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A CATEGORY OF MULTIPLIER BIMONOIDS

GABRIELLA BÖHM AND STEPHEN LACK

Abstract. The central object studied in this paper is a multiplier bimonoid in a

braided monoidal category C, introduced and studied in [4]. Adapting the philosophy
in [6], and making some mild assumptions on the category C, we consider a category
M whose objects are certain semigroups in C and whose morphisms A → B can
be regarded as suitable multiplicative morphisms from A to the multiplier monoid
of B. We equip this categoryM with a monoidal structure and describe multiplier
bimonoids in C (whose structure morphisms belong to a distinguished class of regular
epimorphisms) as certain comonoids inM. This provides us with one possible notion
of morphism between such multiplier bimonoids.

1. Introduction

A bialgebra over a field or, more generally, a bimonoid in a braided monoidal
category, is an object carrying a monoid and a comonoid structure subject to com-
patibility conditions that can be interpreted as saying that a bimonoid is a monoid in
the category of comonoids; equivalently, it is a comonoid in the category of monoids.

A multiplier bialgebra over a field [3] or, more generally, a multiplier bimonoid in
a braided monoidal category [4], is a generalization which is no longer a monoid or a
comonoid in the base category. However, Janssen and Vercruysse constructed in [6]
a monoidal category, whose objects are certain non-unital algebras (say over a field),
and in which the comonoids include the multiplier Hopf algebras of Van Daele [7].

Our aim in this paper is to generalize and strengthen this result. Namely, un-
der mild assumptions (involving a class Q of regular epimorphisms) we construct a
category M of certain semigroups in a braided monoidal category C. We describe
multiplier bimonoids in C (whose structure morphisms lie in Q) as certain comonoids
inM. Defining the morphisms betweeen such multiplier bimonoids as the morphisms
between the corresponding comonoids in M, we obtain a category of multiplier bi-
monoids in C.

Acknowledgement. We gratefully acknowledge the financial support of the Hun-
garian Scientific Research Fund OTKA (grant K108384) and the Australian Re-
search Council Discovery Grant (DP130101969), as well as an ARC Future Fellowship
(FT110100385). The second-named author is grateful for the warm hospitality of his
hosts during visits to the Wigner Research Centre in Sept-Oct 2014 and Aug-Sept
2015.

2. Multiplier monoids and their morphisms

We begin by describing what is meant by multiplier monoids in closed braided
monoidal categories and we characterize multiplicative morphisms with codomain a
multiplier monoid.
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2 GABRIELLA BÖHM AND STEPHEN LACK

2.1. Assumptions on the base category. Throughout, we work in a braided
monoidal category C. The composition of morphisms f : A → B and g : B → C

will be denoted by g.f : A → C. The monoidal product of A and B will be denoted
by AB, the monoidal unit by I and the braiding by c. For n copies of the same object
A, we also use the power notation AA . . . A = An.

We fix a class Q of regular epimorphisms in C which is closed under composition
and monoidal product, contains the isomorphisms, and is right-cancellative in the
sense that if s : A → B and t.s : A → C are in Q, then so is t : B → C. Since each
q ∈ Q is a regular epimorphism, it is the coequalizer of some pair of maps. Finally we
suppose that this pair may be chosen in such a way that the coequalizer is preserved
by taking the monoidal product with any object.

These assumptions are always satisfied when Q consists of the split epimorphisms.
In the other main case Q consists of the regular epimorphisms. In this case, we need
to suppose that the regular epimorphisms are closed under composition, as is the
case in any regular category; we also need to suppose that (enough) coequalizers are
preserved by taking the monoidal product with a fixed object, as will be true if the
monoidal category is closed (see Paragraph 2.3 below). In particular, we may take Q
to be all the regular epimorphisms if C is the symmetric monoidal category of modules
over a commutative ring.

2.2. Semigroups with non-degenerate multiplication. By a semigroup in the
braided monoidal category C we mean a pair (A,m) consisting of an object A of C
and a morphismm : A2 → A – called themultiplication – which obeys the associativity
condition m.m1 = m.1m. If the semigroup has a unit – that is, a morphism u : I → A

such that m.u1 = 1 = m.1u – then we say that A is a monoid.
The multiplication – or, alternatively, the semigroup A – is said to be non-degenerate

if for any objects X, Y of C, both maps

C(X, Y A)→ C(XA, Y A), f 7→ XA
f1

// Y A2 1m // Y A and

C(X,AY )→ C(AX,AY ), g 7→ AX
1g

// A2Y
m1 // AY

are injective. The multiplication of a monoid is always non-degenerate. (Requiring
injectivity of these maps for any object Y is quite strong and can often be avoided.
For a careful analysis of the class of objects Y with this property consult [2].)

2.3. Closed monoidal categories. The braided monoidal category C is said to be
closed if for each object X the functor X(−) : C → C possesses a right adjoint (equiv-
alently, if each (−)X possesses a right adjoint). We write [X,−] for the right adjoint;
then the components of the unit and the counit have the form

Y
η

// [X,XY ], X [X, Y ]
ε // Y.

The right adjoint [X,−] is functorial in the variable X , so that in fact we have a
functor [−,−] : Cop × C → C and now the adjointness

C(XY,Z) ∼= C(Y, [X,Z])

is natural in all three variables.
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Lemma 2.4. For a semigroup A in a closed braided monoidal category C, the following
assertions are equivalent.

(i) The multiplication m : A2 → A is non-degenerate.
(ii) For any object Y , both morphisms

rY := AY
η

// [A,A2Y ]
[A,m1]

// [A,AY ] and

lY := Y A
η

// [A,AY A]
[A,c1]

// [A, Y A2]
[A,1c]

// [A, Y A2]
[A,1m]

// [A, Y A]

are monomorphisms.

