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Relative cohomology of algebraic theories

Simeon Pol’shin

Abstract We construct relative abelian categories in the sense of MacLane for
models of algebraic systems in (co)complete abelian categories. As an example,
we consider an analogue of Hochschild-Mitchell cohomology for the functor of
Yoneda embedding.
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1 Introduction

Recently, cohomology of algebraic systems was studied using the methods of
algebraic topology [17], André-Quillen cohomology [12,4], Baues-Wirsching
cohomology of small categories [12], cotriple cohomology associated with a
neglecting funtor [11] and ordinary homological algebra [11,12]. Also in [12,
11] some of these approaches were compared. In the present paper we propose
the relative homological algebra approach to the cohomology of multi-sorted
algbraic systems. We identify the category of models of an algebraic system
in a given abelian category A as the category of functors from an appropriate
small category to A. Then we construct a relative abelian category in the
sense of [14] starting from the same neglecting functor as in [11], and we
study some properties of the associated cohomology theory. Also we establish
a connection between this relative cohomology and the ”absolute” one, thus
generalizing results of [11].

After some categorical preliminaries in Sec. 2, we consider resolvents in
relative pair of abelian categories in the sense of [14] for models of algebraic
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theories in abelian categories in Sec. 3. As an example, in Sec. 4 we construct
an analogue of Hochschild-Mitchell resolvent for small categoies [16,15,7]. This
reduces the cohomology of algebraic theories to the one of locally finite (dimen-
sional) categories considered by many authors [18,10,6]. For other approaches
to cohomology of algebraic theories see [17,12,4].

2 Categorical preliminaries

We fix some notations from category theory (see [13,2] for details). We denote
objects of C by c, c′, d, . . ., morphisms of C by f, g, . . ., functors from C to A by
K,T, S, . . . and natural transformations between these functors by ϕ,κ, . . ..
The last term means that for any object c of C there exists a morphism ϕc in
A such that the following diagram

T (c)
ϕc //

T (f)

��

S(c)

S(f)

��
T (d)

ϕd

// S(d)

(1)

commutes for any morphism f : c → d in C. We write ϕ : T ⇀ S for the
above natural transformation, and morphisms ϕc are called components of ϕ.

We write •
f

//
fg

**•
g

// • for composition of two morphisms in C.

We say that “a” diagram of product of two objects exists in C if (a) the
following diagram

c1 c1 × c2
pr

1oo pr
2 // c2

exists in C and (b) this diagram is universal. We say that the category has
binary products if the above diagram exists for any pair of objects. It is well
known that × is a bifunctor, so for any pair (f1, f2) of morphisms in C there
exist “a” morphism f1 × f2 in C such that the diagram

c1
f1 // d1

c1 × c2
f1×f2 //

pr
1

OO

pr
2

��

d1 × d2

pr
1

OO

pr
1

��
c2

f2 // d2

(2)

commutes.
Suppose a category has binary product and “nullary” product (i.e. termi-

nal object), then we say that it has finite products. Suppose both C and A

have finite products, then we say that a functor F ∈ Funct(C,A) is product
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preserving if it takes diagrams of finite products in C to those in A. It is easily
seen that product preserving functors and natural transformations between
them form a full subcategory FPFunct(C,A) in Funct(C,A). Let ϕ : T ⇀ S

be a natural transformation between two product-preserving functors, then
comparing (1) and (2) we obtain

ϕc1×c2 ≃ ϕc1 × ϕc2 . (3)

We call a category preadditive if it is enriched in Ab (some authors use
the term “additive” in this case). We say that a functor is preadditive if it
is an Ab-functor in the sense of enriched category theory, and we retain the
notations Funct(C,A) and FPFunct(C,A) for categories of preadditive and
preadditive product-preserving functors respectively. If a preadditive category
has a terminal object, then it is also a zero one, and we denote the category
of normalized (i.e. zero object-preserving) functors by FunctN(C,A).

Let A be a preadditive category, then a diagram of the form

a1

ι1 //
a1 ⊕ a2

π1

oo
π2

// a2
ι2oo

(4)

is called diagram of direct sum if the equalities

π1ι1 + π2ι2 = 1c1⊕c2 , ιkπl =

{

1ck , k = l

0, k 6= l

are satisfied. It is well known that a diagram of direct sum is universal whenever
it exists, so it defines a diagram of products in A . Conversely, any diagram of
product in preadditive category defines the one of direct sum, and preadditive
category which has direct sums of any pair objects and has “a” zero object is
called additive category, so an additive category always has finite products.

