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REPRESENTATIONS OF CROSSED MODULES
AND OTHER GENERALIZED YETTER-DRINFEL ’'D MODULES

VICTORIA LEBED AND FRIEDRICH WAGEMANN

ABSTRACT. The Yang-Baxter equation plays a fundamental role in var-
ious areas of mathematics. Its solutions, called braidiags built,
among others, from Yetter-Drinfel modules over a Hopf algebra, from
self-distributive structures, and from crossed modulegroups. In
the present paper these three sources of solutions areduini$iele the
framework of Yetter-Drinféd modules over a braided system. A sys-
tematic construction of braiding structures on such magligi@rovided.
Some general categorical methods of obtaining such géredatetter-
Drinfel’d (=GYD) modules are described. Among the braidings recov-
ered using these constructions are the Woronowicz and timaihkigs
braidings on a Hopf algebra. We also introduce the notionsassed
modules of shelves / Leibniz algebras, and interpret the@¥d3 mod-
ules. This yields new sources of braidings. We discuss vendtiese
braidings stem from a braided monoidal category, and descesveral
non-strict pre-tensor categories with interesting asdors.

1. INTRODUCTION

A Yang-Baxter operatoror abraiding, isamapor: VeV - VeV
providing a solution to th&ang-Baxter equation

(YBE) (c@V)o(V®o)o(c@V)=(Vao)o(c@V)o(V®o),

here and below we use notations of tyige= Id,,. This equation makes
sense in any strict monoidal category, but in this paper wilgnavork
in the categorWect, of vector spaces over a fiekland in the category
Set of sets (with the symbok meaning the tensor product ovierand
the Cartesian product respectively). The term “braidingthes from the
graphical interpretation of (YBE), illustrated in Fig. lede the braidingr
is denoted b)x, and all diagrams should be read from bottom to top.
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FIGURE 1. The YBE as the third Reidemeister move

The YBE plays a fundamental role in such apparently distahdgias
statistical mechanics, particle physics, quantum fieldtye@uantum group
theory, and low-dimensional topology; see for instance {80a brief in-
troduction. The study of its solutions has been a vivid researea for the
last half of a century. Two sources of braidings proved to fpaoticular
importance:

Source 1: A (right-right)l Yetter-Drinfeld moduleover a Hopf algebra/
is a vector spacé/ endowed with a right/-actionp and a rightH-
coactiond, compatible in the following sense:

(1) (m * h) o) @ (m* h)qy = m) * hz) @ s(ha))ma)hes)

(we use the symbal for the actionp, and M.E. Sweedler’s formal no-
tationsé(m) = m) ® mqy, A(h) = hay ® h(), with the summation
sign omitted). These structures were introduced by D. Y§B@®] un-
der the name “crossed bimodules”, and repeatedly rediseduender
different names. They are known to be at the origin of a vesy faam-
ily of invertible braidings, which is complete in the categwect, of
finite-dimensional vector spaces [10, 11, 31]. Concretblymap

(2) oyp(m ®n) = ng) @ m*nq)

endows a YD modulé/ with a braiding. One can say more: the cat-
egory YD of YD modules overH is braided monoidal, and even
modular whenH is a group algebra of a finite group. This rich cat-
egorical structure is at the heart of powerful invariantéirfs and3-
dimensional manifolds.

Source 2: A self-distributive setor briefly shelf is a setS endowed with a
binary operationd which is self-distributive, in the sense of

(3) (a<b)<c=(a<c)<(b<c).
Major examples are
e groups with the conjugation operatign« ¢’ = (¢')'g¢/;

e setsS with a preferred mag': S — S, their shelf operation de-
fined bys < s’ = f(s).

1In this paper all the (co)actions are on the right, so the tegim is systematically
omitted in what follows.
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A shelf carries the following braiding:
(4) osp(a,b) = (b,a <b),

which is the key ingredient of an extremely strong and effityecom-

putable class of invariants of links, knotted surfaces,tiaibgraphs,
and other topological objects. The self-distributive aygmh to knot
theory originated from the work of D. Joyce and S.V. Matveld, 28];

see also [8] for a formulation in terms of braidings.

A new source of braidings was recently found by P. Bartay [2]:
Source 3: A crossed module of groups the data of a group morphism

m: K — G and a (right)G-action- on K by group automorphisms,
compatible in the sense of

(5) kn(k) = (K)""kK, kK € K,
(6) w(k-g) =g 'n(k)g, keK, geg.

A K-gradedG-module(M = @k My, ) with the action of any €
G sending);, onto M., is called arepresentatiorof (K, G, , ). The
map

(7) O-CTMOd<m ® n) = ZkEK

defines a braiding on such ad; heren, is the component of living

in the gradingk. Again, there is much more structure in the story: the
representations of a crossed module form a braided moncadiedjory
M(K,G,r,-) (often abusively denoted byt ( K, z)), which is pre-
modular if G and K are finite, and modular if moreoveris a group
isomorphism (in which case one recovers the categdB[&). See

[2, 27] for more detalils.

In these three cases, the braidings share the same form:

ne @ m x w(k)

(8) c=M®p)o(r@m)o(M®0)
(see Fig. 2 for a graphical version). Herés theflip
T(a®b) =b® a;

7 is the identity in the first two examples; for a shelf we put) = a ® a
andp(a ® b) = a < b; and in the last examplé(m) = >, my ® k.

p
T T

J

FIGURE 2. The general form of braidings



4 VICTORIA LEBED AND FRIEDRICH WAGEMANN

In this paper we introduce the categd?P¢ of generalized Yetter-Drin-
feld moduleswhere A and C' are braided objectdi.e., objects endowed
with braidings) in a symmetric monoidal categatyrelated via arentwin-
ingmapC ® A — A® C (Section 2). Under certain conditions on the map
m: C = A, formula (8) (with the map replaced with the underlying cate-
gorical braiding ofC) yields a braidingon any generalized YD module/
(Theorem 1). This abstract setting unifies the three brgidonstructions
above. Sections 3-4 treat some original ones, based on

e twisted crossed modules of shelwabich generalizerossed mod-
ules of racksdefined by A. Crans and the second author [7];

e non-normalized crossed modules of Leibniz algebnrdsch gener-
alize classicatrossed modules of Lie algebras

In particular, we introduce the notion c#presentations of a crossed mod-
ule of shelves / Leibniz algebraand endow them with braidings (Theo-
rems 2-3). Section 5 describes a vast source of generalipethddules.
At its heart is a categorical-center-like constructiorgsel in spirit to the
factorisations of a distributive lawf U. Krahmer and P. Slevin [15]. Var-
ious generalized YD module structures on a Hopf algebra mrsepted as
an illustration, the associated braidings recoveringetaiss.L. Woronow-
icz and M.A. Hennings [32, 13]. Possible (pre-)tensor stres on)DY
are discussed for our major examples. In the case of croseddles of
racks / Leibniz algebras, we discoyae-tensor categorie@.e., categories
with a tensor product but without a unit object) with inténeg non-trivial
associativity morphisms (Theorems 4 and 5).

The idea of mixing compatible acting and coacting structwean be
found in the literature under various guises: J. Beck’s wohidestributive
laws (3], the AC-bialgebras of T.F. Fox and M. Markl [12], the algebra-
coalgebra entwining structures of T. Brzezifski and S.itVig], J.-L. Lo-
day’s generalized bialgebres [25] interpreted in termsiwfdaules over a
bimonad by M. Livernet, B. Mesablishvili, and R. Wisbaue®,[22], to cite
just a few. The framework chosen in each case depends orageazl con-
structions and results one wants to extend to a generalktdgs the triple-
cotriple philosophy of [12] is well adapted for (co)homojogpnstructions,
the category of vector spaces is sufficient for developiran¢um principal
bundle theory and generalized gauge theory in [4], whileageprovide a
convenient setting for generalizing Poincaré-Birkhafitt, Cartier-Milnor-
Moore, and the Rigidity theorems in [25]. Theaided frameworkwith a

2The Reader should be careful with the various braidingsriegt®ur construction at
different levels: the global symmetric braiding defined be whole category¢, the local
braidings the objectd andC' come with, and the braiding we aim to constructs for our
generalized YD module.
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“braided-distributive” law relating the action and coactiby braided ob-
jects) is adopted in the present paper for the followingoras

e asshownin[19, 17], itincludes all the basic structures kedraer-
ested in: (co)associative (co)algebras, bialgebrasniz#igebras,
shelves, etc.;

e it allows one to treat both structural and entwining mapsaftiing
and coacting structures in a uniform way;

e technical verifications can often be substituted with theemcser-
friendly and transparent diagrammatic calculus;

e the map (3) is well defined and remains a reasonable candaate
being a braiding on our modules.

The connections with the framework of entwining structuaes discussed
in Remark 2.9.

Acknowledgements.This work was supported by Henri Lebesgue Cen-
tre (University of Nantes), and by the program ANR-11-LABR20-01.
We thank Peter Schauenburg, Ulrich Krahmer, and Ya&ieréor fruitful
discussions.

2. GENERALIZED YETTER-DRINFEL'D MODULES

Fix a strict monoidal categor{C, ®,I). In order to introduce the no-
tion of generalized Yetter-Drinfel modules, we first recall some definitions
from [17]:

Definition 2.1 (Braided vocabulary)
e A rankr braided systenm C is a family Vi, V5, ..., V, of objects
of C endowed with gmulti-)braiding, i.e., morphisms
UZ,]:O-VL,VJ‘/Z(X)%_)‘/}@‘/Z) 1§Z§]§T7
satisfying thecolored Yang-Baxter equation
(CYBE) (O‘j,kj & ‘/z) o (V} & O‘iJ{:) o (O'Z'J ® Vk) =
(Ve ®0i5) 0 (03 @ V) o (Vi @ 0jk)
on all the tensor producis®V; @V, with1 < ¢ < j <k <r. Such
a system is denoted HYV;)1<;<,; (0 ;)1<i<j<-) OF briefly (V, 7).

e Rankl1 braided systems are calledaided objectsn C.

e A (right) braided moduleover a braided systerfi’, ) is an ob-
ject M equipped with morphismg := (p; : M ® V; = M)i<i<,
satisfying, foralll <i:<j <r,

9) pio(pi®@Vj)=pio(p;@V;)o(M®o;;).
Here both morphisms go from/ ® V; ® V; to M.
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e A morphism between braided module¥, ) and (M’, /) over
(V,@) is a morphismpy € Morc(M, M') respecting the module
structures, in the sense of

(10) pop =p;o(paV).
e The category of braided modules and their morphisms is éenot
by Mod,y 5. (Right) braided comodulegheir morphisms, and the

categoryMod V) are defined in an analogous way.
e A braided (co)module structure on the unit objed referred to as
abraided (co)character

Note that our braidings are not necessarily invertible.
The defining relations (cCYBE) and (9) can be expressed inahguage
of colored knotted graphs, as shown in Fig. 3.