Proof. Since rY and m1: A2Y → AY are mates under the adjunction A(−) ⊣ [A,−],
the equality rY .f = rY .g holds for any morphisms f and g : X → AY if and only if
m1.1f = m1.1g. Symmetrically, since lY and 1m.cA,Y A : AY A → Y A are mates, the
equality lY .f = lY .g holds for any f, g : X → Y A if and only if 1m.f1 = 1m.g1. �

2.5. M-morphisms. For a monoid B = (B,m, u) and an object A, to give a mor-
phism f : A → B in C is equivalently to give a morphism f1 : AB → B compatible
with the right actions of B, in the sense that the first diagram in (2.1) below commutes

AB2 1m //

f11
��

AB

f1
��

B2
m

// B

B2A
m1 //

1f2
��

BA

f2
��

B2
m

// B.

(2.1)

Under this bijection f1 is given by m.f1, and f given by f1.1u. Dually, it is equivalent
to giving a morphism f2 : BA → B compatible with the left actions, in the sense
that the second diagram in (2.1) commutes. Furthermore, the resulting f1 and f2 are
related by commutativity of the diagram

BAB
1f1

//

f21
��

B2

m

��
B2

m
// B.

(2.2)

If now A is a semigroup, then f : A→ B will be a semigroup morphism if and only
if the diagrams

A2B
1f1

//

m1
��

AB

f1
��

BA2 f21
//

1m
��

BA

f2
��

AB
f1

// B BA
f2

// B

(2.3)

commute.
This motivates the following notion of morphism when B is just a non-degenerate

semigroup.

Definition 2.6. If A is an object and B is a non-degenerate semigroup in C, an M-
morphism f from A to B is a pair (f1, f2) of morphisms in C making the diagram (2.2)
commute. We call f1 and f2 the components of f , and we represent the M-morphism
as f : A9 B. If A is also a semigroup, we say that theM-morphism f is multiplicative
if the diagrams (2.3) commute.
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Remark 2.7. By non-degeneracy, for M-morphisms f and g to be equal, it suffices
that either f1 = g1 or f2 = g2; the other equality then follows. Similarly, for an M-
morphism to be multiplicative it suffices that either of the diagrams in (2.3) commutes;
commutativity of the other then follows.

Lemma 2.8. If B is a non-degenerate semigroup, and f : A9 B is an M-morphism,
then the diagrams in (2.1) commute.

Proof. Commutativity of the first diagram in the claim follows by commutativity of
both diagrams

BAB2 1f11
//

f211
��

(2.2)

B3 1m //

m1
��

(associativity)

B2

m

��

BAB2 11m //

f211
��

BAB
1f1

//

f21
��

(2.2)

B2

m

��
B3

m1
// B2

m
// B B3

1m
// B2

m
// B

and the associativity and non-degeneracy of m. A symmetric reasoning applies to the
second diagram. �

2.9. Multiplier monoids. Suppose thatX is an object of C andA is a non-degenerate
semigroup. If C is closed, then there is a bijection between morphisms f1 : XA → A

and morphisms f̌1 : X → [A,A], and similarly there is a bijection between morphisms

f2 : AX → A and morphisms f̂2 : X → [A,A]. Moreover, the morphisms f1 and f2
make the diagram (2.2) commute, and so determine an M-morphism, just when f̌1
and f̂2 make the first diagram in

X
f̌1

//

f̂2
��

[A,A]

ϕ

��

[A,A]
ψ

// [A2, A]

M(A)
ě1 //

ê2
��

[A,A]

ϕ

��

[A,A]
ψ

// [A2, A].

(2.4)

commute, where ϕ and ψ correspond under the adjunction isomorphism C(A2[A,A], A)
∼= C([A,A], [A2, A]) to the morphisms

A2[A,A]
1ε // A2 m // A, A2[A,A]

1c // A[A,A]A
ε1 // A2 m // A.

If the pullback of ϕ and ψ exists, as in the second diagram of (2.4), then there is a
bijection between M-morphisms X 9 A, and morphisms X →M(A) in C.

Under this bijection, the identity morphism M(A) → M(A) will correspond to an
M-morphism e : M(A) 9 A with components e1 : M(A)A→ A and e2 : AM(A)→ A.
The components of a morphism f : X → M(A) have the form f1 = e1.f1 and f2 =
e2.1f .

Proposition 2.10. Consider a non-degenerate semigroup A in a closed braided monoidal
category C.

(i) If the pullback M(A) in (2.4) exists, then it carries the structure of a unital
monoid in C.

(ii) For another semigroup B, a morphism f : B → M(A) in C is multiplicative if
and only if the the corresponding M-morphism B 9 A is so.
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Proof. (i) Using (2.2) for e and functoriality of the monoidal product, we see that
e1.1e1 : M(A)2A → A and e2.e21 : AM(A)2 → A can be regarded as the components
of a morphism m : M(A)2 → M(A) rendering commutative

M(A)2A
1e1 //

m1
��

M(A)A
e1 // A AM(A)

e2oo AM(A)2
e21oo

1m
��

M(A)A
e1

// A AM(A).
e2

oo

(2.5)

Applying (2.5) and functoriality of the monoidal product, the components of m.1m
and of m.m1 turn out to be equal to the same morphisms e1.1e1.11e1 and e2.e21.e211.
This proves the associativity of m.

The identity morphism 1 : A → A can be regarded as the first and the second
components of a morphism u : I →M(A) rendering commutative

A
u1

{{✇✇
✇✇
✇✇
✇✇
✇

1u

##❍
❍❍

❍❍
❍❍

❍❍

M(A)A
e1

// A AM(A).
e2

oo

(2.6)

By (2.5), (2.6) and functoriality of the monoidal product, the components of both
m.1u and of m.u1 are equal to e1 and e2. This proves that u is the unit of m.

(ii) By (2.5), the components of m.ff : B2 → M(A) are f1.1f1 and f2.f21; while
the components of f.m : B2 →M(A) are f1.m1 and f2.1m. �

3. A category of semigroups

In the previous section we introduced a notion of M-morphism for non-degenerate
semigroups; we now turn to composition of M-morphisms. This does not seem to be
possible in general, but we give sufficient conditions under which it is. Once again,
we motivate the definition using the unital case. If g : B → C is a monoid morphism,
and f : A→ B an arbitrary morphism, then the following diagram commutes

ABC
1g1

//

f11
��

AC2 1m // AC

f1
��

B2C
1g1

//

m1

��

BC2 1m //

g11
��

BC

g1
��

C3 1m //

m1
��

C2

m

��
BC

g1
// C2

m
// C

which can in turn be read as the equality (gf)1.1g1 = g1.f11 using the notation of
Paragraph 2.5.

