Skip to main content
Log in

The Category of Archimedean -Groups With Strong Unit, and Some of its Epireflective Subcategories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

This paper explicates some basic categorical ideas in the category of the title, W (e.g., products and coproducts, monics, epics, and extremal monics, …) for the record, and for immediate application to description of some epireflective subcategories generated in various ways (at least six) by subobjects E of the reals \(\mathbb {R}\). These E have a very special place in W because of the Yosida Representation GC(Y G) which says directly that \(\mathbb {R}\) is a co-separator in W , and implies less directly that GC(Y G) is the epicomplete monoreflection of G. The E are exactly the nonterminal quasi-initial objects of W and generate the atoms in the lattice of epireflective subcategories of W .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., Conrad, P.: Epicomplete l-groups. Algebra Univers. 12(2), 224–241 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banaschewski, B., Hager, A.: Essential completeness of archimedean -groups with weak unit. J. Pure Appl. Algebra 217, 915–926 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezhanishvili, G., Morandi, P., Olberding, B.: Bounded archimedean -algebras and Gelfand-Naimark-Stone duality. Theory Appl. Categories 28(16), 435–475 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Aneaux Réticulés. Lecture Notes in Math 608. Spring-Verlag, Berlin-Heidelberg-New York (1977)

    Book  MATH  Google Scholar 

  5. Bleier, R.D.: Minimal vector lattices covers. Bull. Aust. Math. Soc. 5, 331–335 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cignoli, R., D’Ottaviano, I., Mandici, D.: Algebraic Foundations of Many-Valued reasoning. Kluwer (2000)

  7. Cohn, P.M.: Universal Algebra (revised edition). Reidel (1981)

  8. Conrad, P.F.: Minimal vector lattice covers. Bull. Aust. Math. Soc. 4, 35–39 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Darnel, M.R.: Theory of Lattice-ordered Groups. Monographs and Text-books in Pure and Applied Mathematics, 187. Marcel Dekker, Inc., New York (1995)

    Google Scholar 

  10. Engelking, R.: General Topology. Heldermann (1989)

  11. Gillman, L., Jerison, M.: Rings of Continuous Functions. The University Series in Higher Mathematics. D. van Nostrand Co., Inc., Princeton N.J.-Toronto-London-New York (1960)

    Book  MATH  Google Scholar 

  12. Hager, A.: Algebraic closures of -groups of continuous functions. Rings of Continuous Functions. In: Aull, C.E. (ed.) Dekker Notes No. 95, pp 165–194. Dekker, New York (1985)

    Google Scholar 

  13. Hager, A.: A description of HSP-like classes, and applications. Pac. J. Math. 125(1), 93–102 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hager, A., Madden, J.: Comments on monoreflections in unital archimedean lattice-ordered-groups and rings. Quest. Math. 39(8), 1093–1099 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hager, A., Martinez, J.: Hölder categories. Math. Slovaca 64(3), 607–642 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hager, A., Robertson, L.C.: Representing and ringifying a Riesz space. Sympos. Math. 21, pp 411–431. Academic Press, London (1977)

    Google Scholar 

  17. Hager, A., Robertson, L.C.: On the embedding into a ring of an archimedean -group. Canad. J. Math. 31, 1–8 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henriksen, M., Johnson, D.G.: On the structure of a class of lattice-ordered algebras. Fund. Math. 50, 73–94 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Herrlich, H., Strecker, G.: Category Theory. Allyn and Bacon (1973)

  20. Hewitt, E.: Certain generalizations of the Weierstrass approximation theorem. Duke Math. J. 14, 419–427 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monaco, C.M.: On the Category of Archimedean Vector Lattices with Strong Order Unit. Thesis. Wesleyan University (1983)

  22. Yosida, K.: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18, 339–342 (1942)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hager.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hager, A., Martinez, J. & Monaco, C. The Category of Archimedean -Groups With Strong Unit, and Some of its Epireflective Subcategories. Appl Categor Struct 26, 129–151 (2018). https://doi.org/10.1007/s10485-017-9487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-017-9487-x

Keywords

Mathematics Subject Classification (2010)

Navigation