R N

ViViVe o ViV MV, MV, V,

FIGURE 3. Braided systems and braided modules
The following basic examples frorn [19] will be used in whatdavs:
Example 2.2(Unital associative algebras)
A unital associative algebr@, 1, ) in C carries the braiding
(11) OAss =V Q U,

which in the categorWect, becomes 4,s(v®v') = 1®vv'. The YBE for

0 4ss IS €quivalent to the associativity @f The notion of braided module
over (A; 04ss) is slightly broader that the usual notion of module over the
algebraA: it involves the mixed relation

po(p@A)o(M@v@pu)=po(p®A)
instead of the usual separate relations
po(M@pu)=po(p®A), po(M®v)=M.

The category of suchon-normalized algebra modulesith the usual no-
tion of morphisms, is denoted yiod’}". The notationVIod’; is reserved
for usual, or normalized, algebra modules.

Example 2.3(Counital coassociative coalgebras)
Dually, a counital coassociative algel§tay A, ) in C is a braided object,
with the braiding

(12) OcoAss — EX Au
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or, in Vecty, 0oass(v @ V') = e(v)A(v'). The YBE foro., 45, IS equivalent

to the coassociativity ah. Similarly to the algebra case, braided comodules
over(C; o.,4ss) form a categoriMod$, which extends the categoMod¢

of usualC-comodules.

Example 2.4(Shelves)

A shelf (S, <) is a braided object iSet, with the braidingrsp from (4).
The YBE is equivalent to the self-distributivity (3) herendabraided mod-
ules over(S; osp) are the usual modules ovsr(also calledS-sets or S-
shadowssee Definition 3.3 for details).

Example 2.5(Leibniz algebras)

Recall that aright (unital) Leibniz algebran a symmetric preadditive
monoidal categoryC, ®, I, ¢) is an objecy with morphismg, |: g®g — g
(andv: I — g) satisfying the_eibniz(and thelLie unit) conditions

Lle(go[])=[]eo([]®g)—[]o([]®g)o(g®cy)
[7]0(9@”/):[7]0(’/@9):07

which in Vect, become[v, [w,u]] = [[v, w], u] — [[v,u],w] and v, 1] =
[1,v] = 0. An example of a unital Leibniz algebra Mecty is given by
the endomorphism algebtand, (M) of a vector spacé/, with [f, g] =
fg— gf andl = Id,,. This generalization of Lie algebras appeared, in its
non-unital version, in the work of C. Cuvier and J.-L. Lod8y 23, 24]. To
such data one can associate the braiding

(13) OLei = Cgg +r® [7 ]7

which in Vecty readsr.;(v®v') = v @v+1® (v, v']. The YBE foroy,; is
equivalent to the Leibniz condition for|. Braided modules ovely; or.;)
are identified with non-normalized anti-symmetric modwesr our Leib-
niz algebra; the corresponding module category is denogeliibd;>"".
See [26] for more details on the representation theory dihigialgebras.

Example 2.6(Bialgebras)

Take a finite-dimensional Hopf algebrfa overk. Two braided system
structures o H, H*) were described in [16, 17]. Braided modules over
these systems include, respectively, Hopf modules and Y8utes ovelrri.

A rank 4 braided system from [1.7] allows one to recover Hopf bimodule

Remark 2.7. Arank2 braided systeniC, A; o¢,¢, 04,4, 0¢,4) decomposes
as two braided object®”; o¢ ) and(A; 0.4, 4), connected by aantwining
mapC ® A — A ® C satisfying two compatibility conditions, namely,
(cYBE)onC® C® Aand onC' ® A ® A.

Definition 2.8 (Generalized YD modules)
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o et (C, A; UO,CaUA,AaUC,A) be a braided system ia. A (right-
right) Yetter-Drinfeld moduleover this system is an objedt of C
with a right (A; 04 4)-module structurep and a right(C’; o¢ ¢)-
comodule structure, compatible in the sense of

(14) Sop=(p®C)o(M®aca)o (@ A).

e A morphism between two YD modules over the same braided sys-
tem is a morphism i€ preserving the module and the comodule
structures (cf. (10)).

e The category of YD modules ovéf’, A; @) and their morphisms is
denoted byyDY.

Condition (14) is graphically represented in Fig. 4. It canitterpreted
as the requirement farto be a morphism iMod 4.5, ,), Or equivalently
the requirement fop to be a morphism iMod “¢:¢) (Remark 5.4). It can
also be regarded asbaaided-distributive lawwhich allows the action and
the coaction to switch places in a composition with the héth@entwining
braiding component. IVecty, (14) becomes

(m*a)o) @ (m*a)qy = m) * a @ mq),

using Sweedler’s notations and another formal notation(c®a) = a®c.

MC M C
" S Ve
P 0

M A M A

FIGURE 4. Generalized YD modules

Remark 2.9 (An alternative viewpoint: entwining structures)

In a sufficiently nice category (for instanceVMecty or Set), an(A; o4 4)-
module structure is the same thing as a module structuretbeeunital
associative algebra

T,(A) = T<A)/<O‘A,A —Idaga)’

whereT'(A) is the tensor algebra of, (64 4 —Idaga4) is its two-sided ideal
generated by the image of, 4 — Id4x4, and the product off,(A) is in-
duced by the concatenation. Dually,@; o «)-comodule can be regarded
as a comodule over the counital coassociative coalgglir@), with the co-
product induced by the deconcatenation. Further, the amwimapoc 4
extends to a mapr(cy 74 in the standard way, which then descends to a
mapor, ()1, (4) SINCEo¢, 4 respects 4 4 andoc ¢ (inthe sense of (CYBE)).
One obtains an entwining mamp,, )z, 4) between the algebrg, (A) and
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the coalgebrd,(C), in the sense of [4]. Moreover, a comparison of the
respective action-coaction compatibility conditionslggea category iso-
morphism

C Ts(C)
YD =~ Mody ),

with the category ofl,(A)-7,,(C)-bimodules in the sense of [12] on the
right. On the other hand, such algebra-coalgebra-bimsdaolen a partic-
ular case of our generalized YD modules, since (co)asseeistructures
can be regarded as braided ones, as described in Exemp2£218 what
follows we stick to the braided approach, more efficient ama/enient for
our goals. The algebra-coalgebra viewpoint will only reeege in Exam-
ples 3.6 and 3.11.

We now show how to endow YD modules oV€f, A; ) with a braiding,
provided that our category is symmetric, and our braided system comes
with a “nice” connecting morphism: C' — A.

Theorem 1(Braiding for generalized YD modules)

Take a braided systeift”, A;7) and a morphismr: C' — A in a sym-
metric strict monoidal categoryC, ®,1I,¢). Suppose that for some non-
negative integers;, as, 71, - the following technical condition is satisfied:
(15) (A® Uj}A) o(caa®@m)o(m®oca)o(cce®@m)o(C® Ugfc)

=A@ (A@T®A)o(cca®@m) o (CRT®C)o(C®al)
(Fig. 5). Then any Yetter-Drinfel moduleg M, p;, 0;) over (C, A;7) form
a braided system i@, with the braiding on\/; ® M, defined by

(16) ogvp = (M; @ pi) o (eas;m; @ ) 0 (M; @ d5).
AAA AAA
U,(ZGA UifA
CA A T
T 0c.A = Cc.A m
Cc.c ™
Uz*l,c Ug?,(?
ccc ccc

FIGURE 5. Technical condition on the connecting morphism

Fig. 2 contains a diagrammatic version of this braidingVktt,, it can
be written using Sweedler’s notations as

O'gYD(m (29 n) = NY0) &R m * W(n(l)).

Remark 2.10. Note that in concrete examples,is rarely a morphism of
braided objects.
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Remark 2.11. In the examples we are interested in, the morphisms
and/oro 4 4 are often idempotent. In this case, condition (15) holdsafbr
sufficiently large values of the's and/or thex's.

Proof of Theorem 1We verify Equation (cYBE) for,y p graphically. The
naturality and the symmetry of the categorical braidinffepicted by a
solid crossing;<) is repeatedly used: it allows one to move any strand
across any part of a diagram. The desired equation is depci€&ig. 6.

M, M, M;
FIGURE 6. Claim of the theorem

We work on both sides of the equality in order to save spacendJibe
naturality and the symmetry of one moves all the blue-red coaction-action
circuits to the bottom of the diagrams. Fig. 7 contains tiselteng picture.

>

FIGURE 7. Dragging down the coaction-action circuits

The YBE for the braiding: allows one to identify the upper parts of the
diagrams. To compare the lower parts, recall that “coatbihge strands or
“acting” red strands can be twisted near a thick green staaychumber of
times thanks to the defining property (9) of braided (co-)oies (Fig. 3);
we display these multiple twists by solid boxes. Moreovetiyg and coact-
ing strands can be switched using the defining property (Ld¢oeralized
YD modules (Fig. 4); we apply this to the middle strand of tiegdam on
the right. The lower parts of our diagrams can thus be tramsdd to the

ones on Fig. 8.
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T ) akl\

(6D) -
2 S "

FIGURE 8. Transformed lower parts of the diagrams

This last assertion follows from our technical hypothe&E) (Fig. ). O

To illustrate the unifying nature of the notion of generatizY D modules
and of the braidings provided by the theorem, we now inténpsaal YD
modules and representations of a crossed module of groufi3 asodules
over carefully chosen braided systems. The braidings diyeaur theo-
rem in these two settings recover the usual braidings faelstructures,
recalled in the Introduction. Original examples will beated in the fol-
lowing sections.

