d0, s0) : R ⇄ X :

DR[d0, s0]

Dd0

��

δR1

//

δR0 //
R

d0
��

d1

rr

oo

Z[R] DX [d0, s0]
δX1

//

δX0 //
Ds0

OO

X

s0

OO

oo

Lemma 3.1. Let C be any pointed action distinctive Mal’tsev category. Then
the distinctive equivalence relation of (pT , (1, 0)) : T ×X ⇄ T is the following
one:

T × T ×X

PT×T

��

pT1 ×X

//

pT0 ×X//
T ×X

pT

��

oo

T × T
pT1

//

pT0 //

(1,0)

OO

T

(1,0)

OO

oo

Proof. It is clearly a PC-cartesian equivalence relation since each of the com-
muting squares above is a pullback, and

T × T
p0 //
p1

// Too

is the largest possible equivalence relation at the lower level.

The Mal’tsev category C is said to be functorially action distinctive when
in addition there is a functorial extension of D to the PC-cartesian maps; this
property is the common part of action accessible and pointed B-C facc cate-
gories, as are Gp, Rg, R-Lie and TopGp, see [6]; it implies that any fibre PtY C
has centralizers of equivalence relations and that any change of base functor
with respect to PC preserves the centralizers of equivalence relations. Now we
get the following:

Proposition 3.2. Let C be a pointed protomodular category with normalizers.
Then it is functorially action distinctive.

Proof. Let (f, s) be a split epimorphism and consider the following right hand
side K-cartesian map above the diagonal s0 : K[f ]  K[f ]×K[f ]:

K[f ]

kf
��

//
s0

//K[f ]

k
��

// s0// K[f ]×K[f ]

kf×kf
��

X

f
��

s0
//RX

φ
��

// (d0,d1) // X ×X

f×f
��

Y

s

OO

s0
//RY // (d0,d1) //

σ

OO

Y × Y

s×s

OO
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it determines relations RX on X and RY on Y which, actually, produce a
relation in PtC on (f, s). The factorization of the map between the extremal
split extensions in the diagram above through this K-cartesian map is described
below and shows that both relations are reflexive, and thus equivalence relations:

K[f ]

kf
��

K[f ]

k
��

X

f
��

s0 // RX

φ
��

Y

s

OO

s0
// RY

σ

OO

Moreover, since C is protomodular, the lower square is a pullback and this
becomes an equivalence relation in PtC on (f, s) whose two legs are PC-cartesian
maps. It is easy to show that it is the action distinctive equivalence relation
associated with (f, s): take another equivalence relation S in PtC on (f, s)
whose two legs are PC-cartesian maps. Now this last fact makes the left hand
side a split extension and produces the following map between the two extremal
split extensions:

K[f ]

s0◦kf
��

//
s0

//K[f ]

k
��

// s0// K[f ]×K[f ]

kf×kf
��

SX

ψ
��

(d0,d1)
//RX

φ
��

// (d0,d1) // X ×X

f×f
��

SY

τ

OO

(d0,d1)
//RY // (d0,d1) //

σ

OO

Y × Y

s×s

OO

Its factorization S → R through the right hand side K-cartesian map makes R
the distinctive equivalence relation on (f, s). Accordingly C is action distinctive.
The fact that it is functorially action distinctive is a consequence of Proposition
1.5.

3.2 Eccentric and faithful split epimorphisms

When C is an action distinctive Mal’tsev category, a split epimorphism (f, s) :
X ⇄ Y of PtC is said to be eccentric when the distinctive equivalence relation
D[f, s] is the discrete one, which is the case if and only if s−1(Z[R[f ]]) = ∆Y .
An object (f, s) is said to be faithful when, given any split epimorphism (f ′, s′)
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and any pair of parallel PC-cartesian maps:

K[f ′]

kf′

��

ξ // K[f ]

kf
��

X ′

f ′

��

x0 //

x1

// X

f
��

Y ′

y0 //

y1
//

s′

OO

Y

s

OO

they are equal as soon as they induce the same (iso-)morphism ξ at the level
of their kernels. Any faithful split epimorphism (f, s) is eccentric: the two legs
of its distinctive equivalence relation produce a pair of parallel PC-cartesian
maps with codomain (f, s); being jointly split, these maps induce the same
isomorphism at the level of their kernels. Accordingly they are equal, and the
distinctive equivalence relation is discrete.