Now suppose that f : A 9 B and g : B 9 C are M-morphisms with g multiplica-
tive. We would like to define a composite M-morphism g • f of g and f in such a way
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that the diagrams

ABC
1g1

//

f11
��

AC

(g•f)1
��

BC g1
// C

CA

(g•f)2
��

CBA
g21

oo

1f2
��

C CBg2
oo

(3.1)

commute.
For a general M-morphism g, there might be many g • f making these diagrams

commute, but if the maps 1g1 and g21 are epimorphisms, there can be at most one.
As far as the existence of g • f , this will clearly become easier to analyzie if 1g1 and
g21 are regular epimorphisms. In fact it will turn out that there is a g • f provided
that g1 and g2 lie in Q, in which case we say that the M-morphism g is dense. The
key step is the following result.

Lemma 3.1. Let f : A 9 B and g : B 9 C be M-morphisms with g dense and mul-
tiplicative; in particular, this includes non-degeneracy of C. Then for any morphism
s : X → BC, the composite

AX
1s // ABC

f11
// BC

g1
// C

depends on s only through g1.s. Dually, for any morphism s : X → CB, the composite

XA
s1 // CBA

1f2
// CB

g2
// C

depends on s only through g2.s.

Proof. The equal paths around

BAX
11s //

f21

��

BABC
1f11

//

f211

��

(2.2)

B2C
1g1

//

m1
�� (2.3)

BC

g1

��

BC
g1

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

(2.3)

BX
1s

// B2C

m1
33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

1g1
// BC

g1
// C

clearly depend only on g1.s. Thus the common composite

CBAX
111s //

g211

��

CBABC
11f11

// CB2C
11g1

// CBC
1g1

//

g21

��
(2.2)

C2

m

��
CAX

11s
// CABC

1f11
// CBC

1g1
// C2

m
// C

depends only on g1.s. Since g2 belongs to Q so does g211, and thus the bottom
row of this last diagram depends only on g1.s. Finally by non-degeneracy of the
multiplication of C we conclude the first claim. The other claim follows symmetrically.

�

Proposition 3.2. If f : A 9 B is an M-morphism and g : B 9 C is a dense multi-
plicative M-morphism then there is a unique M-morphism g • f : A 9 C making the
diagrams (3.1) commute. Furthermore, g • f is dense or multiplicative if f is so.
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Proof. First, since g is dense, g1 : BC → C is the coequalizer of maps s, s′ : X → BC,
and this coequalizer is preserved by A(−), so that also 1g1 : ABC → AC is the
coequalizer of 1s and 1s′. By Lemma 3.1, the composites g1.f11.1s and g1.f11.1s

′ are
equal, and so there is a unique map (g • f)1 making the diagram in (3.1) commute;
similarly there is a unique induced (g • f)2.

Next we show that (g • f)1 and (g • f)2 are the components of an M-morphism. To
do so, observe that in the commutative diagrams

CBABC
g2111

//

11f11

%%❏
❏❏

❏❏
❏❏

❏❏

1f211
��

CABC
11g1

//

1f11

��
(3.1)

CAC

1(g•f)1
��

CB2C

1m1
��

(2.2) CB2C
g211

//

1m1
zztt
tt
tt
tt
tt

(2.3)

CBC
1g1

//

g21

��
(2.2)

C2

m

��
CBC

g21
// C2

m
// C

CBABC
111g1

//

1f211
��

CBAC
g211

//

1f21

��
(3.1)

CAC

(g•f)21
��

CB2C
11g1

//

1m1
��

(2.3)

CBC

1g1
��

g21
//

(2.2)

C2

m

��
CBC

1g1
// C2

m
// C

the bottom rows are equal by (2.2), and so the top-right paths are equal. But g21g1 in
the top rows is an epimorphism since g is dense, so that the right verticals are equal
as required.

If f is dense, then f11, g1, and 1g1 are all in Q, hence so too is (g • f)1; similarly
(g • f)2 is in Q and so g • f is dense.

Finally we show that g • f is multiplicative if f is so. In the commutative diagrams

A2BC
11g1

//

1f11 %%❏
❏❏

❏❏
❏❏

❏❏
❏

m11
��

A2C
1(g•f)1

##●
●●

●●
●●

●●

(3.1)

ABC

f11 %%❏
❏❏

❏❏
❏❏

❏❏
❏

(2.3) ABC

f11
��

1g1
//

(3.1)

AC

(g•f)1
��

BC g1
// C

A2BC
11g1

//

m11
��

A2C

m1
��

ABC

f11 $$❏
❏❏

❏❏
❏❏

❏❏

1g1
// AC

(g•f)1

""❉
❉❉

❉❉
❉❉

❉❉

(3.1)

BC g1
// C

the map 11g1 is an epimorphism since g is dense, and so (g•f)1.1(g•f)1 = (g•f)1.m1
as required. �

Next we turn to associativity of this composition.

Proposition 3.3. Let f : A 9 B, g : B 9 C, and h : C 9 D be M-morphisms, and
suppose that g and h are dense and multiplicative. Then (h • g) • f = h • (g • f).

