
NEW ASPECTS OF SUBFITNESS

IN FRAMES AND SPACES

JORGE PICADO AND ALEŠ PULTR

In memory of Horst Herrlich

Abstract. This paper contains some new facts about subfitness and weak

subfitness. In the case of spaces, subfitness is compared with the axiom

of symmetry, and certain seeming discrepancies are explained. Further,

Isbell’s spatiality theorem in fact concerns a stronger form of spatiality

(T1-spatiality) which is compared with the TD-spatiality. Then, a frame is

shown to be subfit iff it contains no non-trivial replete sublocale, and the

relation of repleteness and subfitness is also discussed in spaces. Another

necessary and sufficient condition for subfitness presented is the validity of

the meet formula for the Heyting operation, which was so far known only

under much stronger conditions.

Introduction

Subfitness is a low separation axiom, in the context of spaces weaker than

T1. It was introduced by Isbell in his pioneering article [8], but almost immedi-

ately dismissed for its bad categorical behavior. The only merit mentioned was

its role in the spatiality of compact frames; the attention was concentrated on

the stronger fitness, which might have seemed not a very radical modification

(being in fact a hereditary subfitness), and the categorical properties of which

were excellent. Later, subfitness appeared sporadically in literature (with both

a topological and logical motivation in [16], as a necessary and sufficient condi-

tion for admitting a generalized nearness in [7] – coauthored by Horst Herrlich

–, and in a few other papers). In [17], it was indicated that the condition is

by no means uninteresting, and quite recently ([14]) the authors of the present
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article analyzed (a.o.) the role of subfitness as a supportive property in com-

bination with other conditions, and its relation with the fitness. The latter

did not bring very good news: fitness turned out to be actually a very strong

property akin to regularity so that what might have seemed a harmless modi-

fication of a (very much needed) low separation axiom for categorical purposes

turned out to be a rather strong one. Thus, it seems that the properties of the

non-amended subfitness should be given more attention.

This paper is concerned with some of such properties, that is, properties of

subfitness as such, not adapted or extended by other conditions.

After necessary Preliminaries in the short Section 2 we study the subfitness

in the context of spaces. Here, this property makes perfectly good sense, but

there is a seeming discrepancy with the axiom of symmetry, which is explained.

In Section 3 we show that Isbell’s spatiality theorem in fact says more, namely

that the space in question is T1-spatial (that is, isomorphic to Ω(X) with a

T1-space X). T1-spatiality is then treated in more generality, compared with

TD-spatiality and it is proved (a.o.) that a TD-spatial frame is T1-spatial iff it

is subfit. The next Section 4 is devoted to repleteness, a property of a space

akin to density (see 4.1). We prove that a frame is subfit iff it has no non-

trivial replete sublocale. Repleteness may play a more important role in the

point-free context than in spaces; but there are some spatial questions calling

for explanation which is provided in the second part of this section. Finally,

in Section 5 we show that subfitness is equivalent with the validity of the meet

formula for the Heyting operation a → b =
∧
{x | a ∨ x = 1, x ≥ b } (and

that weak subfitness — a weaker condition, see 1.4.1 — is equivalent with the

validity of the meet formula for the pseudocomplement a∗ =
∧
{x | a∨x = 1})

and add a few comments about this phenomenon.

1. Preliminaries

1.1. A frame resp. co-frame is a complete lattice L satisfying

a ∧ (
∨
B) =

∨
{a ∧ b | b ∈ B} resp. a ∨ (

∧
B) =

∧
{a ∨ b | b ∈ B}

for all a ∈ L and B ⊆ L. Thus, in a frame L the mappings (x 7→ x ∧ b) : L → L

preserve suprema and hence we have the right Galois adjoints (x 7→ (b→x)) :

L → L, satisfying

a ∧ b ≤ c iff a ≤ b→c

and making L a Heyting algebra. The pseudocomplement (that is, a→0) will

be denoted by a∗.

A typical frame is the lattice Ω(X) of all open sets of a topological space X.

A frame homomorphism h : L → M preserves all joins and all finite meets; if
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f : X → Y is a continuous map we have a frame homomorphism Ω(f) : Ω(Y ) →
Ω(X) defined by Ω(f)(U) = f−1[U ].