Example 2.12(Generalized YD modules generalize usual YD modules)
To a Hopf algebrd H, i, v, 2, A, S) in a symmetric monoidal category
(C,®,1, c), one can associate the following ratkraided system ig:

e its components are two copiesbt C = A = H,
e the braiding is defined by

0C,C = OcoAss) OA,A = OAss;
oo = (H®IU2)O(CH7H®H®H)O(S®CH7H®H)O
(cun ® H@ H)o (H® A

(Wherep? = po (u® H),A> = (A® H)oA).
In Vecty, the morphismv¢ 4 takes the familiar form

Note that itis not a braiding off in general. As mentioned in Examples 2.2
and 2.3, the cYBE o’ ® C' ® C' and onA ® A ® A follows from the
coassociativity ofA and, respectively, from the associativity @of The
verification of the remaining instances of the cYBE (@ C' ® A and on

C ® A® A) is lengthy but straightforward.

Recall the braided module analysis from Examples 2.2 andiagether
with a comparison of the definition aef. 4 with the defining relation (1)
for usual YD modules, this identifieg D as the category” Y D4 of non-
normalized (in the sense of Examples 2.2 and 2.3) YD modules &
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in C. The category YD = YDH of usual, or normalized, YD modules is
its full subcategory:

YDE ="YyDE — ™YDi = YDY.

Now, consider the morphism = Idy. A direct verification shows that
it satisfies condition (15) witly; = ay; = 3 = v = 1. Thus Theo-
rem 1 applies here. F@t = Vecty, the braiding obtained is precisely the
braidingoy p from (2).

More generally, an analogous ralbraided system can be constructed
for an H-bimodule coalgebré&’ and anH -bicomodule algebra. YD mod-
ules over this system yield a non-normalized versiof A, C')-crossed
H-modules, as defined by S. Caenepeel, G. Militaru, and S. ZhThese
modules can thus be endowed with braidings, provided ttditiadally one
has a connecting morphism C' — A.

Example 2.13(Representations of a crossed module of groups as general-
ized YD modules)

To a crossed module of group&’, G, , -) (see the Introduction), one
can associate the following ragkraided system iVect, (or analogously
in Modp, for a unital commutative ring):

e as components, také = kK andA = kG,
e the braiding is defined by

0C,c = OcoAss) OA,A = O Ass,
ocalk®g)=g®(k-g),

wherek K" andkG are endowed with the usual Hopf algebras struc-
ture (given by a linearization of the mapsg) = g ® g, (g) = 1,
ug®yg)=gg,v(l) =e Sg)=g7").
As usual, the cYBE o ® C' @ C' and onA ® A ® A follows from the
coassociativity ofA and, respectively, from the associativity @of The
cYBE onC ® C'® A is obvious, and o’ ® A ® A itis a consequence of
being a group action.
Now, consider & K -coactiond on M which is counital, in the sense of
(M ®e)od =M, wheres(k) =1 € kforall k € K. Such a coaction is
the same thing as A-grading: the correspondence is given by

o(m) = ZkeKmk ® k, and my = (M ® 0) o 6(m),

where ;. is the linearization of th&ronecker delta ma@y (k') = g x-
Moreover, a map\/ — M’ is compatible withk K-coactions if and only
if it preserves the correspondirdg-gradings. Further, condition (14) defin-
ing a generalized YD module is equivalent here togaf G sending)M/,
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onto M;.,. Thus Bantay’s representation categdry( K, GG) is the full sub-
category ofYDiE consisting of all normalized modules (in the sense of
Examples 2.2 and 2.3). In other words, one has a categoysioc

M(K.G) ="YDE - VDS = YDIE,

Condition (15) forr holds true witha; = ay = 11 = 5 = 1; this
follows from (5) and fromr being a group morphism. The braiding from
Theorem 1 coincides here with, 5;.q from (7).

Remark 2.14(Generalized YD modules as braided modules)
If the objectC admits a duaC* in C, then the braided syste(, A;7)
can be partially dualized tQ4, C*;5*), with a category isomorphism

(17) yDg >~ MOd(A,C*;E*).

In the context of Example 2.12, the ddal exists ifH is a finite-dimensional
Hopf algebra ovek (or at least is graded and of finite dimension in every
degree). In this case (17) can be continued as

(18) YDjj ="YDj — "YDij ~ Mod i 1+:5+) ~ Modpy ),

where the algebr®(H) is the Drinfeld double ofH. In Example 2.13, the
dual exists ifK is a finite group, in which case (17) can be continued as

(19) M(K,G) = ™YDEE ~ Mod ke x ) o7) =~ Mod ) ri-

Explicitly, (kK)* has a standark-linear basis given by the delta mags
k € K, which form a complete orthogonal system of idempotentd,@n
acts on(kK)* by algebra automorphisms according to the rule

qg: 8k = 8k-g*1-

Note that originally BantaglefinedM (K, () as the categori¥lod ( x)« kg
See [16, 17, 20] for a general treatment of the situationshitkvcategory
isomorphisms of type (1.8)-(19) emerge.

3. REPRESENTATIONS OF A CROSSED MODULE OF SHELVES

In [7], A. Crans and the second author generalized the nati@nossed
module of groups to that of crossed module of racks, andestiits proper-
ties. We now recall their definition, and extend it to the cafsghelves (see
Source 2 in the Introduction for definitions). We further pose a notion
of representations of such crossed modules, include itthredramework
of generalized YD modules, and, using Theorem 1, obtain aswewce of
braidings. This source comprises both the self-distnitytbraiding osp
and Bantay'’s braidingc, 104-
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Definition 3.1. A rackis a shelf( R, <) for which all theright translations
tor = ar
are bijective; their inverses are denotedrby- ' < r.

Example 3.2.A groupG with the conjugation operation<i ¢’ = (¢') tg¢’
is a rack, calledhe conjugation rack of7, and denoted b¢'onj(G).

Definition 3.3 (Crossed modules of shelves and racks)

¢ A shelf/rack morphisrbetween shelves/rack®, <) and (.S, <) is
amapf: R — S intertwining their shelf operations:

flr<ar’) = f(r) < f(r').

Shelf/rack iso-, endo- and automorphisms are defined aoasbyg
e Given a shelf S, <), anS-setis a setM with a map«: M x S —
M (sometimes seen as a map.S — Endse:(M)) satisfying

(200 (mas)as=(m4s)4(s<s), meM, sses.

e Given arack(R, <1), an R-rack-setis an R-setM on which R acts
by bijections, i.e., the maps — m <« r are invertible for all- € R.

e The maps« above are calledhelf/rack actions

e S-modules(or R-rack-modulesin an arbitrary categor¢ are de-
fined as mapg: S — End¢(M) (or p: R — Autget(M)) satisfy-
ing p(s)p(s") = p(s)p(s < 8).

¢ A crossed module of shelvisghe data of a shelf morphism R —
S and a shelf actionof S on R by shelf morphisms, compatible in
the sense of

(21) r-n(r)y=r<r, r,r' € R,
(22) m(r-s)=m(r) <s, reR, seS.

e If R andS above are racks, with acting by rack automorphisms,
one talks about arossed module of racks

e An augmented racks the data of a groupr, a G-setR, and aG-
equivariant mapr: R — G, in the sense of (6).

Remark 3.4 (An alternative definition)

The definition of a crossed module of shelves/racks is reaiutndt suf-
fices to have generalized augmented shelf/rathkat is, a shelf/racls, an
S-set orS-rack-setR, and anS-equivariant mapr: R — S (in the sense
of (22)). For this data, relation (21) can be taken as the itiefinof a
shelf/rack operation o, calledthe induced operatigrnwith this choice,
7w becomes a shelf morphism, afdacts onR by shelf (auto)morphisms.
See |7] for more details. We keep the original definition idearto better
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see its analogy with that of a crossed module of groups, hutacatice often
turn to the lighter one.

Remark 3.5 (An augmented rack as a crossed module of racks)

Take an augmented ra¢l, G, r, -). Since a group action bg can be
viewed as a rack action iyon;j(G), one obtains a generalized augmented
rack (R, Conj(G),n,-), which is in fact a crossed module of racks (Re-
mark 3.4). In particulark can be endowed with the induced rack structure
r < r’ =r-xw(r'), which justifies the terraugmented rack

Example 3.6(Augmentation over the associated group of a rack)
The associated groupiss(R) of a rack(R, <) is the free group o
modulo the relations

(23) rr’ =7r'(r <r’), r,r" € R.

This construction actually defines a functoss from the category of racks
to that of groups; its right adjoinfonj stems from the conjugation rack
construction. The groudss(R) acts onR via

(24) ror=r<ar, r-(r) Tt =rar

The tautological mag4ss: R — Ass(R), r — ris Ass(R)-equivariant.
Thus every rack can be augmented ades(R). This augmentation igni-
versal in the sense that for any augmented rack strudtirer, 7, -) with
the sameR, the mapr: R — G factors throughr,,. Note also thatr 4,
induces a bijection betweefiss(R)-modules and?-rack-modules in any
category (its inverse is given by formulas analogous to)(2@ur last ob-
servation concerns the case whét) <) is simply a shelf:R is then acted
on by itsassociated monoidnly, i.e, the free monoid o modulo (23).

Example 3.7(Augmentation over the automorphism group of a rack)
Another augmentation of a radi?, <) is given by the mapr: R —
Aut(R) sending an- € R to the right translation magy., which is indeed a
rack automorphism oRR. By definition, R carries anAut(R)-action. The
mapma.: R — Aut(R), r — t, is easily shown to baut(R)-equivariant,

completing our augmented structure.