Proof. Since 11h1 : ABCD → ABD and 1(h • g)1 : ABD → AD are epimorphisms,
this follows immediately from the commutativity of the following diagrams

ABCD
11h1 //

f111
��

ABD
1(h•g)1

$$❍
❍❍

❍❍
❍❍

❍❍

f11
��

BCD
1h1 //

g11 %%❑
❑❑

❑❑
❑❑

❑❑
❑

BD

(h•g)1 $$❍
❍❍

❍❍
❍❍

❍❍
❍

AD

((h•g)•f)1
��

CD
h1

// D

ABCD
11h1 //

f111
��

1g11

%%❑
❑❑

❑❑
❑❑

❑❑
❑

ABD
1(h•g)1

$$❍
❍❍

❍❍
❍❍

❍❍

BCD

g11 %%❑
❑❑

❑❑
❑❑

❑❑
❑

ACD
1h1 //

(g•f)11
��

AD

(h•(g•f))1
��

CD
h1

// D
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in which the top left square in the left diagram commutes by functoriality of the
monoidal product, and all remaining regions commute by instances of (3.1). �

As for the identity morphisms, the unital case suggests that the identityM-morphism
i on a non-degenerate semigroup A should have components i1 and i2 equal tom. This
does indeed define a multiplicative M-morphism by associativity of m; it will be dense
just when m lies in Q. It follows from the non-degeneracy of A that i : A→M(A) is
a monomorphism in C preserved by the functor X(−) for any object X .

Proposition 3.4. Let f : A9 B be an M-morphism.

(i) if f is dense and multiplicative, then f • i = f ;
(ii) if i is dense, then i • f = f .

Proof. Part (i) follows by commutativity of the diagrams in (2.3) and part (ii) follows
by Lemma 2.8. �

In particular, we now have a category.

Proposition 3.5. There is a categoryM, whose objects are the non-degenerate semi-
groups with multiplication in Q, and whose morphisms are the dense multiplicative
M-morphisms. The composite g • f of composable morphisms g and f has compo-
nents as in (3.1), and the identity on an object A is the M-morphism i : A9 A with
components equal to the multiplication m. The monoidal unit I equipped with the
trivial multiplication is initial in the categoryM.

Proof. The only thing that remains to be proven is that I is initial. For each object A,
there is an M-morphism u : I 9 A with components equal to the identity morphism
of A. This is clearly multiplicative and dense. A general M-morphism v : I 9 A will
have components given by endomorphisms v1, v2 : A → A satisfying m.1v1 = m.v21.
This will be multiplicative if and only if v1 and v2 are idempotent, and it will be
dense if and only if v1 and v2 are in Q; but the only epimorphic idempotents are the
identities. �

Remark 3.6. The proof shows that, in fact, Proposition 3.5 holds also for not neces-
sarily braided monoidal categories C.

The category studied by Janssen and Vercruysse in [6] is the case where C consists of
all modules over a commutative ring, but where we only consider projective modules
in definingM. The construction ofM is reminiscent of the Kleisli construction, but
does not seem literally to be an example; the obstruction is the need to restrict to
dense morphisms.

Lemma 3.7. For a semigroup A with non-degenerate multiplication m, the following
diagram commutes.

M(A)A
1i //

e1

��

M(A)2

m

��

AM(A)
i1oo

e2

��
A

i
// M(A) A

i
oo
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Proof. We only prove commutativity of the square on the left, symmetric reasoning
applies to the other one. In view of Remark 2.7, it is enough to compare the first
components of the morphisms around the square.

M(A)A2 1i1 //

1m &&▲
▲▲

▲▲
▲▲

▲▲
▲

M(A)2A
m1 //

1e1
��

(2.5)

M(A)A

e1

��

M(A)A2 e11 //

1m
��

(2.1)

A2 i1 //

m

##●
●●

●●
●●

●●
●●

M(A)A

e1

��
M(A)A

e1
// A M(A)A

e1
// A

The triangular regions commute since the first component of i : A → M(A) is the
multiplication m. �

Proposition 3.8. Consider a closed braided monoidal category C and semigroups A,B
in C. Assume that the multiplication of B is non-degenerate and that the pullbacks
M(A) and M(B) in (2.4) exist. Then for any dense and multiplicative morphism
g : A→M(B) there is a unique monoid morphism g̃ : M(A)→M(B) obeying g̃.i = g.

Proof. Recall from Paragraph 2.9 the multiplicative M-morphism e : M(A) 9 A, and
regard g as a dense multiplicative M-morphism A9 B. The composite g•e : M(A) 9
B can in turn be regarded as a multiplicative moprhism g̃ : M(A)→ M(B).

Explicitly, the components of g̃ are determined by commutativity of the following
diagrams.

M(A)AB
1g1

//

e11
��

M(A)B

g̃1
��
✤

✤

✤
BAM(A)

g21
//

1e2
��

BM(A)

g̃2
��
✤

✤

✤

AB
g1

// B BA
g2

// B.

(3.2)

Since 1g1 is an epimorphism, commutativity of

A2B

1g1

��

i11

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

A2B
m1

||②②
②②
②②
②②
②

1g1

��
AB

i1

��

M(A)AB

1g1xxrrr
rr
rr
rr
r

e11 //

(3.2)

AB

g1
""❉

❉❉
❉❉

❉❉
❉❉
(2.3) AB

g1

��
M(A)B

g̃1

// B.

implies that (g̃.i)1 = g̃1.i1 is equal to g1. Hence it follows by Remark 2.7 that g̃.i = g.
Conversely, suppose that h : M(A)→M(B) is a multiplicative morphism satisfying

h.i = g; equivalently, h1.i1 = g1. Then

M(A)AB
1i1

//

e11

��

1g1
++

M(A)2B
1h1

//

m1
��

M(A)B

h1
��

AB
i1 //

g1

44M(A)B
h1 // B
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commutes by Lemma 3.7 and Proposition 2.10 (ii). By the uniqueness of g̃1 rendering
commutative the first diagram in (3.2) we conclude that h1 = g̃1 and thus by Remark
2.7 also h = g̃.

It remains to see that g̃ is unital, or equivalently that g • u = u; but this follows
from the fact that I is initial inM. �

Remark 3.9. We motivated the definition of M-morphisms f : A9 B by the fact that
any monoid morphism f : A→ B induces such an M-morphism with components

AB
f1

// B2 m // B BA
1f

// B2 m // B (3.3)

which render commutative the diagrams in (2.2) and in (2.3). But if A and B are
merely semigroups and f : A → B multiplicative, then the same definitions still give
a multiplicative M-morphism A 9 B, which we call f#; it is just that in this non-
unital case the two notions are no longer equivalent. If g : B 9 C is a morphism
in M and f : A → B a morphism in C, then the composite g • f# has components
(g•f#)1 = g1.f1 and (g•f#)2 = g2.1f . On the other hand, if the multiplication of B is
non-degenerate and it belongs to Q, and f : A→ B is a multiplicative isomorphism in
C and g : Z 9 A an arbitrary M-morphism then (f# •g)1 = f.g1.1f

−1 and (f# •g)2 =
f.g2.f

−11.