1.1.1. The Ω above is a contravariant functor from the category Top of

topological spaces into the category of frames, Frm. It becomes covariant

if we consider the opposite category Loc = Frmop. It is advantageous to

treat the category Loc as a concrete one with the opposite arrows to frame

homomorphisms h : L → M represented as their right Galois adjoints f : M →
L; these will be referred to as localic maps. Emphasizing this point of view we

often speak of frames as of locales.

1.2. Ω : Top → Loc has a right adjoint Σ : Loc → Top called the spectrum.

We will use the description of ΣL as the set {p ∈ L | p prime} endowed with

the topology {Σa | a ∈ L} where Σa = {p | a � p}, and (Σf)(p) = f(p).

1.3. One thinks of a frame L as of a generalized space. From the several

representations of a (generalized) subspace of L we will use that of a sublocale.

It is a subset S ⊆ L such that

(S1) M ⊆ S ⇒
∧

M ∈ S, and

(S2) x ∈ L, s ∈ S ⇒ x→s ∈ S.

S is a frame in the order of L and inherits its Heyting structure. The embedding

jS : S ⊆ L is a localic map (recall 1.1.1: in view of the category Loc, the

sublocales in this form are the natural subobjects, that is, “sub-locales”). The

corresponding frame homomorphism (the left adjoint)

νS : L → S

is given by νS(x) =
∧
{s ∈ S | s ≥ x}. The system of all sublocales constitutes

a co-frame

S(L),

the meets coinciding with the intersections, and the joins defined by∨
Si = {

∧
M | M ⊆

∪
Si}.

The top of S(L) is L and the bottom is the set O = {1}; the latter, representing
the void subspace, will be referred to as the empty sublocale.

Another representation of sublocales we will sometimes use is that by frame

congruences ES = {(a, b) ∈ L× L | νS(a) = νS(b)}.

1.3.1. Open resp. closed subspaces are represented by open resp. closed

sublocales

o(a) = {x | a→x = x} = {a→x | x ∈ L} resp. c(a) = ↑a = {x | x ≥ a}.

o(a) and c(a) are complements of each other. We have (see e.g. [12]):

• o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b), o(
∨

ai) =
∨

o(ai),
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• c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b), c(
∨

ai) =
∩

c(ai),

• o(a) ∩ c(b) ̸= O iff a � b, and c(a) ⊆ o(b) iff a ∨ b = 1.

1.3.2. Just like in spaces and subspaces,

open sublocales in a sublocale S are the oS(νS(a)) = S ∩ o(a), and

similarly we have the closed sublocales of S, cS(νS(a)) = S ∩ c(a).

One has an extremely simple formula for the closure of S, S = ↑(
∧
S).

1.3.3. Observation. o(a) ∩ S ̸= O iff o(a) ∩ S ̸= O (since o(a) ∩ S = O iff

S ⊆ ↑a iff S ⊆ ↑a).

1.3.4. An important property of a complemented S is that for any system Ti,

i ∈ I, of sublocales one has

S ∩
∨

Ti =
∨
(S ∩ Ti)

(note that this is exceptional: S(L) is a co-frame, not a frame; in fact this law

characterizes complementarity — see [12, VI.4.4.3]).

1.4. A frame L is subfit if

∀a, b ∈ L, a � b ⇒ ∃c, a ∨ c = 1 ̸= b ∨ c. (subfit)

Equivalently, L is subfit iff

each open sublocale in L is a join of closed ones.

In fact, this is the original definition, the first order formula above came later

(see e.g. [16]).

1.4.1. Of some interest is a weaker property, the weak subfitness (see e.g. [7])

∀a > 0 ∃c ̸= 1, a ∨ c = 1. (weakly subfit)

Subfitness is not a hereditary property, but (see e.g. [12])

1.4.2. A complemented sublocale of a subfit frame is subfit.

For more about frames see e.g. [9, 12, 15].

2. Low separation axioms: subfitness in spaces

2.1. A space X is (of course) subfit if for open U, V , U * V there is an open

W such that U ∪W = X ̸= V ∪W . This property has no relation to T0 but

it is obviously implied by T1:

if x ∈ U r V take W = X r {x}. It is easy to see that subfitness is strictly

weaker than T1.

2.1.1. Note. In the standard hierarchy of separation axioms we usually add

T1 to T3 to have an axiom stronger than T2. In fact it suffices to add T0, that



NEW ASPECTS OF SUBFITNESS IN FRAMES AND SPACES 5

is, a regular T0-space is Hausdorff. On the other hand, T0 does not suffice to

make a normal space regular. We have, however,

(normal) & (subfit) ⇒ (completely regular).

