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SEMISIMPLE AND G-EQUIVARIANT SIMPLE

ALGEBRAS OVER OPERADS

PAVEL ETINGOF

Abstract. Let G be a finite group. There is a standard theo-
rem on the classification of G-equivariant finite dimensional simple
commutative, associative, and Lie algebras (i.e., simple algebras of
these types in the category of representations of G). Namely, such
an algebra is of the form A = FunH(G,B), where H is a subgroup
of G, and B is a simple algebra of the corresponding type with an
H-action. We explain that such a result holds in the generality of
algebras over a linear operad. This allows one to extend Theorem
5.5 of [S] on the classification of simple commutative algebras in the
Deligne category Rep(St) to algebras over any finitely generated
linear operad.

1. Semisimple algebras over operads

1.1. Algebras. Let C be a linear operad over a field F ([LV]). E.g.,
C can be the operad of commutative associative unital algebras, asso-
ciative unital algebras, or Lie algebras (the latter if 1/2 ∈ F ).
Recall ([LV]) that a C-algebra is a vector space A over F with a col-

lection of linear maps αn : C(n) → HomF (A
⊗n, A) compatible with the

operadic structure. Clearly, a direct sum of finitely many C-algebras
is a C-algebra.
Given a C-algebraA, we can define the space EA ⊂ EndF (A) spanned

over F by operators of the form αn(c)(a1, ..., aj−1, ?, aj, ..., an−1) for var-
ious n ≥ 2, c ∈ C(n), and ai ∈ A. By the definition of an operad, EA

is a (possibly non-unital) subalgebra of EndF (A). We also denote by
LA the image of C(1) in EndF (A). Clearly, LA is a unital subalgebra
and LAEA = EALA = EA. Thus RA := LA +EA is a unital subalgebra
of EndF (A), and EA is an ideal in RA.

Lemma 1.1. One has EA1⊕...⊕Am
= EA1

⊕ ...⊕ EAm
.

Proof. It is clear that EA1⊕...⊕Am
⊂ EA1

⊕ ... ⊕ EAm
. Let ai ∈ Ar,

c ∈ C(n), and b = αn(c)(a1, ..., aj−1, ?, aj, ..., an−1) ∈ EAr
. Let b′ :=

(0, ..., b, ..., 0) (where b is at the r-th place). Then we have
b′ = αn(c)(a

′
1
, ..., a′j−1

, ?, a′j, ..., a
′
n−1

), where a′i = (0, ..., ai, ..., 0). Hence
b′ ∈ EA1⊕...⊕Am

. Thus EA1⊕...⊕Am
⊃ EA1

⊕ ...⊕ EAm
. �
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1.2. Ideals. By an ideal in a C-algebra A we mean a subspace I ⊂ A
such that for any n ≥ 1, c ∈ C(n), j ∈ [1, n], and T ∈ A⊗j−1⊗I⊗A⊗n−j

one has αn(c)T ∈ I.

Lemma 1.2. (i) I ⊂ A is an ideal if and only if it is an RA-submodule
of A.
(ii) A = A1 ⊕ ... ⊕ Am as an RA-module if and only if it is so as a

C-algebra.

Proof. (i) This follows directly from the definition.
(ii) The “if” direction is clear. To prove the “only if” direction, note

that by (i) Ai are ideals in A, hence αn(..., x, ..., y, ...) = 0 once x ∈ Ai

and y ∈ Aj with j 6= i, which implies the statement. �

It is clear that if I ⊂ A is an ideal then A/I is a C-algebra, and
EA/I , LA/I , RA/I are homomorphic images of EA, LA, RA in EndF (A/I).

1.3. Simple and semisimple algebras. From now on we assume
that A is a finite dimensional C-algebra. We say that A is simple if
any ideal in A is either 0 or A (i.e., A is a simple RA-module), and
EA 6= 0.1

Lemma 1.3. If A is a simple C-algebra then EA = RA, and it is a
central simple algebra (over some finite field extension of F ).