We record various facts about the passage from f to f# in the following proposition.

Proposition 3.10. There is a non-full subcategory D of the category of semigroups in
C whose objects are those semigroups which are non-degenerate and have multiplication
in Q, and whose morphisms f : A→ B are those semigroup morphisms for which the
induced f# have components lying in Q. There is a faithful functor D → M which
is the identity on objects and sends f to f#; furthermore, this functor is full on
isomorphisms.

Proof. The existence of D and the faithful functor is evident from the previous discus-
sion. We shall therefore only verify the fact that the functor is full on isomorphisms.

Suppose then that f : A 9 B is an isomorphism in M, say with inverse g. The
components g1 and g2 of g lie in Q, thus in particular g1 is the coequalizer of a pair
w, v : X → BA of morphisms in C. In the diagram

B2

m

!!❇
❇❇

❇❇
❇❇

❇

(2.2)

XB
w1 //

v1
// BAB

f21
;;✇✇✇✇✇✇✇✇✇ 1f1
//

g11 ##●
●●

●●
●●

●●
B2 m // B

AB
f1

==④④④④④④④④

(3.4)

the lower region on the right commutes since f • g = i. Since w1 and v1 agree when
composed with the lower path, they agree when composed with the upper path. By
non-degeneracy of the multiplication, it follows that f2.w = f2.v, and so there is a
unique f ♭ : A→ B satisfying f ♭.g1 = f2.

Using (2.2) together with the associativity and the non-degeneracy of the multi-
plication, commutativity of the lower triangle of (3.4) is seen to be equivalent to the
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commutativity of the region marked by (∗) in

(BA)2
11g1

//

g1g1
��

f211

$$❍
❍❍

❍❍
❍❍

❍
BA2 g11

//

1m

""❊
❊❊

❊❊
❊❊

❊❊
f21

||②②
②②
②②
②②
②

(2.3)

(2.1)

A2

m

��
A2

f♭f♭

��

B2A

1f2zz✉✉
✉✉
✉✉
✉✉
✉✉

1g1
//

(∗)

BA

f2 ""❋
❋❋

❋❋
❋❋

❋❋
BA

f2||①①
①①
①①
①①
①

g1
// A

f♭

��
B2

m
// B B.

Since g1g1 : (BA)
2 → A2 is epi, commutativity of this proves that f ♭ is multiplicative.

Using that g11: BAB → AB is epi, it follows by the commutativity of the square in
(3.4) that m.f ♭1 = f1 so that (f ♭)# = f .

�

4. Monoidality

In any braided monoidal category, the monoidal product of semigroups A and B is
again a semigroup with multiplication

(AB)2
1c1 // A2B2 mm // AB. (4.1)

Our aim is to extend this construction to a monoidal structure on the categoryM of
Proposition 3.5. While the category M is also available for not necessarily braided
monoidal categories C (see Remark 3.6), its monoidal structure makes essential use of
the braiding of C.

Proposition 4.1. If the semigroups A and B are non-degenerate, then so is their
monoidal product AB.

Proof. We check that the map sending a morphism s : X → AB to the morphism
Φ(s) : ABX → AB given by

ABX
11s // (AB)2

1c1 // A2B2 mm // AB

is injective; the other half holds dually. By non-degeneracy of A, if we know Φ(s)
then we know the upper, and also the lower, composite in the diagram

BX
1s // BAB

1c−1 $$❍
❍❍

❍❍
❍❍

❍❍
BAB

c1 // AB2 1m // AB

B2A

1c

::✈✈✈✈✈✈✈✈✈

m1
// BA

c

<<①①①①①①①①①

but now by non-degeneracy of B we know c−1.s and so in turn we know s as required.
�

For semigroup morphims f : A → B and f ′ : A′ → B′, also the monoidal product
ff ′ : AA′ → BB′ is compatible with the multiplication (4.1). The components of
(ff ′)# are

AA′BB′
ff ′11

// (BB′)2
1c1 // B2B′2 mm′

// BB′ B2B′2mm′

oo (BB′)2
1c1oo BB′AA′

11ff ′
oo ,

motivating the following construction for more general M-morphisms.
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Proposition 4.2. If f : A9 B and f ′ : A′ 9 B′ are M-morphisms, then the pair

AA′BB′ 1c1 // ABA′B′
f1f ′1 // BB′ BB′AA′ 1c1 // BAB′A′

f2f ′2 // BB′

defines an M-morphism AA′ 9 BB′, which is multiplicative or dense if f and f ′ are
so.

Proof. The stated morphisms render commutative the diagram of (2.2) by commuta-
tivity of

BB′AA′BB′ 111c1 //

1c111

��

BB′ABA′B′
11f1f ′1 //

1cB′,AB11

��

(BB′)2

1c1
��

BAB′A′BB′

11cB′A′,B1
//

f2f ′211

��

BABB′A′B′
1f11f ′1 //

f21f ′21

��
(2.2)

B2B′2

mm′

��
(BB′)2

1c1
// B2B′2

mm′

// BB′.

When it comes to multiplicativity, in view of Remark 2.7, it is enough to check the
commutativity of one of the diagrams in (2.3). In the case of the first one, for example,
it follows by the commutativity of

(AA′)2BB′ 111c1 //

1c111
��

AA′ABA′B′
11f1f ′1 //

1cA′,AB11

��

AA′BB′

1c1

��
A2A′2BB′

11cA′A′,B1
//

mm′11
��

A2BA′2B′
1f11f ′1 //

m1m′1
��

(2.3)

ABA′B′

f1f ′1
��

AA′BB′

1c1
// ABA′B′

f1f ′1

// BB′.