2.2. Recall that a space X is TD ([1]) if for each x ∈ X there is an open U ∋ x

such that U r {x} is still open. Obviously TD is strictly stronger than T0 and

strictly weaker than T1. We have

Fact. T1 ≡ TD & (subfit).

(⇒ is obvious. ⇐: For x ∈ X choose an open U ∋ x such that V = U r {x}
is open and then an open W such that U ∪W = W ̸= V ∪W . Then {x} =

X r (V ∪W ) is closed.)

2.3. In spaces, the subfitness is characterized by the following property ([8,

16]).

Theorem. A space is subfit if and only if for each x ∈ X and each open U ∋ x

there is a y ∈ {x} with {y} ⊆ U .

This relates subfitness to another weak separation axiom, namely the sym-

metry, which appeared already in 1951 ([11]) under the somewhat surprising

name of weak regularity,

x ∈ {y} ⇔ y ∈ {x}. (symmetric)

Thus, (symmetric)⇒(subfit), and subfitness is strictly weaker than symmetry.

(See the following example: take N = {0, 1, 2, . . . } and declare a non-void

U ⊆ N open if 0 ∈ U and NrU is finite. The resulting space is subfit but not

symmetric.)

2.4. However, one immediately sees that a space is symmetric iff each open set

is a union of closed ones. It seems to contrast with the characteristics (original

definition) of subfitness as in 1.4 and the example above. This calls for an

explanation.

The point is in an imperfect representation of subspaces as sublocales in

non-TD spaces. A subspace Y of a space X is naturally represented by the

sublocale SY associated with the congruence EY defined by setting

EY = {(U, V ) | U, V ∈ Ω(X), U ∩ Y = V ∩ Y }.

The following holds (see [3]):

Theorem. The correspondence Y 7→ EY is one-to-one if and only if X is a

TD-space.

We have already observed that TD & (subfit) = T1. It is equally easy to

see that TD & (symmetric) = T1. Hence, in TD-spaces (subfit), (symmetric)

and T1 coincide while in non-TD-spaces these properties differ. In the latter
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case, the representation of subspaces (subsets) by sublocales is not perfect, and

statements about them have to be interpreted as statements about equivalence

classes in the following sense.

Let us say that subsets Y , Z are congruence-equivalent (briefly, cong-equivalent)

and write Y ≈ Z if EY = EZ . More explicitly

Y ≈ Z ≡def (∀ open U, V, U ∩ Y = V ∩ Y iff U ∩ Z = V ∩ Z).

We will have more about the equivalence Y ≈ Z in the section on repleteness

below. Now we will only explain the seeming discrepancy between symmetry

and subfitness: for non-TD spaces, subfitness in terms of subspaces amounts

to each open sets being just cong-equivalent to a join of closed ones.

2.4.1. Note. This also explains the fact that a space X admits a nearness iff

it is symmetric (see Herrlich’s paper [6]) while a frame L admits a (generalized)

nearness iff it is subfit ([7], see also [13]).

3. Isbell’s Spatiality Theorem and T1-spatiality

3.1. In his pioneering article [8], Isbell proved a simple but important spatiality

theorem based on subfitness (and stated that there is probably not much other

merit in the concept – which, however, turned out to be a much too pessimistic

expectation). Using the first order formulation of subfitness (1.4) this theorem

has an extremely short proof (see 3.3 and 3.3.1 below), and we see that in fact

it states more than the plain spatiality.

Stating that L is spatial we claim that it is isomorphic to an Ω(X) but in

general we cannot be sure that the X in question has this or other property.

For instance, the L where theX can be chosen to be TD (the TD-spatial frames)

have special properties which were studied in [4]. Now the Isbell’s spatiality

theorem guarantees a T1-space X. This, and the relation to the TD-spatiality

will be the main topic of this section.

3.2. A frame L is max-bounded if for each x ∈ L there is a maximal p ∈ L

such that x ≤ p (note that each maximal element p is prime, hence such p’s

are in ΣL). We say that L is T1-spatial if for each x ∈ L,

x =
∧
{p | p maximal, x ≤ p}. (T1-spatial)

Thus, if L is T1-spatial then it can be represented as Ω(Σmax(L)) where

Σmax(L) is the subspace of Σ(L) carried by all the maximal p ∈ L.