Proof. Since A is a faithful simple RA-module, RA is central simple.
Since EA 6= 0 and EA is an ideal in RA, we have EA = RA. �

We say that A is semisimple if A is a direct sum of a finite (possibly
empty) collection of simple C-algebras: A = A1 ⊕ ...⊕Am.

Lemma 1.4. Let A = A1 ⊕ ... ⊕ Am be a semisimple C-algebra with
simple constituents Ai. Then the only ideals in A are ⊕i∈SAi ⊂ A,
where S ⊂ [1, m].

Proof. Clearly, the subspaces in the lemma are ideals. Conversely, let
I ⊂ A be an ideal. Let a = (a1, ..., am) ∈ I. By Lemma 1.1 and
Lemma 1.3, the projection operator Pi : A → A to Ai along ⊕j 6=iAj

is contained in EA. Thus, Pia = (0, ..., ai, ..., 0) ∈ I. This implies the
statement. �

1Note that this recovers the standard definition for commutative, associative,
and Lie algebras. Moreover, while in the commutative and associative case, the
condition EA 6= 0 is automatic for A 6= 0 because of the unit axiom, in the Lie case
it is needed (as an abelian Lie algebra is not simple). Note also that if C(n) = 0 for
n 6= 1 (i.e., when C is an ordinary algebra), then EA = 0 automatically, so there
are no simple C-algebras, even though there may exist simple C-modules.
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1.4. The radical. Let A′ be the maximal semisimple quotient of A as
an RA-module (it exists by the standard theory of finite dimensional
algebras). Let A be the quotient of A′ by the kernel of the action of
EA (which is an RA-submodule of A). Define the radical Rad(A) of
A to be the kernel of the projection of A onto A. So the radical of
A/Rad(A) = A is zero. In particular, if A is a semisimple C-algebra,
then Rad(A) = 0.

Theorem 1.5. (i) A is a semisimple C-algebra. In particular, Rad(A) =
0 if and only if A is semisimple.
(ii) If I ⊂ A is an ideal, then A/I is a semisimple C-algebra if and

only if I contains Rad(A).

Proof. (i) By the definition, A is a semisimple RA-module, such that
EA acts by nonzero on all its simple summands. Hence by Lemma
1.2(ii), A is a semisimple C-algebra.
(ii) The “if” direction holds by (i) and Lemma 1.4. To prove the

“only if” direction, let I ⊂ A be an ideal such that A/I is a semisim-
ple C-algebra: A/I = A1 ⊕ ... ⊕ Am. Then by Lemma 1.2(ii) A/I
is a semisimple RA/I-module and hence RA-module, with simple con-
stituents Ai, and the action of EA on Ai is nonzero. Thus I ⊃ Rad(A).

�

2. G-equivariant simple algebras over operads

Now let G be a finite group, and A be a C-algebra with an action of
G. Let us say that A is a simple G-equivariant C-algebra if the only
G-invariant ideals in A are 0 and A, and EA 6= 0.

Lemma 2.1. (i) If B is a simple C-algebra then we have Aut(B⊕n) =
Sn ⋉Aut(B)n.
(ii) If A is a simple G-equivariant C-algebra then A is semisimple

as a usual C-algebra. Moreover, G acts transitively on the simple con-
stituents of A, and in particular they are all isomorphic.

Proof. (i) Clearly, Sn ⋉Aut(B)n acts on B⊕n, so we need to show that
any automorphism g of B⊕n belongs to this group. By Lemma 1.4,
the minimal (nonzero) ideals of B⊕n are the n copies of B. So they
must be permuted by g, inducing an element s ∈ Sn. Thus gs

−1 is an
automorphism preserving all the copies of B. So gs−1 ∈ Aut(B)n, as
desired.
(ii) Let I be kernel of the projection from A to its maximal semisim-

ple quotient A′ as an RA-module. Then by Lemma 1.2(i), I is a G-
invariant ideal in A, and I 6= A. Hence I = 0, and A is a semisimple
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RA-module. So by Lemma 1.2(ii), A = A1 ⊕ ... ⊕ Am is a semisimple
C-algebra. Thus by Lemma 1.4, the minimal ideals of A are the Ai.
So they are permuted by G. Moreover, the action of G on these ideals
must be transitive, as every orbit gives a nonzero G-invariant ideal. �

Now let B be a simple C-algebra, H a subgroup of G, and φ : H →
Aut(B) a homomorphism. Let A = FunH(G,B) be the space of H-
invariant functions on G with values in B. Then it is clear that A has
a natural structure of a simple G-equivariant C-algebra, isomorphic to
B⊕|G/H| as a usual C-algebra. Note that the stabilizer of any minimal
ideal of A is a subgroup of G conjugate to H .

Theorem 2.2. Any simple G-equivariant C-algebra A is of the form
A = FunH(G,B). Moreover, the subgroup H is defined by A uniquely
up to conjugation in G, and φ is defined uniquely up to conjugation in
Aut(B).

Proof. By Lemma 2.1(ii), G acts transitively on the set of minimal
ideals in A, and they are all isomorphic to some simple C-algebra B.
Thus, the result follows from Lemma 2.1(i) and the standard classi-
fication of homomorphisms G → Sn ⋉ Aut(B)n. Namely, let H be
the stabilizer of one of the copies of B. Then H acts on B through
some homomorphism φ : H → Aut(B). Moreover, we have a canoni-
cal G-equivariant linear map ψ : A → FunH(G,B) corresponding via
Frobenius reciprocity to the H-stable projection A → B to the cho-
sen copy of B along the direct sum of all the other copies. It is easy
to check using Lemma 2.1 that ψ is an isomorphism of G-equivariant
C-algebras. The rest is easy. �

Remark 2.3. 1. Note that in the examples of commutative, associa-
tive, and Lie algebras we obtain the classical theorems about classifi-
cation of simple G-equivariant algebras of these types.
2. Lemma 2.1 and Theorem 2.2 don’t hold without the assumption

EA 6= 0. E.g., one may take A to be any irreducible representation of
G equipped with the zero Lie bracket.
3. The results of this section extend verbatim to the case when G is

any group (not necessarily finite), or is an affine algebraic group over
F . Namely, as in the finite group case, the classification of simple G-
equivariant algebras reduces to classification of homomorphisms G →
Sn ⋉Aut(B)n, which are paramertized by finite index subgroups H of
G and homomorphisms φ : H → Aut(B) up to conjugation.

Remark 2.4. While the question of classification of G-equivariant sim-
ple algebras over operads is natural in its own right, the motivation for
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writing this note was to provide a more general context for the results of
[S]. Namely, Lemma 2.1 and Theorem 2.2 allow one to extend the main
result of [S] (Theorem 5.5 on the classification of simple commutative
algebras in the Deligne category Rep(St)) to algebras over a finitely
generated linear operad C over C. Informally speaking, this general-
ization says that for transcendental t any such algebra is obtained by
induction from Rep(G) ⊠ Rep(St−k) of an interpolation B of a family
of G × Sn−k-equivariant simple algebras Bn, defined for some strictly
increasing sequence of positive integers n and depending algebraically
on n.
This gives a classification of simple C-algebras in Rep(St) whenever a

classification of ordinary simple C-algebras (and their automorphisms)
is available. For instance, in the case of associative unital algebras,
B = End(V ), where V is an object of Rep(St), and in the case of Lie
algebras B = sl(V ), o(V ), or sp(V ), where in the second case V is
equipped with a nondegenerate symmetric form and in the third case
with a nondegenerate skew-symmetric form.
The proof of this generalization is similar to the proof of Theorem

5.5 of [S], which covers the case of commutative unital algebras (in
which case B = C), but is somewhat more complicated since in general
Aut(B) 6= 1. The finite generation assumption for C is needed to
validate the constructibility arguments of [S], Section 4. This will be
discussed in more detail elsewhere.
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