Proposition 3.3. Let C be a pointed protomodular category with normalizers.
Then a split epimorphism is eccentric if and only if it is faithful.

Proof. Since (f, s) is eccentric and C has normalizers, the following right hand
side vertical diagram is a K-cartesian map according to Proposition 3.2:

K[f ]

kf′◦ξ
−1

��

//
s
R[f]
0

//K[f ]

kf
��

// s
R[f]
0 // K[f ]×K[f ]

kf×kf
��

X ′

f ′

��

(x0,x1)
//// X

f

��

// sX0 // X ×X

f×f

��
Y ′

s′

OO

(y0,y1)
//// Y // sY0 //

s

OO

Y × Y

s×s

OO

Let (x0, y0) : (f
′, s′) → (f, s) and (x1, y1) : (f

′, s′) → (f, s) be a parallel pair of
maps of split epimorphisms producing the same factorization ξ. In the diagram
above, the universal property of the K-cartesian map produces a dotted factor-
ization which means that x0 = x1 and y0 = y1; accordingly (f, s) is faithful.

A split epimorphism (f, s) : X ⇄ Y in the category Gp of groups is faithful
if and only if the associated group homomorphism Y  Aut(Kerf) is injective.
Similarly, it is faithful in a category R-Lie of Lie algebras (for some ring R) if
and only if the associated homomorphism Y  Der(Kerf) is injective.

3.3 Action accessibility

Recall that a Mal’tsev category C is action accessible [10] if the category PtC
has enough faithful objects, namely if, for any split epimorphism (f, s), there is
a PC-cartesian map (f, s) → (g, t) whose codomain is faithful. The categories
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Gp of groups, Rg of non commutative rings, R-Lie of Lie algebras and TopGp
of topological groups are examples of this notion. Now we get:

Proposition 3.4. When C is an exact action distinctive Mal’tsev category, it
has enough eccentric objects. When C is an exact pointed protomodular category
with normalizers, it is action accessible.

Proof. Let (f, s) be a split epimorphism. Consider its distinctive equivalence
relation:

DX [f, s]

Df

��

δX1

//

δX0 //
X

f

��

oo qX // // X ′

f ′

��
DY [f, s]

δY1

//

δY0 //
Ds

OO

Y

s

OO

oo
qY

// // Y ′

s′

OO

Complete the diagram by the quotients of the level-wise equivalence relations;
since pulling back along split epimorphisms reflects isomorphisms, the right hand
side downward square is a pullback since so are the left hand side ones. Accord-
ingly the map (qY , qX) is PC-cartesian. Let us introduce now the distinctive
equivalence relation D[f ′, s′]. In the exact context the distinctive equivalence
relations have a functorial extension on the regular epimorphisms (Proposition
5.3 in [6]). Accordingly we have (qY , qX)−1(∆(f ′,s′)) = R[qY , qX ] = D[f, s] =
(qY , qX)−1(D[f ′, s′]). Thus we get D[f ′, s′] = ∆(f ′,s′), and (f ′, s′) is eccentric.
When moreover C is exact and pointed protomodular with normalizers, (f ′, s′)
is faithful according to the previous proposition.

The construction above is precisely the way that the categoryRg of non com-
mutative rings was proved to be action accessible in [10], since the ideals used
in this proof were precisely the ideals associated with the equivalence relations
DY [f, s] and DX [f, s] given above.

4 B-C facc categories

In this section we shall show that any pointed protomodular category C with
normalizers is B-C facc. First recall that a category C is unital when it is
pointed, finitely complete and such that the following pair is jointly strongly
epic:

X // (1,0)// X × Y Yoo
(0,1)oo

Any pointed protomodular category is unital. In a unital category there is an
intrinsic notion of commuting pair of maps having same codomain.