3.2.1. Note. The space Σmax(L) is T1 so that a T1-spatial frame is repre-

sentable by a T1-space. The reverse fact, namely that the representability of

as Ω(X) with a T1-space X implies (T1-spatial), is not quite so obvious. But

see 3.6.1 below.
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3.3. Proposition. A max-bounded frame is T1-spatial if and only if it is

subfit.

Proof. ⇐: Let a � b. Take a c such that a ∨ c = 1 ̸= b ∨ c, and a maximal

p ≥ b ∨ c. Then p � a (else p ≥ a ∨ c = 1) so that a � p ≥ b.

⇒: Let a � b. Choose a maximal c such that a � c ≥ b. Then a ∨ c > c and

hence by maximality a ∨ c = 1, and b ∨ c = c ̸= 1. �

3.3.1. Corollary. (Isbell’s Spatiality Theorem) A compact subfit frame is

T1-spatial.

(By Zorn’s Lemma a compact frame is obviously max-bounded.)

3.3.2. Note. The representation by maximal elements does not necessarily

mean a representation by the whole of the spectrum. In such a representation

of a T1-space all of the maximal elements have to be present, but the spectrum

can have more points (the remaining, non-maximal primes, would constitute

together with the maximal ones the sobrification of the space).

This can easily happen even to a compact space. Consider an infinite set X

with the topology of complements of finite sets plus ∅. It is a compact T1 (and

hence subfit) space, but not a sober one. In the spectrum there is an extra

point ω (corresponding to the void set which is in this Ω(X) a prime element)

such that {ω} = X (so that the sobrification is not T1 !).

3.4. TD-spatiality (see [4]). A frame L is TD-spatial if L ∼= Ω(X) with a

TD-space X.

Write a < b for immediate precedence, that is, for the situation where a < b

and if a ≤ x ≤ b then either a = x or x = b. The following characteristic is in

[4].

3.4.1. Proposition. A frame is TD-spatial if and only if for any a < b there

are u, v with a ≤ u < v ≤ b.

3.5. A frame is step-bounded if for each a < 1 there are u, v such that

a ≤ u < v.

3.5.1. Lemma. A T1-spatial frame satisfies the formula from 3.4.1.

Proof. Let a < b. Pick a maximal p such that a ≤ p � b. Thus, a ≤ b ∧ p < b.

Let b∧p < x ≤ b. Then x � p since otherwise x ≤ b∧p; consequently x∨p ̸= p,

and by maximality x ∨ p = 1. Thus,

b = b ∧ (x ∨ p) = (b ∧ x) ∨ (b ∧ p) = x ∨ (b ∧ p) = x

so that b ∧ p < b. �
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3.5.2. Proposition. A subfit step-bounded frame is T1-spatial.

Proof. For a < 1 choose u, v with a ≤ u < v. By subfitness there is a c such

that v ∨ c = 1 ̸= u ∨ c.

We will prove that u∨ c is maximal. Consider an x with u∨ c < x. We have

u ≤ x ∧ v ≤ v

so that either u = x∧ v or v = x∧ v. If u = x∧ v then we have a contradiction

x = x ∧ (v ∨ c) = (x ∧ v) ∨ (x ∧ c) = u ∨ (x ∧ c) = (u ∨ x) ∧ (u ∨ c) < x.

Hence x ∧ v = v. That is, x ≥ v, and we see that x ≥ u ∨ c ∨ v = 1, and

u ∨ c ≥ a is maximal.

Thus, L is max-bounded and using subfitness again we conclude by 3.3 that

it is T1-spatial. �

3.6. Theorem. The following statements about a frame L are equivalent:

(1) L is T1-spatial.

(2) L is TD-spatial and subfit.

(3) L is step-bounded and subfit.

Proof. (1)⇒(2) follows from 3.3 and 3.5.1. Note that 3.3 is applicable because

L, being T1-spatial, is indeed max-bounded.

(2)⇒(3) is trivial.

(3)⇒(1) is in 3.5.2. �

Now we can justify the definition in 3.2.

3.6.1. Corollary. A frame is T1-spatial if and only if it is isomorphic to an

Ω(X) with a T1-space X.