Note that in both examples above, the induced operatidr isnn fact its
original rack operation. According to Remark 3.5, one thbotsims crossed
modules of racks with an arbitrary rack as the-part” of the structure.

We now mimic the development of the representation theoeyabssed
module of groups in the generalized setting of a crossed raadishelves.

Definition 3.8 (Representations of a crossed module of shelves/racks)
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e A set-theoretic/linear representation of a crossed modtihelves
(R, S,m,-)isanS-module()M, «) in Set / in Vect,, endowed with
an R-grading satisfying the compatibility condition

M, 4sC M,.,.

The category of such representations (with the obviousonatf
morphisms) is denoted b¥1sq: (R, S, 7, -), or Simply Mget (R, S)
when this does not lead to confusion. The notatldg(. . .) is used
in the linear setting.

o If (R, S, ,-)aboveisacrossed module of racks anfl «) is anS-
rack-module, then we talk aborgpresentations of a crossed mod-
ule of racksand use the notationst%(. . .).

Note that a representation of a crossed module of rack$ieatisstronger
compatibility conditionM/, € s = M,.,.

Example 3.9(Adjoint representations)

Given a shelf/racksS, <), the mapr = Idg: S — S together withs-s' =
s < ¢ define a crossed module of shelves/racks, for witicitself is a
representation (callealdjoint), with s € ' = s < s’ andS, = {s}.

Example 3.10(A crossed module of groups as a crossed module of racks)
A crossed module of groupdy, G, 7, -) is in particular an augmented

rack, and thus (Remark 3.5) gives rise to the crossed modiilescks

(K, Conj(G),,-), with the induced rack operation < &' = k - w(k)

on K. Relation (5) transforms it inté < &’ = (k’)~'kk’, so our crossed

modules of racks can be written @Sonj(K), Conj(G),r, ). Observe the

tautological inclusion of the set-theoretic / linear reyaatation categories

(25) M (K, G) — ME(Conj(K),Conj(Q)).

It is in general strict. Indeed, taking ds the trivial group, one identi-
fies M, ({1}, G) with the category o&Z-modules, and\i ({1}, Conj(G))
with the category of'onj(G)-rack-modules. Now, take@-module( M, x)
with an inversionn +— m satisfyingmg = m * g (e.g., the mapn — —m
in the linear setting). The operation €4 g = ™ * g defines aC'onj(G)-
rack-module structure o/ which is not necessarily@-module structure.

Example 3.11(A crossed module of racks as a crossed module of groups)
A crossed module of racksk, S, 7, -) induces a crossed modules struc-

ture (Ass(R), Ass(S),w,~) for the associated groups. Aftrack-module

structure on)M/ is equivalent to amss(S)-module structure o/, and

an R-gradingM = @,cgM, induces amss(R)-grading: puth, ) =
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B | wass(r)=m4ss(r) My, @Nd declarél/, trivial for r outsider 4,(R). Ana-
lyzing the compatibility conditions, one sees that thiddsea map

(26) MB(R, S) — M, (Ass(R), Ass(S))

between the corresponding set-theoretic / linear reptasen categories.
This map is neither injective nor surjective in general.ded, for the cyclic
rackR ., = (z, r <. " = r+1), the associated group is the free grdtip
on one element (since: = r(r <. r) implies herer = r + 1 for all r).
The representations of the crossed module of raéks.;, Ry, Id;, <.)
(cf. Example 3.9) are.-graded sets / vector spacés endowed with a
bijection f: M — M such thatf(M,) = M,;, (the R.,-action being
defined bym <« r = f(m) for all r), whereas the representations of the
associated crossed module of grodps, (t), Idy, g < ¢’ = g) are(t)-
gradedM endowed with a bijectiorf: M — M preserving the grading
(and inducing thet)-actionm x t* = f*(m)). The correspondence (26)
sends a representatidiM, f, gr) to (M, f, gro: m — t). On the one
hand, it totally forgets the grading- and is thus not injective; on the other
hand, in its image everyone lives in degtebence the non-surjectivity.

Example 3.12(Crossed modules of racks versus crossed modules of shelves
A crossed module of racks is in particular a crossed modughelves,

thus accepting two types of representation theories, sporading to the

categoriesME and M,. The second category is strictly larger in gen-

eral. Indeed, one can transform a representatidh= ®,czrM,, 4) €

M. (R, S) into the following one:

(MM, (mem') 4s=(m 4as+m’ 4s)®0, (MeM), =M, dM,)

(with the obvious modifications in the set-theoretic sgltinlt does not
belong toMEY (R, S), since the action of any € S is non-invertible.

Proposition 3.13(Crossed modules of shelves as braided systems)
For a crossed module of shelveR, S, , -), the following data define a
rank 2 braided system iSet:

e as components, také = Rand A = S
e the braiding is defined by

0C.C = Oconss: T Q1 = 1" @71,
Oaa=0sp: SR =5 @(s<a5),
TeAT®S— SR (r-s).
By linearization, this braided system can be transforméalame inVect.

Proof. The cYBE onC ® C' ® C'and A ® A ® A are taken care of by
Examples 2.3 and 2.4. The cYBE 6lwC'® A is obvious, and on'®@ A® A
it follows from the fact that is anS-action. U
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Remark 3.14. In fact the component. « of the braiding above can also
be seen as a self-distributivity braiding, by considerimg $helf operation

r <o v = r’ on R. Even better: the shelf operatiors on S and <,

on R can be extended to a shelf operatianon 7’ = S U R U {e} by
puttingr < s =r-s,s < r =e e <t =c¢e andt < e = t for all

s € S,r € R,t € T. All the braiding components from the proposition are
now particular cases of the braidiag, on (7', <).

Remark 3.15. Another rank2 braided system i8et can be defined by the
same data as in the proposition exceptdor-, which becomes

occ=0sp:r@r =1 @ (r<ar).

The instances of the cYBE changed with respect to the prestwicture
are those or" @ C' ® C, which is an application of Example 2.4, and
onC ® C'® A, where it follows from the fact tha$' acts onR by shelf
morphisms. Once again, all the braided components of tisiesycan be
seen as parts of a single self-distributivity braiding(@h = S U R, <),
where < extends the shelf operations éhand R by » <« s = r - s and
s<ar=s<m(r).

Proposition 3.16(Representations of a crossed module of shelves as gen-
eralized YD modules)
In the settings of the previous proposition, one has categurusions

Mset(R, S) — VD, My(R, S) < YDLE.

Proof. As recalled in Examples 2.3 and 2.4, 8imodule is the same thing
as a braided module ovéf; osp), and a comodule ovélR, A: 7 — r ®
r,e: r +— 1) is automatically a braided comodule ov&t; o.,4s5). One
then interprets a-grading as thé?-comodule structure

m = m X gr(m), or mHzeRmT(@r
T

(depending on the context), and identifies the compatjmbindition M, «
s C M,., with (14) for ouroc 4. O

More precisely, these generalized YD modules can be viewetkao-
rated versions of the representations fram (R, S):

Proposition 3.17(Twisted representations)
Take a crossed module of shelNés S, 7, ).

(1) The categoryyD¥# is isomorphic to the category of set-theoretic
representationg M/, «, gr) of (R, S, w,-) endowed with an addi-
tional mapf: M — M which

e respects thdz-gradinggr, and
e intertwines theS-action« (i.e., f(m € s) = f(m) « s).
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(2) The categoryyD:E is isomorphic to the category df-linear S-
moduleg M, «) with the following additional data:
(@) a distinguishedS-stable subspacé/’ with a compatibleR-
grading, in the sense of

Z/‘/ m', 4se M, m eM,reR,seS,
T T S=T

(b) and a surjectiory: M — M’ which
e respects thek-grading when restricted td/’, and
e intertwines theS-actions.

For both categories, morphisms are defined in the usual way.

The category inclusions from Proposition 2.16 are realigethking f =
Id,, or, respectivelyM’ = M andf = Id,,.

Proof. One follows the proof of Proposition 3.16, treating braidedod-
ules over(R; o.,4ss) With more care. One sees that tRecoaction has to
be of the form

m— f(m) x gr(m), or m ZreRf(m)T ® .

The compatibility relation (14) is then translated intosd bf requirements
for the mapf and for the behavior of th&-grading under th&-action. [

Definition 3.18. The categories described in the proposition are denoted
by MY (R, S), or M¥™ (R, S) in the rack case. Their objects are called
twisted representationsf the corresponding crossed module of shelves/
racks, and the map&are referred to as thevisting maps

Proposition 3.17 thus establishes category equivalences
w.(R,S) ~YDE, MM(R, S) ~ YDiE.
In what follows we will freely switch between the generatiZéD and the
twisted viewpoints.

Using theS-equivariance relation (22) far, one readily checks condi-
tion (1) withay = 91 = 72 = 1 anday = 0 (observe that 4 4 is in general
not idempotent in this setting, and the choice= 1 from the previous ex-
amples would not work; cf. Remark 2.11). Theorem 1 is thudiegiple
here, yielding

Theorem 2 (Representations of a crossed module of shelves are bjaided
Any representation§\/;, «;, gr;)of a crossed module of shelvgs, S, 7, -)

in Set (wheregr;: M; — R are the grading maps) form a braided system,

with the braidings

(27) OcrModsh(Mm @n) =n @ m < 7(grj(n))
on M, @ M;. Similar braidings exist for representations Wect,.
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Example 3.19.In the settings of Example 3.10, one recovers Bantay’'s
braidingoc, 04 for crossed modules of groups (see (7) for the definition).

Example 3.20.In the settings of Example 3.11, the braidings. /045
andoc,r.4 fOr a representation of a crossed module of racks considered
the categoriesVi}(R, S) and, respectivelyM,(Ass(R), Ass(S)) (via the
functor (26)) coincide.

Example 3.21. For a shelf(S, <1) seen as the adjoint representation of
(S, S, Idg, <) (Example 3.9),0,yp is the usual self-distributivity braid-
ing osp from (4). More generally, a crossed module of shel\@sS, ., -)
has a representatioR, -, Id), for which o,y recovers once again the
self-distributivity braidingrs .