4.1 Centralizers of normal subobjects

Let us begin with the following:
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Lemma 4.1. Let C be a unital category. Suppose the monomorphism u : U 

X is normal to an equivalence relation R on X and t : T → X is any map. The
pair (u, t) commutes in C if and only if there is a (unique) map ψ making the
following diagram a map of split extensions:

U // (0,1)// T × U
p0 //

ψ
��

T

t
��

oo
(1,0)
oo

U //
(0,u)

// R
d0 // Xoo
s0

oo

Proof. Suppose the map ψ exists, then the map φ = d1 ◦ ψ : T × U → X is the
desired cooperator of the pair (u, t) since we have: d1 ◦ψ◦(0, 1) = d1 ◦(0, u) = u
and d1◦ψ◦(1, 0) = d1◦s0◦t = t. Conversely let φ : T×U → X be the cooperator
of the pair (u, t). Since (1, 0) and (0, 1) are jointly strongly epimorphic, on the
one hand we can check that the diagram

U
(0,1)//

(0,u)

""

T × U

(tp0,φ)

��

T
(1,0)oo

s0t

||

X ×X

R

(d0,d1)

OO

commutes; and on the other hand, (d0, d1) being a monomorphism, it follows
that there exists a map ψ : T × U → R with ψ(0, 1) = (0, u) and ψ(1, 0) = s0t.
The proof is completed by noting that, again since (1, 0) and (0, 1) are jointly
epimorphic, we have trivially d0ψ = tp0.

The following proposition extends an observation of [14] from action acces-
sible categories to any functorially action distinctive category:

Proposition 4.2. Let C be a pointed protomodular category which is functo-
rially action distinctive. Suppose the monomorphism u : U  X is normal
to an equivalence relation R on X, and denote by Z[R] the centralizer of the
equivalence relation R. Then the normalization of the equivalence relation Z[R]
is the centralizer of the monomorphism u. In other words, any normal subobject
has a centralizer which is normal.

Proof. Let t : T → X be any map commuting with u. Since any pointed
protomodular category is unital, according to Lemma 4.1 there is a map ψ
making the following diagram commute:

U // (0,1)// T × U
p0 //

ψ
��

T

t
��

oo
(1,0)
oo

U //
(0,u)

// R
d0 // Xoo
s0

oo
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Since the row are split extension and the pointed category C is protomodu-
lar, the right hand side square is a pullback which determines a PC-cartesian
in PtC. Since moreover C is functorially action distinctive, then t−1(Z[R]) =
DT (pT , (1, 0)) = ∇T , according to Lemma 3.1. Then the following diagram
asserts that the map t factors through the normalization ν of Z[R] which con-
sequently becomes the earnest centralizer of u:

T

(0,1)

��

τ // K[d0]

(0,ν)
��

T × T

pT0
��

t̃ //

pT1

qq

Z[R]

d0
��

d1

rrT

s0

OO

t
// X

s0

OO

since we have ν ◦ τ = d1 ◦ (0, ν) ◦ τ = t ◦ pT1 ◦ (0, 1) = t.

4.2 Algebraically cartesian closed categories

A unital category is said to be algebraically cartesian closed (acc) (see [9], orig-
inally considered in [15, 16]) when the pullback functors along the terminal
maps between categories of points have right adjoints. This was shown in [9] to
be equivalent to any subobject having an earnest centralizer (that is a univer-
sal map commuting with it; cf. Definition 3.2.2 [15]; this map is necessarily a
monomorphism).

Proposition 4.3. Let C be a unital category with normalizers. Then any map
commuting with v factors through the normalizer of v. If, in addition, C has
earnest centralizers of normal subobjects. Then it is acc.

Proof. (cf. Proposition 2.1 in [17]) Let v : U  T be any monomorphism and
u : U  X its normalizer. Let t : T̄ → T be any map commuting with v and
φ : U × T̄ → T the cooperator of this pair:

U × T̄

τ
��

φ

��

U //
u

//
;;

(1,0)
;;
✇
✇
✇
✇
✇
✇
✇
✇

X

w
��

U //
v

// T T̄
too

(0,1)

kk

Then we have φ ◦ (1, 0) = v where (1, 0) is a normal monomorphism. Now
since u is the normalizer of v, we get a factorization τ : U × T̄  X such that
τ ◦ (1, 0) = u, w ◦ τ = φ and consequently w ◦ τ.(0, 1) = t. Moreover the pair
(u, τ ◦(0, 1)) commutes since, composed with the monomorphism w, it gives rise
to the commuting pair (v, t).
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Suppose that u has an earnest centralizer ν : Z[u]  X , there is a factor-
ization ξ : T̄ → Z[u] such that ν ◦ ξ = τ ◦ (0, 1) and consequently the following
identity: (w ◦ ν) ◦ ξ = w ◦ τ ◦ (0, 1) = φ ◦ (0, 1) = t produces the required

factorization which show that Z[u]
ν
 X

w
 T is the earnest centralizer of

v.