(⇒ is trivial. On the other hand, an Ω(X) with a T1-space X is obviously

subfit and a TD-frame.)

3.6.2. Note. The point is in the equivalence (1)≡(3) which seems to be new

(we have already mentioned above the standard fact that for a space, T1 is

equivalent to TD & (subfit)).

3.7. Recall 3.3. Since a finite space is T1 only if it is discrete we immediately

obtain that

a finite distributive lattice is a Boolean algebra iff it is subfit.

This is a part of a much more general statement. The point is that the dual

of a (finite) distributive lattice is again a (finite) distributive lattice and that,

while the weak subfitness is a very weak condition indeed, its dual

b < 1 ⇒ ∃c, c ̸= 0, and b ∧ c = 0 (3.7.1)
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that is,

b∗ = 0 ⇒ b = 1

is in our context a very strong one.

3.7.1. Proposition. A pseudocomplemented distributive lattice (in particular,

a frame) is a Boolean algebra if and only if it is dually weakly subfit.

Proof. Suppose the pseudocomplement x∗ of some x ∈ L is not a complement,

that is, x ∨ x∗ ̸= 1. If we have (3.7.1) there is a c ̸= 0 such that c ∧ (x ∨ x∗) =

(c ∧ x) ∨ (c ∧ x∗) = 0, hence c ∧ x = 0 so that c ≤ x∗ and since also c ∧ x∗ = 0

we have a contradiction c = 0. �

3.7.2. Since a Boolean algebra is fit (indeed regular) we have

Corollary. For finite frames the subfitness is hereditary.

3.7.3. Note. Thus, a finite frame that is not subfit (i.e., a Boolean algebra)

cannot be a sublocale of a finite subfit frame. But with infinite extensions the

situation is different. Consider the following example.

In the set ω + 1 = {0, 1, . . . , ω} take the topology consisting of the empty

set and the complements of finite sets that contain ω. The obtained space is

easily seen to be subfit, but it contains (a.o.) the Sierpiński space(
{0, ω}, {∅, {ω}, {0, ω}}

)
.

4. Replete subobjects

4.1. We say that a subspace Y of a space X (more generally, a sublocale S

of a locale L) is replete if for each closed A ̸= ∅ (each a ̸= 1), A ∩ Y ̸= ∅
(c(a) ∩ S ̸= O) (compare with the density where we meet the subspace with

open subsets).

4.2. Recall that a frame homomorphism h : L → M is codense if h(a) = 1

implies a = 1.

4.2.1. Proposition. Let f : M → L be the right Galois adjoint of a frame

homomorphism h : L → M . Then f [M ] is replete in L if and only if h is

codense.

Proof. We have

c(a) ∩ f [M ] = {f(x) | a ≤ f(x)} = {f(x) | h(a) ≤ x}.

Thus, c(a) ∩ f [M ] ̸= O = {1} iff f(h(a)) < 1 and hence the repleteness of

f [M ] amounts to the implication a < 1 ⇒ f(h(a)) < 1, that is, f(h(a)) =

1 ⇒ a = 1. Since 1 ≤ f(h(a)) iff 1 = h(1) ≤ h(a) this is equivalent to

h(a) = 1 ⇒ a = 1. �
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4.3. The semiopen sublocales are defined by the formula

so(a) =
∨
{c(u) | c(u) ⊆ o(a)}.

(compare with the semiclosed sublocales

sc(a) =
∧
{o(u) | c(a) ⊆ o(u)}

from [14]). We obviously have

so(a) =
∨
{c(u) | c(u) ∩ c(a) = O}

=
∨
{c(u) | c(u ∨ a) = O} =

∨
{c(u) | u ∨ a = 1}.

4.4. Proposition. In every frame L, so(a) ∧ c(a) = O and so(a) ∨ c(a) is

replete.

Proof. The first is trivial since so(a) ⊆ o(a). Now let c(b) ̸= O (that is, b ̸= 1).

If c(b) ∧ c(a) = O then b ∨ a = 1 and c(b) ⊆ so(a). �

4.5. Proposition. The following statements about a frame L are equivalent:

(1) L is subfit.

(2) Every replete sublocale S ⊆ L is equal to L.

(3) For every a ∈ L, so(a) = o(a).

Proof. (1)⇒(2): Let S be replete and let a ∈ L. Set s =
∧
{t | t ∈ S, a ≤ t}.