Finally if f and f ′ are dense, then f1 and f ′

1 are in Q, and so their monoidal product
f1f

′

1 is in Q, as is its compsite (ff ′)1 with 1c1. �

Proposition 4.3. The category M is monoidal with respect to the usual monoidal
product of semigroups, and with monoidal product of morphisms given as in Proposi-
tion 4.2.

Proof. The associativity and unit isomorphisms are inherited from C as in Remark 3.9.
The naturality of these isomorphisms follows from their naturality in C, using the
description in Remark 3.9 of composition in M with g# for an isomorphism g. It
remains only to check that the monoidal product is functorial.
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Given morphisms f : A 9 B, g : B 9 C, f ′ : A′ 9 B′, and g′ : B′ 9 C ′ inM, the
right vertical in the diagram

AA′BB′CC ′ 111c1 //

1c111
��

AA′BCB′C ′
11g1g′1 //

1c111
��

AA′CC ′

1c1

��

ABA′B′CC ′ 111c1 //

f1f ′111

��

ABA′CB′C ′

11c11
��

ABCA′B′C ′
1g11g′1 //

f11f ′11
��

ACA′C ′

(g•f)1(g′•f ′)1
��

BB′CC ′

1c1
// BCB′C ′

g1g
′

1

// CC ′

is the first component of (g •f)(g′•f ′), but commutativity of the diagram means that
it satisfies the defining property of the first component of gg′•ff ′. Thus the monoidal
product preserves composition; preservation of identities is straightforward. �

5. Multiplier bimonoids as comonoids

One of several equivalent ways of describing bimonoids in a braided monoidal cat-
egory is to say that they are comonoids in the monoidal category of monoids. Our
aim is to give an analogous description of (certain) multiplier bimonoids in [4] as
comonoids in the monoidal categoryM. This allows us to define morphisms of these
multiplier bimonoids as comonoid morphisms.

Theorem 5.1. Let C be a braided monoidal category satisfying the standing assump-
tions of Section 2.1, and let M be the induced monoidal category as in Propositions
3.5 and 4.3. For an object A ofM, and for morphisms t1, t2 : A

2 → A2 and e : A→ I

in C, the following assertions are equivalent.
(i) There is a comonoid inM with counit (e : A→ I ← A : e) and comultiplication

(d1 : A
3 1c−1

// A3 t11 // A3 1c // A3 m1 // A2 A31moo A3c1oo A31t2oo A3 : d2)
c−11oo .

(ii) There is a multiplier bimonoid (A, t1, t2, e) in C such that

• the resulting multiplication e1.t1 = 1e.t2 is equal to the given one m : A2 → A,
• the counit e, and the morphisms d1 and d2 in part (i) lie in Q.

Proof. Let us spell out what is being asserted in (i). An M-morphism A 9 I is just
a morphism e : A→ I in C; it will be multiplicative as an M-morphism if and only if
it is multiplicative as a C-morphism, in the sense that

e.m = ee (5.1)

and it will be dense if and only if it lies in Q. Using the associativity and the non-
degeneracy of the multiplication, we see that the pair (d1, d2) renders commutative
(2.2) if and only if

m1.1t1 = 1m.t21, (5.2)

and it renders commutative the first diagram in (2.3), meaning

d1.1d1 = d1.m11, (5.3)
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if and only if the ‘short fusion equation’

m1.c−11.1t1.c1.1t1 = t1.m1 (5.4)

holds.
From (5.2) it follows that

A4 11m //

1t11

��

t211

  ❇
❇❇

❇❇
❇❇

❇
A3 1t1 //

t21
��

A3

m1

��

(5.2)

A4 11m //

1m1
��

A3

1m

��✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶

(5.2)

A4

11m
��

m11 // A3

1m
((PP

PP
PP

PP
PP

PP
PP

PP
(associativity)

A3
m1

// A2

commutes; hence by the non-degeneracy of m,

t1.1m = 1m.t11 (5.5)

or equivalently
d1.11m = 1m.d1. (5.6)

The M-morphism e : A 9 I is a left counit for the comultiplication d : A 9 A2 if
and only if either (and hence by Remark 2.7 both) of the diagrams

A4 1em //

d11
��

A2

m

��

A4 c11 //

1d2
��

A4 em1 // A2

m

��
A3

em
// A A3

c1
// A3

em
// A

commutes. Using (5.1), the associativity and the non-degeneracy of m, and the fact
that 1e1 is an epimorphism, they are seen to be equivalent to

e1.t1 = m (5.7)

and
e1.t2 = e1, (5.8)

respectively. Symmetrically, e : A9 I is a right counit if and only if

1e.t2 = m, (5.9)

equivalently,
1e.t1 = 1e. (5.10)

Finally, d : A 9 A2 is coassociative if and only if the uniquely determined right
verticals of the the diagrams

A6 11c11 //

d1111
��

A6 111c1 // A6 1d1m // A4

��
✤

✤

✤
A6 11c11 //

d1111
��

A6 1md1 // A4

��
✤

✤

✤

A5
1c11

// A5
11c1

// A5

d1m
// A3 A5

1c11
// A5

md1

// A3

(5.11)
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are equal to each other. (Clearly there is an equivalent equation involving d2.)
In the following string calculation, the first equality holds by (5.5) and the second

by (5.3)

d1

t1

d1

= d1

t1

d1

=

t1

d1

and the result is that the unique morphism rendering commutative the first diagram
in (5.11) is

A4 cc−1

// A4 1t11 // A4 c−1c // A4 d11 // A3. (5.12)

Therefore d : A 9 A2 is coassociative if and only if the second diagram in (5.11)
commutes, with the morphism (5.12) in the right vertical.

By naturality, coherence, and by the associativity of m, it follows that

A4 11c //

d11
��

A4 1m1 // A3

d1
��

A3
1c

// A3
m1

// A2

commutes. Applying this together with (5.5) and using the non-degeneracy of m,
we see that commutativity of the second diagram in (5.11), with (5.12) in the right
vertical, is equivalent to the ‘fusion equation’

t11.1c.t11.1c
−1.1t1 = 1t1.t11. (5.13)

Summarizing, we proved so far that assertion (i) is equivalent to the validity of
(5.1), (5.2), (5.4), (5.7), (5.9), and (5.13).