Remark 3.22. For twisted representationd/;, «;, gr;, f;) € MY¥(R,S),
Theorem 1 yields the braidings

OTwerModsh(M ®@ n) = fi(n) @ m «; w(gr;(n))

on M;® M, and similar formulas in the linear setting. They can be g
as the braidings (27) with extrg “twists”.

4. REPRESENTATIONS OF A CROSSED MODULE OEEIBNIZ ALGEBRAS

In this section we recall the notion of crossed module of h&lalgebras
(cf. Example 2.5) and interpret it in terms of a rahkraided system. YD
modules over such a system are then natural candidates ifay balled
representations of the corresponding crossed module. &ide them
explicitly, and endow them with braidings, supplied as libyarheorem 1.
This yields a new source of braidings, comprising, from Example 2.5.
Here we work inVect for simplicity, but everything remains valid in a
general symmetric additive monoidal category.

Definition 4.1 (Crossed modules of Leibniz algebras)

e A unital Leibniz algebra morphistmetween unital Leibniz algebras
(€, [,]e, 1e) and(g, [,]q,1,) is a linear mapf: ¢ — g intertwining
their structures:

[k, KTe) = [f (R), £(K)]g, f(le) = 1.
e A derivationof a unital Leibniz algebr&t, [, ¢, 1;) is a linear map
f: ¢ — tsatisfying
F(k K e) = [k, fED)e + [f (R), K, f(le) = 0.

e A representatiorof (¢, [, ], 1¢) is a vector spac@/ together with
a unital Leibniz algebra morphism: ¢ — Endy (M) (cf. Exam-
ple 2.5 for the Leibniz structure dimd, (M )). One says thatacts
on M, and writesm - k = ¢(k)(m).
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¢ All the definitions above admit obvious non-unital versions

e A crossed module of Leibniz algebraghe data of a Leibniz alge-
bra morphismr: ¢ — g and a (right)g-action- on ¢ by derivations,
compatible in the sense of

(28) k- n(K) = [k, K, kK €t

(29) (k- g) = [n(k), gls ket geg.
The simplest examples of crossed modules of Leibniz algedmex

o the identity mafdd,: ¢ — ¢ for a Leibniz algebrd, with the adjoint
actionk - k' = [k, k'], and

e the zero map): ¢ — g between an abelian Leibniz algelfré.e.,
the bracket, |, is zero) and an arbitrary Leibniz algebgaacting
on¢.

Our definition of crossed modules is an anti-symmetric wersf the
Loday-Pirashvili one [26]: they makgact ont on the left and on the right,
with additional compatibility conditions, whereas we regtourselves to
trivial left actions.

Remark 4.2 (An alternative definition)

Similarly to the case of shelves, the definition of a crossedlute of
Leibniz algebras is redundant: it suffices to have a Leiblyelaag act-
ing on a vector spack and ag-equivariant mapr: ¢ — g (in the sense
of (29)). Relation (28) then defines a Leibniz structure,aon whichg acts
by derivations, anad becomes a Leibniz algebra morphism.

It is natural to ask how to define crossed modules for unitédie alge-
bras. The naive definition does not work: condition (28) ilepl

k:k'lg:]{?'ﬁ(lg):[k‘,lg]{g:o

for all & € ¢, so this definition is empty. However, the unitality is ed&dn
for a braided interpretation of crossed modules: the bmgidl}..; encoding

the Leibniz relation does involve the unit. The followingssical construc-
tion provides a switch between non-unital and unital sg#in

Lemma 4.3(Unitarization)
Take a Leibniz algebrét, [,]¢ ) in Vecty.

(1) A unital Leibniz algebra structure ai” = ¢ @ k1 is defined via

[k, K er = [k, ke, [k, 1]+ = [1, K]+ = 0, kK et
(2) A cocommutative coassociative counital algebra strrecbn€™ is
defined by putting
Ak)=k1+1®k, e(k) =0, ket
A(l)=1®1, e(l)=1
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(3) A Leibniz algebra morphisrfi: ¢ — g extends to a unital Leibniz
algebra morphisny: ¢+ — g* by puttingf(1) =
(4) A derivationf of a Leibniz algebra extends to a derivation df"

via f(1) = 0.
(5) At-action- on a vector spacé/ extends to &*-action viam -1 =
m.

Take now a crossed module of Leibniz algeljitag, 7, -). Consider the
adjoint actionk - k' = [k, k'] of € on itself. Extend it first into an action
of £ on¢™ by derivations, and then into an action©f on ¢+ as explained
above. Explicitly, puk-1 = k, 1-k = ¢(k)1, k € £*. Similarly, unitarize the
adjoint action ofg on itself and thegg-action ont from the crossed module
structure. Denote by all these unitarized actions. Further, extend the
connecting mag intow: ¢+ — g*. Then one has

80) k-m(k)=kF- kK eef,

@Y w(k-g)=mn(k ) ket', geg”,
B2)  w(k-K)=m(k)- ( ), kK €
(33) Aomr=(r@m)oA:t" =gt @g".

The proof is straightforward. The comultiplicatiah previously ap-
peared in [6, 19]. Note that if a non-abelian Leibniz algeprearries a
t-action by derivations, the extendet-action from the lemma is no longer
by derivations: the action by behaves in the wrong way.

Notation 4.4. We use the same notation for a Leibniz algebra morphism/a
derivation / an action and their unitarized versions fromlgmma.

Proposition 4.5(Crossed modules of Leibniz algebras as braided systems)
For a crossed module of Leibniz algebréisg, 7, -), the following data
define a rank braided system iVecty:

e as components, také = ¢+ andA = g+;
¢ the braiding is defined by

0CC = Ocotss: 1®1—=1®1, 10k—=10k+k®1,
kK —0, ketk et
Oaa=0rii g9 =g ®g+1®1g,91, 9,9 €g”,
ocak®g—g®k ifk=1org=1,
k®g—g9gk+1®k-g, ket geg.
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Remark 4.6. The unitarization procedure from Lemrna 4.3 allows one to
write the maps 4 4 andoc 4 in a uniform way:

oa4(d ®9)=90)®@ 9" 90), 9.9 €g",
ocalk®g) =ga) @k gw), ket gegh,

using Sweedler’s notatiofA(g) = ga) ® g(2).

Proof. The cYBE onC ® C ® C and A ® A ® A are taken care of by

Examples 2.3 and 2.5. Both sides of the cYBE(O® C' ® A equal

egR1l®loNl®l®g,gcg,;
e IR(1®k+Ek1oONIRERL, ket
e X1k +Ek®)+1®0(1Qk-g+k-g®1)0N1I®E® g,
ket geag,
e 0ONk@K ®@¢g, ket K ett,gegt.
The cYBE onC ® A ® A is equivalent to

(k-9)-g=(k-9g)-g+k-lg.9], ket ggeg,
which follows from the fact that the unitarization of theaction- ont is a
g*-action ont*. O

Lemma 4.7. Take a YD moduléM, x, 0) over the braided system above.
Recall Sweedler’s notationgm) = m ) @ m(), (0 @) od(m) = m) ®
m1y ®mz). Consider also the map(m) = e(m))m . Then one has the
following relations:

(34) (mxg)*xg=(mx*gu)*(9"9@) meM,gyqg €g,
(35) d(m *g) = m) * guy ® M) * g2),; meM,gegr,
(36) m) ® M) @ ma) = f(me) @ Almay), m e M,

(B7) (mx1)xg=(m=xg)x*1, méeM, gegt,
(38) f(m)w) @ f(m)ay = f(m) @ mq), m e M.

Proof. The first three equations are the defining relations of géimectY D
modules, with the braiding components written as suggestedmark 4.6.
The penultimate relation follows from the first one by takifig= 1, and
the last one from (36) by applyingto the last component. U

We now propose a notion of representation of a crossed modleib-
niz algebras. Itis tailored for admitting an interpretatio terms of gener-
alized YD modules.

Definition 4.8 (Representations of a crossed module of Leibniz algebras)

A representation of a crossed module of Leibniz algelftag, =, -) is a
vector spacé/ endowed with g-actionx and a linear map,: M — M®¢t
which is
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e of square zero, i.6y ® ¢) o 5 = 0, and
e g-equivariant, in the sense &f(mx*g) = do(m) x g, whereg acts on
M ®¢t according to the Leibniz ruldm®k)xg = m®k-g+m+gQk.
The category of such representations (with the obviousnati morphisms)
is denoted byM (¢, g, , ), or simply M (¢, g).

Remark 4.9. If £ has a basi%;,i € I, then the map, can be written
asdo(m) = > ,c;0i(m) ® k; for some linear maps;: M — M. The
square-zero property fag then read9,6; = 0 for all ¢, j € I. Moreover,

in the finite-dimensional case, tlyeequivariance yields an expression of
0;(m x g) — 0;(m) = g in terms of theJs and the structural constants of the
action ofg on ¢.

Proposition 4.10(Representations of a crossed module of Leibniz algebras
as generalized YD modules)
In the settings of the previous proposition, one has categurusions

M(t,g) — VDL,
<M7 *750) = (M, *75>7

where theg-action = on M is extended to g™-action as explained in
Lemma 4.3, and the"-coactiond is given byd(m) = dy(m) + m ® 1.