Suppose s ∨ c = 1 and a ∨ c ≤ t ∈ S. Then a ≤ t and hence s ≤ t, and since

c ≤ t we have 1 = s∨ c ≤ t. By repleteness, a∨ c = 1, so that s∨ c = 1 implies

a ∨ c = 1 and by subfitness s ≤ a and a = s ∈ S.

(2)⇒(3): By 4.4, so(a) ∧ c(a) = O and so(a) ∨ c(a) = L so that so(a) = o(a),

the unique complement.

(3)⇒(1): Let (3) hold and let a � b. Then c(b) * c(a) and since c(b) =

c(b) ∩ (so(a) ∨ c(a)) we have c(b) ∩ so(a) ̸= O and hence for some c with

c ∨ a = 1, c(b) ∩ c(c) = c(b ∨ c) ̸= O, that is, b ∨ c ̸= 1. �

4.6. Here is a related characteristic of weak subfitness (int(S) denotes the

interior of a sublocale S, the largest open sublocale contained in S); slightly

surprisingly, it comes in terms of semiclosed sublocales rather than in terms of

semiopen ones.

Proposition. A frame L is weakly subfit if and only if int(sc(a) ∧ o(a)) = O

for every a ∈ L.

Proof. Assume L is weakly subfit and let o(b) ⊆ sc(a) ∧ o(a). Then b ≤ a and

o(u) ≥ c(a) ⇒ o(u) ≥ o(b),

that is,

u ∨ a = 1 ⇒ u ≥ b. (∗)
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Therefore, by weak subfitness, b > 0 would imply the existence of a u ̸= 1 such

that b ∨ u = 1, which is absurd: by (∗), from 1 = b ∨ u ≤ a ∨ u would follow

u ≥ b and then 1 = u ∨ b = u. Hence b = 0.

Conversely, let a > 0. Since int(sc(a) ∧ o(a)) = O, we have in particular

that o(a) * sc(a). This means that there is some u such that c(a) ⊆ o(u) (i.e.,

a ∨ u = 1) and o(a) * o(u) (i.e., a � u and so u ̸= 1). �

4.8. Repleteness in spaces. Recall the cong-equivalence ≈ from 2.4.

4.8.1. Observation. If Y ≈ Z and W is open then W ∩ Y ≈ W ∩ Z.

(Indeed, U ∩ (W ∩ Y ) = (U ∩W ) ∩ Y iff (U ∩W ) ∩ Z = U ∩ (W ∩ Z).)

4.8.2. If X is not TD we cannot infer the non-existence of a replete subset

from subfitness. But we have at least the following

Proposition. Let Y be replete in a subfit X. Then Y ≈ X.

Proof. Suppose U∩Y = V ∩Y and U ̸= V , say let there be an x ∈ UrV . Take

an y ∈ {x} such that A = {y} ⊆ U . Since V is open, {x} ∩ V = ∅ and hence

also A∩V = ∅ and A∩(V ∩Y ) = ∅. On the other hand, A∩U∩Y = A∩Y ̸= ∅,
by repleteness. �

The converse holds in every space:

Proposition. Let Y be a subspace of a space X such that Y ≈ X. Then Y is

replete.

Proof. Y ≈ X means that

A ∩ Y = B ∩ Y iff A = B for every open A,B.

In particular, for B = X, we have

Y ⊆ A iff A = X for every open A.

Now suppose Y is not replete. Then there is some closed F ̸= ∅ such that

Y ∩ F = ∅. Therefore X r F is an open set containing Y . Hence F = ∅, a
contradiction. �

4.9. For any subspace Y ⊆ X (not only for an open one) set

s(Y ) =
∪
{A | A closed, A ⊆ Y }.

We have

4.9.1. Lemma. s(Y ) ∪ (X r Y ) is replete.

Proof. Let C be non-void closed. Consider s(Y )∪(XrY )∩C. If C∩(XrY ) =

∅ then C ⊆ Y and hence C ⊆ s(Y ). �
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Now the cong-equivalence relation yields a new characteristic of subfit spaces.

4.9.2. Proposition. A space is subfit if and only if U ≈ s(U) for every open

U .

Proof. The implication “⇒” follows from 4.9.1 and 4.8.1. For the converse

implication use the Isbell-Simmons Theorem (see 2.3). Let U be an open set,

x ∈ U . The condition U ≈ s(U) means that

A ∩ U = B ∩ U iff A ∩ s(U) = B ∩ s(U) for every open A,B.