On the other hand, it was shown in [4, Proposition 3.7] that assertion (ii) is equiv-
alent to the validity of (5.1), (5.7), (5.9), (5.13), and the compatibility condition

t21.1t1 = 1t1.t21. (5.14)

Thus it remains to show that, in the presense of (5.1), (5.7), (5.9), and (5.13), the
condition (5.14) is equivalent to the conjunction of (5.2) and (5.4).

For the forward implication, condition (5.2) holds by (3.2) in [4], and (5.4) holds
by [4, Remark 3.6]. For the converse, first observe that, by (5.5) and non-degeneracy,
the fusion equation (5.13) is equivalent to

d1

t1

t1

=
d1

t1

(5.15)
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and now

d1

t1

t2

(5.2)
=

d1

t1

t1

(5.15)
=

d1

t1
(5.2)
=

d1

t2
(5.3)
=

d1t2

d1

and cancelling d1 from the left and right hand composite and using non-degeneracy
now gives the desired result. �

The result [6, Proposition 3.1] can be seen as the special case where C is the category
of modules over a commutative ring, and where the object A is projective over that
ring: it then states that if A is a multiplier Hopf algebra in the sense of Van Daele
[7] then it can be seen as a comooid in the corresponding categoryM. Theorem 5.1
shows that the restriction to projective modules can be avoided, as well as generalizing
to other braided monoidal categories.

Let us stress that in Theorem 5.1 we only described certain multiplier bimonoids
as comonoids in M (those whose multiplication is non-degenerate, and for which
the multiplication as well as morphisms d1, d2 and e belong to Q). Also, not every
comonoid in M corresponds to a multiplier bimonoid (only those whose morphisms
d1, d2 have a particular form). Results stronger in both aspects can be achieved by
taking a different point of view. Recall that comonoids in a monoidal category M
can be regarded as simplicial maps from the Catalan simplicial set C to the nerve
ofMco (meaning the category with the reverse composition) [5]. In [1] we construct
a simplicial set which is not necessarily the nerve of any monoidal category, but for
which the simplicial maps from C to it can be identified with multiplier bimonoids.

6. Morphisms

We have seen how to identify (certain) multiplier bimonoids in the braided monoidal
category C with comonoids in the monoidal category M. We shall now investigate
morphisms of comonoids.

6.1. Morphisms between comonoids inM. Suppose that (C, d, e) and (C ′, d′, e′)
are comonoids in M. We claim that a morphism of comonoids is then a morphism
f : C 9 C ′ inM whose components render commutative the following diagrams.

CC ′
f1

//

ee′
  ❇

❇❇
❇❇

❇❇
❇❇

❇
C ′

e′

��

C ′C3C ′2 1d111 //

111c1

��

C ′C2C ′2 11c1 // C ′(CC ′)2
1f1f1

// C ′3

d′
1

��

I C ′C(CC ′)2
f2f1f1

// C ′3

d′
1

// C ′2

(6.1)
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There is also of course an equivalent, symmetric set of diagrams with the roles of the
components interchanged:

C ′C
f2

//

e′e
  ❇

❇❇
❇❇

❇❇
❇❇

❇
C ′

e′

��

C ′2C3C ′
11d21 //

1c111

��

C ′2C2C ′ 1c11 // (C ′C)2C ′
f2f21

// C ′3

d′
2

��

I (C ′C)2CC ′

f2f2f1

// C ′3

d′
2

// C ′2.

Moreover, using the non-degeneracy of C ′2, the second diagram of (6.1) is seen to be
equivalent also to either of the symmetric diagrams

C ′3C3
d′
2
d1

//

11f211

��

C ′2C2 1c1 // (C ′C)2

f2f2
��

C3C ′3
d2d

′

1 //

11f111

��

C2C ′2 1c1 // (CC ′)2

f1f1
��

C ′3C2

d′
2
11
// C ′2C2

1c1
// (C ′C)2

f2f2

// C ′2 C2C ′3

11d′
1

// C2C ′2

1c1
// (CC ′)2

f1f1

// C ′2.

We now explain why (6.1) is equivalent to preservation of the comonoid structure.
Counitality of f is clearly equivalent to commutativity of the first diagram of (6.1);
and f is comultiplicative if and only if the uniquely determined right verticals of the
diagrams

CC ′3
1d′

1 //

f111

��

CC ′2

��
✤

✤

✤
C3C ′2 11c1 //

d111

��

C(CC ′)2
1f1f1

// CC ′2

��
✤

✤

✤

C ′3

d′
1

// C ′2 C2C ′2
1c1

// (CC ′)2
f1f1

// C ′2

(6.2)

are equal to each other. Let us denote this common morphism by g : CC ′2 → C ′2. Us-
ing the non-degeneracy of the multiplication of C ′2 and the fact that d′21111: C

′3CC ′3 →

C ′2CC ′3 is an epimorphism, commutativity of the first diagram is equivalent to com-
mutativity of

C ′3CC ′3
d′
2
1111

//

d′
2
1111

��

C ′2CC ′3
111d′

1 // C ′2CC ′2 11g
// C ′4 1c1 // C ′4

m′m′

��

C ′2CC ′3

11f111
// C ′5

11d′
1

// C ′4
1c1

// C ′4

m′m′

// C ′2

and by (2.2) and the non-degeneracy of C ′2 again, this is further equivalent to com-
mutaivity of

C ′CC ′3
11d′

1 //

1f111
��

C ′CC ′2 1g
// C ′3

d′
1

��

C ′4

1d′
1

// C ′3

d′
1

// C ′2.
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By commutativity of the diagram

C ′CC ′3 1f111
//

f2111

$$■
■■

■■
■■

■■

11d′
1

��

(2.2)

C ′4
1d′

1 //

m′11
��

C ′3

d′
1

��

C ′4 m′11 //

1d′
1

��

C ′3

d′
1

""❊
❊❊

❊❊
❊❊

❊
(2.3)

(2.3)

C ′CC ′2

f211
// C ′3

d′
1

// C ′2.

and the fact that 11d′1 is an epimorphism, commutativity of the first diagram in (6.2)
is further equivalent to commutativity of

C ′CC ′2 1g
//

f211
��

C ′3

d′
1

��

C ′3

d′
1

// C ′2.