Proof. As recalled in Example 2.5, thg -actionx on M is also &g™; o 1. )-
action. Further, one verifies that a linear mapV/ — M ® ¢* defines a
(€T; 0.0as5)-COactiond, normalized in the sense 6M ® ¢) 0o 6 = M, if
and only if it has the formd(m) = do(m) + m® 1, with§o: M — M @ ¢

of square zero. At last, the YD property (14) for auf 4 is equivalent to
the g-equivariance ob,. Thus the functor from the theorem is well defined
on objects. One easily sees that it is well defined, full anttfia on mor-
phisms. Finally, thg-action on)M can be restored from thg -action, and
the mapj, from &, hence our functor is indeed a category inclusion. [J

As usual, one can interpret the whole categ@ir&;i in terms of non-
normalized representations; the details are left to thel®ea
Now, Theorem 1 allows one to construct braidings:

Theorem 3 (Representations of a crossed module of Leibniz algebeas ar
braided)

Any representation&M;, ;, (do);) of a crossed module of Leibniz alge-
bras(t, g, 7, -) form a braided system, with the braidings bf @ )/; given

by
(39) UC’rModLA(m X n) =N Mm + ngy @ m *; ﬂ(n(l)),
using Sweedler’s notatiofd,); (n) = n@) ® n).
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Proof. We will check the technical condition (15) for our mapwith a, =
v1 = v, = 1 anda; = 0. It reads

(k) @ m(kiy)) @ w(k - w(kiz))) =
m( El)) ® (7T<k22)))(1) @ (k) - (m( E2)))(2)

for k, k' € €T, using the usual Sweedler’s notation for the comultipiarad
ont™ and ong™. Since these comultiplications are cocommutative and are
entwined byr (relation (33)), it suffices to show that

m(k - w(K)) =m(k) - 7(K),
which follows from (31). O

Example 4.11(Adjoint representations)

Recall that, for a Leibniz algeb#a the identity madd,: ¢ — ¢ and the
adjoint actionk - £’ = [k, k'], define a crossed module structure. Moreover,
t itself with the map), and again the adjoint actionis a representation of
this crossed module. Theorem 3 then endbwgth a braiding, which turns
out to be the fligk ® &’ — k' ® k. Further g™ with ¢, defined bydy(1) = 0
anddy(k) = 1 ® k for k € ¢ is also a representation of this crossed module.
The braiding recovered in this latter case is the Leibnizlimg o;..;.

5. CATEGORICAL ASPECTS

This section is devoted to a systematic construction oflfamof gener-
alized YD modules, and to a study of the categop3. We return here
to the general setting of a strict monoidal category

First we describe a method for transforming generalized Yadutes
into more complicated ones.

Proposition 5.1 (Enrichment of YD modules)

Take a YD moduléN, p, §) over a braided systerfC, A;7) in C. Sup-
pose that this system can be enriched into a rasysten{C, M, A; 7, o,
om,0u.a). ThenN @ M can be endowed with the following YD module
structure overC, A; @) (Fig. 9):

§=(N®ocu)o (0@ M), Pr=(peM)o(NQaoya).

NM C NM
v
/
NM NM A

FIGURE 9. Enriched YD modules
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Proof. We have to show the braided module and comodule property for
N ® M and the Yetter-Drinfédl property.
1) The claim of the braided module property is the equality of

(pr@M)o(N®orma)o(p@M@A)o(N®opya®A)o(NOM®@oaa)
and
(p@M)o(N@oya)o(p@M®A)o(NR@opya® A).

For this, one uses first Equation (CYBE) fof ® A ® A, and then the
defining property (9) for the braided-module(N, p).

2) One argues similarly for the braided comodule propertyn@scYBE)
forC ® C'® M).

3) The YD property (14) reads

(N@ocm)o (0@ M)o(p@M)o(N Qo) =

(P@MRC)o(NR0p,aRC)o(NOM®0c,4)o(N®ocy®@A)o(QM®A).

It follows from the cYBE forC' ® M ® A, and then Equation (114) for the
YD module(N, p, §).
The reader is invited to draw the corresponding diagrams. U

Note that the datum af,, 5, is completely irrelevant for the YD module
structure onV ® M, and can be replaced, for instance, With; s, (which
trivially forces all the instances of the cYBE involving &alst two copies
of M). This motivates the following

Definition 5.2 (Enriching structures)
Take a braided systefd’, 4;7) in C. Denote byZ¢ the category whose

e objects are thenriching structuredor (C, A;7), i.e., objectsM
together with morphisms¢ ,; andoy, 4 in C such that(C, M, A;
7, 00m, Idyen, o) is @ braided system;

e morphisms are those morphisms M — M’ in C which satisfy
the naturality conditions

(40) (p®@C)ooem =0cm o (C® ),
(41) (A®p)ooya=0ou a0 (p®A).

This notion is related to the categorical center (hence dit&tion), and to
factorisations of a distributive law, introduced by U. Krder and P. Slevin
[15] as a tool for constructing new cyclic homology theories

We now show that the categogf is far from being empty:

Proposition 5.3(Categorical aspects of the enrichment)
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(1) The categongZ{ is strict monoidal: the tensor product structure is
given by the tensor product 6f together with

oomem = (M @ o) o (oo @ M),
omem A = (Opa®@ M) o (Mo a),

and the unit object i§ with o1 = Ide andoy 4 = Id4 (Fig. 10).
(2) The categoryz§ contains(A,oc.a,04.4) and (C,oc.c,0c.4), @S
well as all their mixed tensor products.
(3) Proposition 5.1 yields a bifunctor
ES: YyDY x 2{ — YDY;
on morphisms, it is defined lpyx ¢ — ¢ ® ).

MM C A MM
\\/ //

% /]

C MM MM A

FIGURE 10. Tensor product of two enriching structures
Proof. (1) Equation (cYBE) orC' ® (M ® M') @ A reads
(oma@M @A)o(M@opypa®C)o(MM ®oca)o
(M ® O'QM/ ® A) O (O'C,J\/[ ® M/ ® A) =
(A M @ocy)o (AR ooy @ M) o(oca® M@ M) o
(C®UM,A ®M’) o) (C®M®0M’7A)'
In these two expressions, one recognizes in the interiorehyihg apart
both exterioro-expressions an expression involving only 4, o¢ 4, and
oc.m (respectively, onlyrc v, 0c 4, andoy 4). On these expressions, one
may apply (cYBE) forC' @ M’ ® A (or C ® M & A). The resulting total
expressions are identical. Equation (CYBE)©m C ® (M ® M') and on
(M ® M) @ A® Ais treated similarly. As usual, drawing pictures can be
helpful for following the arguments above. One concludes i ® M’ is

an enriching structure. Strict associativity and strigtality are clear.
Claims (2) and (3) are immediate. O

Remark 5.4. When saying that condition (14) means thas a morphism
in Mod4,,, ,) O, equivalentlyy is a morphism imMod“*’¢<), we en-
dowedM @ C' andM ® A with the structures from Propositions 5.1 and 5.3.

We next present a toy type of YD modules often encounteredactige;
enriched according to Proposition 5.1, they yield an imgarisource of
meaningful examples of generalized YD modules.
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Definition 5.5. The unit object of C endowed with a YD module structure
over a rank braided system i@ is called aYetter-Drinfeld characterof
the system.

Concretely, a YD character structure oVér, A; ) includes a braided
charactee4: A — I over(A; o4 4) and a braided cocharactes: I — C
over(C;o¢ ), compatible in the sense of

(42) veoea=(ea®@C)oocao(ve®A).

According to Proposition 5.3, a YD character permits to endo C, and
all their mixed tensor products with a YD module structurera¢’, A; ),
which we calladjointbecause of the following examples.

Example 5.6(Woronowicz and Hennings braidings for a Hopf algebra)
Consider the braided system from Example 2.12. In this casesual
character of the algebr@d, i1, v) (i.e., a morphism(: H — I satisfying
(opu =(®(and( or = Idy) is automatically a braided character over
(A;04 4). Similarly, a usual cocharactet I — H of (H,e, A) is a braided
cocharacter oveiC'; o ). The compatibility condition (42) becomes here

(43) o (S®Mnol)®H)oA* =no.

Inthe cas€ = ¢ andn = v, it follows from the definition of the antipode.
Feeding the YD characté¢t, ») and the objecH viewed either ag’ or asA
into Proposition 5.1, one obtains two generalized YD modittactures
on H. We have seen that = Idy satisfies conditior (15). Theorem 1 thus
yields two different braidings of/:

og — (H@,uz)O(H®6H7H®H)O(CH7H®S®H)O(H@AQ),

oy =Hu*)o(cup®@S@H)o(H®cyy® H)o(H®A?).
These braidings are in categorical duality (note that therax defining a
Hopf algebra, as well as the cYBE, are self-dual). Pictty;idhis dual-

ity is reflected in the horizontal symmetry of the correspgngdliagrams.
In Vect,, these braidings read

or(h® ') = hiy) @ S(hiy))hhiz),
oy(h® k) = h,(2) ® hS(hl(l))hl(gp

which are precisely the formulas discovered by S.L. Woranpwn [32].
We thus include the results of [32], which seemed mysteraiube time,
into a general conceptual framework.

For a general character-cocharacter gé&im), condition (43) may fail.
However, it becomes true when pre-composed witbr post-composed
with . Hence condition (42) (tensored with; on the right) holds true
when pre-composed withy 4 = 0445 OF post-composed withc - =
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Oeonss- BUL this is sufficient for Propositicn 5.1 to produce getizea YD
module structures oll—and hence for Theorem 1 to produce braidings
on H. These braidings are obtained frem ando’; by replacingA? with
(H® H® ((C® H) o A)) o A2—or, respectively, by replacing? with
p?o(H® H® (uo(n® H))). In Vecty, we recover the braidings of
M.A. Hennings [13]:

ou(h®h) = C(h/(s))h/u) ® S(h/(z))hh/@)?

Note that all modules and comodules appearing in thesercatisns are
normalized, and so one actually gets usual YD module streston/ .

We now show that in our favourite examples, all generalizBdivodules
can be found inside the categagy; .

Proposition 5.7 (YD modules as enriching structures)

Take a Hopf algebrdH, i1, v, e, A, S) in a symmetric monoidal category
(C,®,1,¢), and consider the braided systéii, //; 7) from Example 2.12.
Then the (non-normalized) YD modules o¥Eercan be seen as a full sub-
category ofZ# via the functor

Zyp: YDE — zH
(M, p,0) = (M,onm,00mm),
where oy =M@ p)o(cgy ® H)o (H®J),
om = (H®p)o(cyy @ H)o(M®A).

The braided systems thus obtained are related to, butetifféom, those
studied in [16, 20].