Corollary 4.4. Let C be a pointed protomodular category with normalizers.
Then it is acc.

Proof. The category C is functorially action distinctive by proposition 3.2. Ac-
cording to the Proposition 4.2 any normal monomorphism has an earnest cen-
tralizer. Any pointed protomodular category being unital, the conclusion comes
from Proposition 4.3.

It is worth describing a direct construction of the earnest centralizer of a
monomorphism v : U  T . For that consider the normalizing decomposition

U
n
 S

(r0,r1)
 T × T of the monomorphism (v, v) : U  T × T . Now consider

the following pullback:

Z[v]

ζv
��

// i // S

(r0,r1)
��

T //
(0,1T )

// T × T

The monomorphism i is normal since (0, 1T ) is normal.

Proposition 4.5. Let C be a pointed protomodular category with normalizers.
Then the monomorphism ζv is the earnest centralizer of v. When v is normal, S
is an equivalence relation and ζv the normalization of this equivalence relation.

Proof. The following rectangle is a pullback since v is a monomorphism:

1

��

// //
// //

Z(v)

i
��

//
ζv

// T

(0,1)
��

U // n //
//

(v,v)
//

S // (r0,r1)// T × T

Accordingly, since the right hand side square is a pullback, the left hand square
is a pullback and shows that the intersection of the two normal monomorphisms
n and i is trivial. Accordingly, since the category C is pointed protomodular,
these two normal monomorphisms do commute, see [4]. As a consequence, the
subobjects v = r1 ◦ n and ζv = r1 ◦ i commute. Let t : T̄ → T be any map
commuting with v. Then the composite (0, 1)◦t : T̄ → T×T commute with (v, v)
and, according to Proposition 4.3, factors through S, and thus t factors through
Z[v]. When v itself is normal, the decomposition (v, v) = sT0 ◦ v produces a
factorization T → S which makes S a reflexive relation and thus an equivalence
relation.

22



4.3 Fibrewise algebraically cartesian closed categories

A fibrewise algebraically cartesian closed category (facc) Mal’tsev category [9]
is a Mal’tsev category C whose any fibre PtY C is algebraically cartesian closed
which is equivalent to saying that any fibre PtY C has centralizers of subob-
jects. It is called B-C facc [6] when in addition any change of base functor with
respect to the fibration PC preserves those centralizers; we recalled that any
pointed B-C facc Mal’tsev category is functorially action distinctive. Although
the definition of a normalizer is not quite the same here, we omit the proof
of the next proposition since its proof is essentially the same as the proof of
Proposition 1.13 in [17].

Proposition 4.6. Let C be any pointed protomodular category. Suppose it has
normalizers. Then any fibre PtTC has normalizers. Moreover any change of
base functor with respect to the fibration PC preserves the normalizers.

Whence the following straightforward consequence:

Theorem 4.7. Let C be any pointed protomodular category. When it has nor-
malizers, it is B-C facc.

Proof. According to the previous proposition, since C has normalizers, the same
holds for the pointed protomodular fibre PtY C. By Corollary 4.4, any fibre
PtY C is then acc, and C is facc. Moreover, by the previous proposition any
change of base functor with respect to PC preserves the normalizers. We recalled
above that these change of base functors preserve the centralizers of equivalence
relations in the fibre PtY C [6] and consequently, in the protomodular context,
the centralizers of normal subobjects (see Proposition 4.2) of these fibres. Con-
sequently, following the construction given in Proposition 4.3, it preserves any
centralizer, and the category C is B-C facc.

This result could be understood as a partial algebraic counterpart of the
cartesian closedness assumed in Section 2, since a category is facc if and only
if the change of base functor with respect to the fibration PC along any split
epimorphism (resp. any regular epimorphism in the regular context) has a right
adjoint.
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