(6.3)

We conclude that f is comultiplicative if and only if the second diagram in (6.2)
commutes, having in the right vertical the unique morphism g rendering commutative
(6.3).

By similar steps to those used to analyze the first diagram, commutativity of the
second diagram in (6.2) is seen to be equivalent to commutativity of

C ′C3C ′2 111c1 //

1d111

��

C ′C(CC ′)2
11f1f1

// C ′CC ′2 1g
// C ′3

d′
1

��

C ′C2C ′2
11c1

// C ′(CC ′)2
1f1f1

// C ′3

d′
1

// C ′2

or, writing the top right path in an equal form via (6.3), to commutativity of the
second diagram in (6.1).

6.2. Morphisms between multiplier bimonoids. We may define morphisms be-
tween the multiplier bimonoids in part (ii) of Theorem 5.1 as comonoid morphisms
between the corresponding comonoids in part (i) of Theorem 5.1. This leads to the
following explicit description:

Let (A, t1, t2, e) and (A′, t′1, t
′

2, e
′) be bimonoids in C obeying the conditions in The-

orem 5.1 (ii). We claim that a morphism of multiplier bimonoids from (A, t1, t2, e) to
(A′, t′1, t

′

2, e
′) is a morphism f : A 9 A′ in the categoryM of Proposition 3.5 whose

components render commutative the following diagrams.

A′A
f2

//

e′e
!!❇

❇❇
❇❇

❇❇
❇❇

A′

e′

��

A′2A2 1f21
//

t′
2
t1

��

A′2A
t′
2
1

// A′2A

1f2
��

I A′2A2
1c1

// (A′A)2
f2f2

// A′2

(6.4)
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Once again, there is an equivalent, symmetric set of diagrams with the roles of the
components interchanged:

AA′
f1

//

ee′
!!❇

❇❇
❇❇

❇❇
❇❇

A′

e′

��

A2A′2 1f11
//

t2t′1
��

AA′2
1t′

1 // AA′2

f11

��

I A2A′2
1c1

// (AA′)2
f1f1

// A′2

Moreover, using the non-degeneracy of A′2, the second diagram of (6.4) is seen to be
equivalent also to either of the symmetric diagrams

A′A2A′
1t11 //

f2f1

��

A′A2A′
11f1

// A′AA′

c1
��

A′A2A′
1t21 //

f2f1

��

A′A2A′
f211

// A′AA′

1c
��

AA′2

1t′
1��

A′2A
t′
2
1

��

AA′2

c−11
��

A′2A

1c−1

��
A′AA′

f21
��

A′AA′

1f1
��

A′2

t′
1

// A′2 A′2

t′
2

// A′2.

We only need to show that for the particular components d1 and d2 in Theorem
5.1 (i), commutativity of the second diagram in (6.1) becomes equivalent to commu-
tativity of the second diagram in (6.4). In terms of strings, this says that the first and
last composites below are equal; but since the first three are always equal by (2.3)
and (2.2) for f , this is equivalent to the last two composites being equal.

t1

t′1

f1 f1 =

t1

t′1

f1 f1

f1

=

t1

t′1

f2

f1

f1

t′1

f1 f1f2
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Since f1 belongs to Q and the multiplication is non-degenerate, this is in turn equiv-
alent to the equality of the following composites.

t1

t′1

f2

f1

t′1

f1f2

In the left diagram, use (2.1) for f , (5.2), and (2.2) for f ; in the right, use (5.2) and
(2.2) for f . The equality of the resulting composites is equivalent, by non-degeneracy,
to commutativity of the second diagram in (6.4).

Example 6.3. Let A and A′ be multiplier bimonoids satisfying the conditions in
Theorem 5.1 (ii) and let g : A→ A′ be a morphism in the category D of Proposition
3.10. Then g# is a morphism of multiplier bimonads if and only if e′.g = e and
t′1.gg = gg.t1.

Indeed, the top right path of the first diagram of (6.4) takes the form in any of the
equal paths in

A′A
1g

//

e′1
��

A′2 m′

//

e′e′

��
(5.1)

A′

e′

��
A

g
// A′

e′
// I I.

Since e′1 : A′A → A is an epimorphism, this is equal to e′e (in the left bottom path
of the first diagram of (6.4)) if and only if e′.g = e.

The top right path of the second diagram of (6.4) takes the form of any of the equal
paths in

A′2A2 11g1
//

t′
2
11

��

A′3A
1m′1 //

111g

��

A′2A
t′
2
1

// A′2A

11g

��

A′2A2

11gg

��

A′4 1m′1 //

11t′
1

��
(5.4)

A′3
t′
2
1

//

1t′
1

��

(5.2)

A′3

1m′

��

A′4

11t′
1

��

A′4

11c−1

��

A′4
1t′

1
1

//

t′
2
11

��
(5.2)

A′4 11c //

m′11
��

A′4 1m′1 //

m′11

��

(associativity)

A′3

m′1

��✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺

A′4 11c−1

//

1c1
��

A′4 1m′1 // A′3

1c

!!❈
❈❈

❈❈
❈❈

❈

A′4

11m′

// A′3

m′1
// A′2.
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Using the form of d′2 together with the non-degeneracy and the associativity of m′,
this is equal to the composite m′m′.1c1.11gg.t′2t1 (occurring in the left bottom path
of the first diagram of (6.4)) if and only if

m′m′.1c1.11t′1.11gg.d
′

211 = m′m′.1c1.11gg.11t1.d
′

211.

Since d′211 is an epimorphism and C ′2 is non-degenerate, this is equivalent to t′1.gg =
gg.t1.
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