Proof. In order to show that one indeed gets enriching structureshas to
checks instances of the cYBE. The graphical calculus works welehese
leave the tedious but straightforward verifications to tleadrer. Further,
note that the YD structure al/ can be reconstructed from thés via

(44) p=(®@M)ooymu, d=opmo(v®M).

This proves tha¥y p, is injective on objects. These formulas also show that
the naturality condition (40) for a morphism M — M’ in C is equivalent

to ¢ being a morphism of comodules, while (41) is equivalenptbeing

a morphism of modules. Thus the functdy , is well-defined and fully
faithful on morphisms. O

Remark 5.8. In fact, formulas (44) define a functarly p: Z# — YDH
such that\fy o Zy p is the identity functor oD, It would be interesting
to understand how far these functors are from category atanees.
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CombiningZy p with the functore# : YD x ZIf — YD from Propo-
sition'5.3, one obtains a bifunctdiDX x YD — YDE. Together with
the YD character(/, ¢,v) (Example 5.5), they define a tensor structure
on YD, extending the classical tensor structure™@/D*! to the non-
normalized setting. (The vocabulary of tensor categosesdalled in Def-
inition 5.13.) Concretely, the tensor product of two YD mtau M, p, )
and(M’, o', ¢") in YD is the objectM @ M’ with

(45)  puem =(p@p)o (Mm@ H)o (M@ M @A),
(46)  dpemr =M OM @p)o (M Qcym @ H)o (6§ ®4").

The mapss,yp become morphisms in this category. Even better: they
provide a braided structure QrDZ.

Proposition 5.9 (Representations of a crossed module of groups as enrich-
ing structures)

Take a crossed module of groufs, G, 7, -), and consider the braided
systemk K, kG; @) from Example 2.13. Then the YD modules over this
system (and, in particular, Bantay’s representations af@assed module)
can be seen as a full subcategoryZf via the functor

ZCrMod: ypﬁtg — Zﬂﬂggv
(M, p,0) = (M, oxre a1, Orric),
— /
where UkK,M(ka m) = Zk’EK my Q@ kk ,

UJ\/[,]kG<ma 9) = (97 m 9)>

the coactions is written asé(m) = ), ., mx ® k, and x denotes the
actionp.

The proof is similar to that of Proposition 5.7. The funct, ., ad-
mits a leftinversél, 1.4, defined by formulas analogous to (44). Combin-
iNg Zcrar0q With the functorEf% , one obtains a bifunct¢ DEE x YDEE —
YDEE | yielding a monoidal structure iDL . Explicitly, the tensor prod-
uct of two YD modules ovefk K, kG; ) is endowed with diagonal action
and coaction, in the spirit of (45)-(46). The braidingg-p enrich this
monoidal category into a braided one.

Proposition 5.10(Twisted representations of a crossed module of shelves
as enriching structures)

Take a crossed module of shelég S, , -), and consider the braided
system R, S; @) from Proposition 3.13.
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(1) The twisted representations of our crossed module caebe as a
full subcategory of£% via the functor

Zsp: MEL(R,S) ~ YDE — Z&,
(M, 4, gr, f) = (M,0rnm,0Mm5),
where  oryu(r®@m) = f(m) ® gr(m),
oms(M®s) =s@m «s.

(2) Alternatively, enriching structures can be constraobert of twisted
representations via the functor

Zsp: MY (R,S) ~ YDE — 28
(M, 4, gr, f) = (M,0p0,0Mm,5),
where  ogu(r®@m) = f(m)@r < gr(m),
ous(M®s) =s@m «s.

Similar functors exist in the linear setting.

Proof. We treat only the set-theoretic case here; the linear casmikar.
(1) As usual, one has to che8kinstances of the cYBE. We do it here
by explicit calculations.
e ONR® R ® M, the cYBE takes the form

f2(m) ® gr(f(m)) @ gr(m) = f*(m) ® gr(m) @ gr(m),

which is equivalent tgf preserving the?-grading.
e ONR® M ® S, the cYBE becomes

s f(m) 4s@gr(m)-s=s® f(m 4s)®gr(m «s),

which is equivalent to th§-actions intertwining botlf andgr.
e ONM ® S ® S, the cYBE reads

fRs<AsR@(Mmas) 4s=5®s<5®(mas) 4(s<as),

which is equivalent teq being anS-action.

Further, the mapg andgr can be reconstructed frony, »,, and
the S-action« from o), 5. Moreover, the naturality condition (40)
for a morphismp: M — M’ in C is equivalent tap respecting the
R-grading and intertwining’ and f’, while (41) is equivalent te
being a morphism ofS-modules. Thus the functarsp is well-
defined and fully faithful on morphisms, and injective oneatig.

(2) ThecYBEONR ® R® M andR ® M ® S become here

fAm)@r < gr(f(m))@r < gr(m) = fA(m)@r < gr(m)@r < gr(m),
s® f(m) 4s®@(r<ggr(m))-s=s® f(m 4s) R (r-s) <gr(m «s).
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They follow from the defining properties of a twisted repraséion.
OnM®S®S, the cYBE is the same as in the previous case. Further,
the naturality condition (40) for a morphisp: M — M’ in C
follows from (but is not equivalent tolp respecting the?-gradings
and intertwiningf and f’, while (41) is equivalent ta being a
morphism ofS-modules. One thus has a well-defined functor.]

The existence of two braided system structureson\/, S) is a general
phenomenon in the world of shelves; we already met it wheermigg two
braided system structures 6R, S) (Remark 3.15).

Remark 5.11. The mapry ), used for constructin&s,j is in fact the braid-
iNg orwormoasy fOr the twisted representatioR, -, Idg, Idz) and (M, «,
gr, ) of the crossed module of shelve®, S, 7, -), since one has

r < gr(m) =r-m(gr(m)).

CombiningZs, or ZSD with the functorE% from Proposition 5.3, one
obtains two bifunctors

(47) @ = E§ o (Id xZsp), ® = Ef o (Id xZsp)
from M5, (R, S) x ME (R, S)to ME, (R, S). The corresponding prod-
uct structures are explicitly written as follows:

Proposition 5.12(Products of twisted representations of a crossed module
of shelves)

Given two twisted representations/, «, gr, f) and (M', <, gr’, f') in

o (R, .S), their productM ® M’ can be seen as a twisted representation
in two different ways. In both cases tHeactions and the twisting maps are
assembled diagonally:

(mam') dgs=(mem') g s=m 4sm’ 4 s,
fe(m@m) = fg(me@m') = f(m) & f'(m').
The R-gradings can be assembled either peripherally or diagynal
gre(mem’) = gr'(m'),  grg(mem’) = gr(m) < gr'(m’).
Similar structures exist in the linear setting.

Itis natural to ask if any of these functors is a part of a mdabstructure
on M, (R, S). This question is more subtle here than in the case of usual
YD modules or representations of a crossed module of groWye.now
show that one gets something close to a monoidal categadystady the
place of the braidingsr..c-y0asn (Remark 3.22) in this category. To give
precise assertions, some definitions from category thaerfirat due.

Definition 5.13 (Categorical vocabulary)
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e A pre-tensor categoris a category’ endowed with densor prod-
uct, i.e., a bifunctorr: C x C — C and natural isomorphisms

(OAU’VJ/VZ (U ® V) ® W :> U ® (V ® W) )U,V,WGOb(C)’

calledassociatoy or associativity constraintsatisfying thepenta-
gon axiom
(48)
avwox (URV)@W)® X

— a
UsVew)ex \\\3&3\

au,vew,Xx UV)e(WeX)

U (VW) s X) Z/ﬂng/
\ K

VEVIWX T @ (V @ (W ® X))

e A pre-tensor category is calleensor or monoidal if endowed with
aunit, i.e., an objecf in C and natural isomorphisms

(Av: IV SV, py: V®I:>V)V€Ob(C)’

calledleft and right unitors or aunit constraint satisfying thetri-

angle axiom
(49) Vo)W —""  _ve(leW)
pw@%‘ VeoWw ‘V/@\W

e A (pre-)tensor category is calledrict if all the constraints are the
identity morphisms.

e A (pre-)tensor category is calldaraidedif it is endowed with a
braiding, or commutativity constraini.e. natural isomorphisms

(CV,W: Vel S We V)V,WeOb(C)

respecting the tensor product, in the sense ohtheagon axioms

(50)
CU, VW
OV OW)—(VaW)g U%U
UeV)eWw Ve (WeU)
Cva®W V®cuw

VeU)eW—=ValaW)
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(51)
wilyy UBV)® W @ (U V) ailoy
U (VeW) WelU)eV
UQcyv,w cu,w®V

UaWeV) —UW)aV
Xy,w,v

This terminology is classical except fpre-tensor categoriesvhich were
first considered by F. L1 [21].

In a braided monoidal category, any family of objetisequipped with
the morphisms; ; = cy;, v, form a braided system: the cYBE dfixV; @V},
follows from the naturality of: with respect tar; ; andldy, , together with
the hexagon axiom (51). This is one of the reasons for the-sagding
interest in such categories.

Let us now see how close our twisted representation cagsgofcrossed
modules of shelves are to braided monoidal categories.

Theorem 4(Pre-tensor categorigd1t™ (R, S), ®) and(MEW(R, S), ®)).

(1) Take a crossed module of shely&s S, 7, -). The tensor producd
from (47) defines a strict pre-tensor structure on its twisted repre-
sentation categoryMt¥ (R, S).

(2) Take a crossed module of radk®, S, 7, -). The tensor produck
from (47) and the maps

amr s (MOM)o M" S5 Me (M oM,
(m@m')@m" —m ax(grim”)) @ (m @m")
define a pre-tensor structure o™ (R, S).

Remark 5.14. For both pre-tensor structures, usual (i.e., non-twisteph
resentations form pre-tensor subcategafi¢s’ (R, S).