Let C be category with finite products and let A be an additive category.
Define objectwise direct sum F ⊕ G of two product preserving functors F,G

from C to A, then considering an iterated direct sum in A we see that F ⊕G is
in turn a product-preserving functor, so FPFunct(C,A) is an additive category.

Let C be a category, denote by ZC a preadditive category with ObZC =
Ob C and MorZC = ZMor C where Z is the functor of free abelian group,
then we have an identification

Funct(C,A) ∼= Funct(ZC,A) (5)

provided A is a preadditive category, so we can consider FPFunct(C,A) as a
subcategory of Funct(C,A) provided C has finite products and A is additive,
so we can use the theory of preadditive functors developed in [15].
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3 Relative abelian categories

An additive category A is called abelian if it obeys the following three axioms:

(Abel-1) ker f and coker f are nonempty for any morphism f of A.
(Abel-2) Suppose f is a monomorphism and g is an epimorphism, then f ∈ ker g iff

g ∈ coker f .
(Abel-3) We can decompose any morphism in A into the epimorphism followed by

monomorphism.

It is well known that the decomposition provided by (Abel-3) is functorial.

Let T, S be product preserving functors from C to A and let ϕ : T ⇀ S

be a natural transformation. Like the case of ordinary functors [9,14], for
any object c of C we can choose a morphism κc : K(c) → C(c) in A such
that κc ∈ kerϕc. Like the case of ordinary functors, it follows that an exact
sequence

0 // K(c)
κc // T (c)

ϕc // S(c)

is functorial, soK is a functor and κc is a component of natural transformation
κ : K ⇀ T . Then the diagram of direct sum (4) yields a diagram in A

0 // K(c2)
κc2 //

K(ι2)

��

T (c2)
ϕc2 //

T (ι2)

��

S(c2)

S(ι2)

��
0 // K(c1)⊕K(c2)

κc1×c2 //

K(π1)

��

K(π2)

OO

T (c1)⊕ T (c2)
ϕc1×c2 //

T (π1)

��

T (π2)

OO

S(c1)⊕ S(c2)

S(π1)

��

S(π2)

OO

0 // K(c1)
κc1 //

K(ι1)

OO

T (c1)
ϕc1 //

T (ι1)

OO

S(c1)

S(ι1)

OO

with exact rows and obvious commutativity properties. Since κc is a monomor-
phism, we see that left column defines a diagram of direct sum, so K is again
a product preserving functor.

Let λ be a natural transformation such that λϕ = 0, then for any object c
of C there exists a morphism λ′

c in A such that λc = λ′
cκc with κ constructed

above. Since κc is a monomorphism, it can be easily proved that the above
decomposition of λc is functorial like the case of ordinary functors, so λ′

c

are components of a natural transformation. In other words, κ ∈ kerϕ; dual
statement may be proved analogously. This verifies axioms (Abel-1) and (Abel-
2) in FPFunct(C,A). Axiom (Abel-3) may be verified along the same lines as
(Abel-1) was, so we have proved the following theorem.

Theorem 1 Let C be a small additive category and let A be an abelian cate-
gory, then the category FPFunct(C,A) of product preserving functors from C

to A is an abelian category with kernels and cokernels being defined objectwise.
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Let S be a set and let S∗ be “the” set of words generated by alphabet S
(including an empty word), then S∗ is a category with obvious finite prod-
ucts. Let T be an equationally defined algebraic theory of signature S and let
Alg(T,A) be the category of models of T in a category A with finite prod-
ucts. Then it is well known that there exist a small locally finite category T

with finite products such that Alg(T,A) is equivalent to M = FPFunct(T ,A)
and we have a product preserving functor T : S∗ → T which is identity on
objects [3,1,8].

Let I be a discrete subcategory of S∗, then Funct(I,A) reduces to the
category AI of functions from I to A with pointwise structure of abelian
category inherited from A. For any object F of M define an object �IF of

AI as a composition of F with the inclusion UI : I
�

� // S∗ T // T , and
natural transformations go to maps of functions. This defines an exact functor
�I from M to AI , and we obtain the following proposition as a consequence
of (3), cf. [3], Corollary 1.2.2.2.

Proposition 1 Suppose S ⊂ I, then �I is faithful.

Suppose now that A is complete, this is true e.g. for A = Alg(T,A′)
provided A′ is. Let ⊠ be tensor product of preadditive categories. Then it
was shown in [15] that for a preadditive category I and a complete abelian
category A there exists a preadditive bifunctor

homI(−,−) : (Funct(I,Ab))op ⊠ Funct(I,A) → A

limit preserving in the first variable, and it may be extended to preadditive
functor Funct(C,Funct(Iop,Ab)) ⊠ Funct(I,A) → Funct(C,A) also denoted
by homI(−,−) (this is called “picking up the operators” in [15], pp.14-15) in
such a way that homI(F,G) is additive provided the first argument is additive
considered as a functor from C to Funct(Iop,A).