In particular, for B = U we have

U ⊆ A iff s(U) ⊆ A for every open A. (∗)

Applying (∗) to U * X r {x} we conclude that s(U) * X r {x}, that is,

s(U)∩{x} ̸= ∅. Hence there is a y ∈ {x} and a closed F ⊆ U containing y. �

5. Meet formulas for pseudocomplement

and Heyting operation

5.1. There is a surprising formula for pseudocomplement as the meet a∗ =∧
{x | a ∨ x = 1}, valid under suitable circumstances. In the literature it was

first encountered as a fact about zero-dimensional frames, but it must be a

folklore that it holds more generally (for instance there is a very natural proof

by computation in [2] that this formula, and a more general one for the Heyting

operation, holds for regular frames). In his recent note [10], concerned more

generally with d-frames, Olaf Klinke observed that in fact the pseudocomple-

ment formula holds already for weakly subfit frames (he claimed fitness, but

when analysing his proof the week subfitness emerges). In fact we will see that

the formulas lead to characteristics of subfitness and weak subfitness as in 5.2

below.

5.2. Theorem. In a frame L, the formula

a → b =
∧
{x | a ∨ x = 1, x ≥ b } (5.2.1)

for the Heyting operation is valid if and only if L is subfit.

The formula

a∗ =
∧

{x | a ∨ x = 1} (5.2.2)

for pseudocomplement is valid if and only if L is weakly subfit.

(Thus in particular in weakly subfit frames that are not subfit we have the

“almost supplement” formula (5.2.2) for pseudocomplement, but not the meet

formula (5.2.1) for the Heyting operation.)
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Proof. I. Set u =
∧
{x| a∨x = 1}. If a∨x = 1 then a∗ = a∗ ∧ (a∨x) = a∗ ∧x;

hence a∗ ≤ u.

Suppose a ∧ u ̸= 0. Hence there is an x ̸= 1 such that (a ∧ u) ∨ x =

(a ∨ x) ∧ (u ∨ x) = 1 and hence a ∨ x = u ∨ x = 1. Then, however, by the

formula for u and the first equality we have u ≤ x, and the second equality

yields x = 1, a contradiction.

II. Now let L be subfit. Note that

• for x ≥ b, the element x→ b is the pseudocomplement x∗b of x in the

closed sublocale ↑b, and
• ↑b is closed under meets and non-empty joins.

Hence we have

a→b = (a→b) ∧ (b→b) = (a ∨ b)→b = (a ∨ b)∗b =

=
∧
{x | a ∨ b ∨ x = 1, x ≥ b} =

∧
{x | a ∨ x = 1, x ≥ b}.

III. Let L not be weakly subfit. Then there is an a ∈ L such that a > 0 and

a ∨ x = 1 implies x = 1. Then a∗ ̸= 1 while
∧
{x | a ∨ x = 1} = 1.

IV. Let L not be subfit Then there is a b ∈ L such that ↑b is not weakly subfit

and hence there is by III also an a > b such that a→b = a∗b ̸=
∧
{x | a ∨ x =

1, x ≥ b}. �

5.3. Note. The following fact goes back to Isbell. An element is linear if it

join-distributes over arbitrary meets.

Fact. An element a of a subfit frame is complemented iff it is linear.

Note that this is, already for weakly subfit frames, an immediate conse-

quence of 5.2.

5.4. Note. Recall the concept of prefitness from [14],

∀a > 0 ∃c, c∗ ̸= 0 and a ∨ c = 1. (prefit)

Obviously (prefit) implies (weakly subfit), and these two concepts look formally

very close (c∗ ̸= 0 replaces c ̸= 1). In actual fact, however, they are worlds

apart.

Let us look closer at the situation. Weak subfitness is weaker than subfitness

and this is still weaker than T1 in spaces. On the other hand, prefitness is

already close to regularity: a frame L is prefit iff for each a ∈ L,

a ≤ (
∨

{x | x ≺ a})∗∗

(hence, it is “regular up to density”), see [14].

Somewhat surprisingly, prefitness does not imply subfitness. Thus, there

exist frames that are “almost regular”, in which the formula (5.2.2) holds

while the (5.2.1) does not!
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