Proof. The verifications for the tensor produgtare straightforward. The
tensor produck deserves more attention. We have seen that it is a bifunc-
tor. Further, the maps; rs7 a7

e intertwine theS-actions, since
(m am(gr(m”))) 4s=(m 4s) 4 (r(gr(m”)) < s)

= (m 4 s) «x(gr(m”)-s)=(m «s) «n(grim” 4s));
e intertwine the twisting maps, because of

f(m ax(gr(m”)) = f(m) 4w(gr(m”)) = f(m) «x(gr(f(m")));
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e respect thek-gradings:

gr(m am(gr(m”))) < (gr(m’) < gr(m"))
= (gr(m) - w(gr(m"))) < (gr(m’) < gr(m"))
= (gr(m) < gr(m")) < (gr(m’) < gr(m"))
= (gr(m) < gr(m)) < gr(m");
e are bijective, since the mapd — M, m — m <« w(gr(m”)) are
so for theS-rack-modulg( M, «1).
Hence thex, yr a~ are invertible morphisms imMgy, (R, S). The natural-
ity of « follows from the fact that morphisms iMEY, (R, S) preserve the
R-gradings and intertwine thg-actions. It remains to check the pentagon
axiom (48). Explicitly, its right-hand side sends an elemgm @ m’) ®
m’)y@m” e (Mo M) M")® M"to
(m «m(gr(m™))) 4n(grg(m’@m™))@(m’ < x(gr(m™))@(m"em™)),
while the left-hand side sends it to
(m <4 w(gr(m”))) «w(gr(m")) @ (m" «x(gr(m”)) @ (m" @m")).
Recalling thatr is a shelf morphism, one obtains
m(grg(m” @ m")) = w(gr(m") < gr(m")) = x(gr(m”)) < =(gr(m")),
and the defining property of a rack action faryields

(m «m(gr(m”))) « (r(gr(m")) <m(gr(m"))) =
(m <4 m(gr(m”))) «m(gr(m")),
hence our pentagon axiom is satisfied. O

Remark 5.15. For the twisted representation categoyy®" (R, S) of a
crossed module ashelvesthe tensor produck and theay - a» above
satisfy all the pre-tensor structure axioms except for tiveriibility of «.

Let us next study the unitality of our categories. In ordesdmit an iso-
morphism/ @V = V orV ®I = V, the unitl has to be a one-element set
with a twisted representation structure oy&r, S, , -), or, in other words,

a Yetter-Drinfeld character (Definition 5.5) for the corresponding rank
braided system (Proposition 3.13). THeaction and the twisting have to
be the unique mapS — [ andl — [ respectively. Further, the single
element of/ should be graded by afi-invariant elementr, € R, in the
sense of - s = ry for all s € S. Summarizing, one gets

Proposition 5.16(YD characters inyDE).
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For a crossed module of shelvéR, S, r,-), a complete list of Yetter-
Drinfel'd characters inyDE (up to isomorphism) is indexed Byinvariant
elements, € R, and given by the structures

Ly = ({5}, pro: s> %, gt % 1)

Example 5.17.A shelf (S, <) is calledpointedif it contains a preferred
elemente satisfyinge < s = e, s < e = sforall s € S. A conjugation
rack yields a classical example, with the neutral elemetth@iunderlying
group chosen as The crossed module of shelvgs S, Ids, <1) associated
to a pointed shelf (Example 3.9) comes with the YD charaktér Y Dz.

A YD characterl,, can be seen as a left unit for the tensor structum
MW (R, S), sincethe maps,;: I,,@M = M, x@m — m define a natural
isomorphism. On the other hankl, can be seen as a right unit for the tensor
structure®, since the mapgy: M @ I, — M, m ® * +— m - w(ro)
define a natural morphism, which becomes an isomorphisneircdlse of
rack-modules. Unfortunately, the authors do not know howaimplete at
least one of these structures into a whole unit constraint.

Finally, recall the braidingsr.,c, 045k fOr objects inM (R, S) (Re-
mark 3.22). They are natural candidates for forming a coratiwiy con-
straint for (Mt (R, S), ®) or (ME™(R, S), ®). However, these maps do
not respect thek-gradings, so they are not even morphisms in the corre-
sponding categories! On the other hand, they intertwinestiaetions and
the twistings, form a natural family, and in the rack case iathverses.

The representation category of a crossed module of Leidgebeas is
also pre-tensor with an interesting associator, as we ntabksh.

Proposition 5.18(Representations of a crossed module of Leibniz algebras
as enriching structures)

Take a crossed module of Leibniz algebfagy, 7, -), and consider the
braided systenit™, g*; ) from Proposition 4.5. Then one has a functor

vt b+
Zormodra: YDy — Zi4

(M7 *, 6) = (M7 O¢+ M, UM,g+)7
where O'g+7M(]€ X m) = m) & k- my,
Trgt(M® g) = gay @ m * g,

using the usual Sweedler’s notations for #fecoactions on M and for the
comultiplicationA ong™, as well as the unitarized adjoint actioof ¢* on
itself (Lemma 4.3).

The proofis similar to that of Proposition 5.7. Note thatzamtrast to the
situation there, one has no hope of having a category irwiusere, since
the mapo,+ 5, is not sufficient for reconstructing the coacti®m general.
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As usual, combiningZ¢, 1s0ar.4 With the functorESi (Proposition 5.3),

one obtains a bifunctop = Egi o (Id X Z¢yatrodra) ON yDEi, restricting
to a bifunctor on the representation categdri(t, g). The corresponding
product structure is explicitly written as follows:

Proposition 5.19(Product of representations of a crossed module of Leib-
niz algebras)

Given a crossed module of Leibniz algebfagy, 7, -) and two YD mod-
ules(M, x,d) and (M’, «',0") over the braided systeit™, g*;7) (Propo-
sition 4.5), their productV/ @ M’ can be endowed with the following YD
module structure:

e the unitl € g* acts onM ® M’ by the identity, and elemenjs= g
according to the Leibniz rule:

(mem)xgg=mem ¥ g+mxgem';
e thett-coaction is given by
0 (m @ m') = m) ® mig) @ m) - my),
with the same notations as in Proposition 5.18.

Theorem 5(Pre-tensor structure ot (¢, g)).
Take a crossed module of Leibniz algebfag, 7, -). Consider the tensor
product® from Proposition 5.19 and, fok/, M', M" € yDEi, the maps

apyvrmr: (M@M)Ye M — Mo (M @ M"),
(mem') @m" = m*x(mf)) @ (m @ mi).
(1) These data satisfy all the pre-tensor structure axioxegpt for the
invertibility of a.
(2) The YD modulék, e, v), withv(1) = 1 € €%, is a strict right unit
for this structure.

(3) Restricted to the representation categavi(t, g), this yields a gen-
uine pre-tensor structure with a right unit.

Proof. (1) We first show thaty y7 a~ is @ morphism irU/DEi. To
show that it intertwineg*-actions, one needs to check that

(m* gay) * 7((m" * g@)) 1)) ® (M * gy @ (M" * gg3))0)) =
(m s+ m(my)) * gy @ (M’ * gy @ mig) * g(3))
forall ¢ € g™. Using the cocommutativity of the comultiplication
on gt and the compatibility relation (35) betweérandx, the first
expression rewrites as

2

(m * gay) * T(my) - g)) @ (M * ggz) @ Mgy * gay)-
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Due to (31) and (34), one has
(m* gay) * T(m(y) - 92)) = (m* gy) * (T(my)) - g2))
= (m * W(m’(’l)) * g1y,

so the desired expressions coincide.
We next verify thatvy, y a~ intertwinestt-coactions. One cal-

culates

5(mx m(mfy))) E my * (w(myy)) @) @ may - (7(mfhy)) @)
D i) = w(mlhy)wy) @ may - 7((mfyy) @)
(39) mo) * W((m( ))( )) ® my - (m(1 )(2)

The desired intertwining relation then rewrites as
(m* m(mfy)) ® (m' @ mig))) @ (mq) - miy)) - mMiz) =

2

(m) * T((M(a)) 1)) @ (M) @ M) ® (M) - (M) 2)) - (M) - M)
Using relatiori 36 and the cocommutativity of the comultption
ont™, the latter expression equals

(m) * ((m{}y) 1)) @ (migy @ f(mi)))) @ (may - (m))@) - (Mg - (M) @),
which using (34) for the adjoint action dri becomes

(my * T((Mmy) 1)) @ (Mg @ f(myg)))) @ (may - miy)) - (M) @)-
One more appllcatlon of 36 transforms our expression ingodi
sired form.
The naturality ofa is straightforward. It remains to verify the
pentagon axiom, which here reads

n

(m* m(myy))) * m(miy) @ (M’ * 7(m() @ (Mg @ myg))) =

n

(mam((mfa))@))) * (M - miy) @ (M 7 ((m)) @) @ (Mg @ mig)))-
It is done by an argument similar to those used for intertmgni
properties, juggling relations from Lemmas 4.3 and 4.7.
(2) Straightforward verifications.
(3) One easily checks that the inversengf /s~ is given by the map

"

m® (m' @m") = (mx S(x(ml)y)) ©m') & ml.

whereS: gt — g* is the “antipode-like” map defined by(1) =
andS(g) = —gforg € g. O

Remark 5.20. The associators from Theorems 4 and 5 can be written in
a uniform way agm ® m') @ m” — m @ (m’ ® m”), using the formal
notationo .,y p(m ® m”) = m” ® m. The resemblance between the two
pre-tensor structures is more than a simple coinciden@ssed modules
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of both shelves and Leibniz algebras can be unified in thedvaork of
categorical shelvesleveloped in [6, 18, 1].

As in the case of representations of crossed modules ofeshehe braid-
iNgSoc,arear4 from Theorem 3 are ndt-comodule maps in general, and
thus do not provide a braided structure on our pre-tensegogy M (¢, g).

Summing up, we have constructed several new pre-tens@uaras with
global braidings (in the Yang-Baxter sense) which do nohgtem a braid-
ing structure on the category. It would be interesting tedatne whether
our braidings can be rendered categorical for a differem-Jfensor struc-

ture onM ™ (R, ) or M (&, g), or there is a conceptual reason prevent-
ing such a structure to exist.
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