Consider now C as a functor from Cop ⊗C to Ab. This gives the functor of
Yoneda embedding YC(−) : Cop → Funct(C,Ab), c 7→ HomC(c,−). Let UI :
I → C be a preadditive functor and let U∗

I be the corresponding neglecting
functor from Funct(C,Ab) to Funct(I,Ab). Then the right adjoint to the
neclecting functor �I from Funct(C,A) to Funct(I,A) reads [15]

RanUI
(−) = homI((YC)

opU∗
I ,−).

Dually, suppose that A is cocomplete, then there exist the bifunctor

−⊗I − : Funct(I,A)⊠ Funct(C,Funct(Iop,Ab)) → Funct(C,A)

colimit preserving in the second variable and the left adjoint to �I has the
form

LanUI
(−) = −⊗I Y

op
C (U∗

I)
op,
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where Y op
C

is the product-preserving “second Yoneda embedding” C → Funct(Cop,Ab)
given by c 7→ HomC(−, c) (cf. [2], Prop. 5.3.18). Observe that YC preserves zero
object, then putting I = I and using the identification (5) we obtain the fol-
lowing proposition.

Proposition 2 Suppose A is cocomplete, then the functor �I : M → AI has
left adjoint.

4 Cohomology

Combining Prop. 1 and Prop. 2, we can construct a resolvent pair of abelian
categories in the sense of ([14], Ch. IX §§5,6) for any I ⊃ S using the pair
of adjoint functors L�I

⊣ �I , so we can define relative extension functor
Ext∗�I

(−,−) from Mop × M to Ab w.r.t. the proper class of �I -split short
exact sequences along the lines of ([14], Ch. XII §§4,5), and we obtain the
following proposition.

Proposition 3 Suppose A is complete, then an isomorphism

Hn
�I

(F,G) := Extn�I
(F,G) ∼= Hn(HomM(β�I (F ), G)

there exist, where β�I (F ) is a relatively projective resolvent of F in M con-
structed using the pair of adjoint functors Lan�I

⊣ �I .

Then proceeding along the lines of [5], Ch. XVI §1 and [14], Ch.XII §§9,10
we obtain the following proposition which relates this cohomology to ”abso-
lute” one, thus extending Theorem C of [11].

Proposition 4 Suppose A is both complete and cocomplete, then an isomor-
phism

Hn
�I

(F,G) ∼= Hn(HomFunct(T ,A)(F, β�I
(G)) (∗)

there exist, where β�I
is a relatively injective coresolvent of G in Funct(T ,A)

constructed using the pair of adjoint functors �I ⊣ Ran�I
. Since Funct(T ,A)

has enough ”absolute” injectives, then we can take ”absolute” injective resol-
vent of G in (*) instead of relative one.

Example 1 Let A = Funct(Cop,Ab) and consider resolvent of the functor
Y

op
C . Then like the case of rings and modules ([14], Ch.X, §2) we obtain that

β�I

n+1(Y
op
C ) is the functor from C to A defined by

c 7→
⊕

i1,...,in∈I

HomC(−, i1)⊗Z HomC(i1, i2)⊗Z . . .⊗Z HomC(in, c),

where explicit formula for tensor product of functors ([15],p.26) was used.
This resolvent coincides with the ordinary Hochschild-Mitchell one ([15], p.70)
except for the range of indices i1, . . . in which run I but not over the whole
Ob C.
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Let F be an element of M = FPFunct(C,A) and let φ(f, f1, . . . , fn, f
′) be

Z-linear function from
∏

i,i1,...,in,i′

HomC(i, i1)×HomC(i1, i2)× . . .×HomC(in, i
′)

to HomAb(HomC(i, i
′), F (i, i′)) with differential

δφ(f, f1, . . . , fn, f
′) = F (1⊠ f)φ(f1, . . . , fn, f

′)+

+

n
∑

p=1

(−1)pφ(f, f1, . . . , fpfp+1, . . . , fn, f
′)+

+ φ(f, f1, . . . , fn)F (f ′
⊠ 1), (6)

where F is considered as a functor from C ⊠ Cop to Ab. Denote of this sub-
complex with I = S by Hn

red(Y
op
C

, F ), then using (3) we obtain the following
decomposition of full cohomology groups

Hn(Y op
C , F ) =

⊕

S∗×S∗

Hn
red(Y

op
C , F ).
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