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Abstract

Certain axiomatic notions of affine space over a ring and convex space over a pre-
ordered ring are examples of the notion of T -algebra for an algebraic theory T in
the sense of Lawvere. Herein we study the notion of commutant for Lawvere theories
that was defined by Wraith and generalizes the notion of centralizer clone. We focus
on the Lawvere theory of left R-affine spaces for a ring or rig R, proving that this
theory can be described as a commutant of the theory of pointed right R-modules.
Further, we show that for a wide class of rigs R that includes all rings, these theories
are commutants of one another in the full finitary theory of R in the category of sets.
We define left R-convex spaces for a preordered ring R as left affine spaces over the
positive part R+ of R. We show that for any firmly archimedean preordered algebra R
over the dyadic rationals, the theories of left R-convex spaces and pointed right R+-
modules are commutants of one another within the full finitary theory of R+ in the
category of sets. Applied to the ring of real numbers R, this result shows that the con-
nection between convex spaces and pointed R+-modules that is implicit in the integral
representation of probability measures is a perfect ‘duality’ of algebraic theories.

1 Introduction

In 1963, Lawvere [3] introduced an elegant approach to Birkhoff’s universal algebra
through category theory. Therein, an algebraic theory or Lawvere theory is by definition
a category T with a denumerable set of objects T 0, T 1, T 2, ... in which Tn is an n-th
power of the object T = T 1, and a T -algebra is a functor A : T → Set that is valued
in the category of sets and preserves finite powers. We call |A| = A(T ) the carrier
of A, and we say that A is normal if A sends the powers Tn in T to the canonical
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n-th powers |A|n in Set (2.4). T -algebras and the natural transformations between
them constitute a category T -Alg with an equivalent full subcategory consisting of all
normal T -algebras (2.5). The morphisms ω : Tn → T in a Lawvere theory T may
be called abstract operations, and the mappings A(ω) : |A|n → |A| associated to these
by a given T -algebra A are then called concrete operations. For convenience, we can
take the objects Tn of T to be just the finite cardinals n to which they correspond
bijectively.

By a (normal) faithful representation of a Lawvere theory T we mean a normal
T -algebra R : T → Set that is faithful as a functor. Writing simply R for the carrier
of R, such a faithful representation presents T as a subtheory T ↪→ SetR of a larger
theory SetR called the full finitary theory of R in Set, consisting of all the mappings
between the n-th powers Rn of the set R. Such subtheories are essentially the concrete
clones that appear in universal algebra, as contrasted with the (a priori) more general
abstract clones of Hall, which correspond to arbitrary Lawvere theories.

One of the chief objectives of this paper is to study a phenomenon sometimes
exhibited by a faithfully represented Lawvere theory T ↪→ SetR, wherein the set
R carries the structure of an S -algebra for some other Lawvere theory S and the
mappings Rn → Rm that lie within the subtheory T ↪→ SetR are precisely those that
are S -homomorphisms with respect to the induced S -algebra structures on Rn and
Rm, so that

T (n,m) ∼= S -Alg(Rn, Rm) .

We will in fact encounter situations in which, moreover, the S -algebra structure on R
is also a faithful representation of S with the same property, such that the subtheory
S ↪→ SetR consists of exactly those mappings Rn → Rm that are T -homomorphisms.
In symbols

S (n,m) ∼= T -Alg(Rn, Rm) .

It is precisely this curious ‘duality’ of certain pairs of theories T and S that we seek
to understand.

As a first example, let us consider the theories T and S of left and right R-modules,
respectively, for a given ring1 R (or even just a rig or semiring, 2.8). Concretely, T
is the category MatR whose objects are the natural numbers n and whose morphisms
n → m are m × n-matrices with entries in R, with composition given by matrix mul-
tiplication. The category of normal T -algebras is isomorphic to the category R-Mod
of left R-modules (2.8). Similarly, S -algebras for S = MatRop are right R-modules.
Given a left R-module A, the corresponding normal T -algebra T → Set is given on
objects by n 7→ An and associates to each m × n-matrix w ∈ Rm×n the mapping
An → Am that sends a column vector x ∈ An to the matrix product wx ∈ Am. A
normal T -algebra is uniquely determined by its carrier and its values on morphisms
of the form w : n → 1 in T , i.e. on row vectors w ∈ R1×n, for which the associated
maps

An → A , x 7→ wx =
n∑
i=1

wixi (1.0.i)

1Throughout this paper, we use the term ring to mean unital ring. A similar remark applies to the notion
of rig or semiring employed herein, whose definition we recall in 2.8.
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implement the taking of left R-linear combinations. In particular, R itself is a left
R-module and so determines a normal T -algebra R : T → Set that is in fact a faithful
representation. Similarly, R is a right R-module, so we have faithful representations

T ↪→ SetR S ↪→ SetR .

Thus viewing T as a subtheory of SetR, we find that the mappings Rn → Rm that lie in
T are precisely the right R-linear maps (i.e. the S -homomorphisms) whereas the map-
pings Rn → Rm in S are precisely the left R-linear maps (i.e. the T -homomorphisms)
(6.5).

This peculiar duality of pairs of theories T ,S can be understood through the
notion of commutant for Lawvere theories that was briefly introduced by Wraith in his
lecture notes on algebraic theories [13] but was not studied to any substantial extent
therein. Given a set R, a pair of mappings µ : Rn → Rm and ν : Rn

′ → Rm
′

is said to
commute if the associated mappings

µ ∗ ν =

Ç
Rn×n

′ ∼= (Rn)n
′ µn

′

−−→ (Rm)n
′ ∼= (Rn

′
)m

νm−−→ (Rm
′
)m ∼= Rm×m

′
å

µ ∗̃ ν =

Ç
Rn×n

′ ∼= (Rn
′
)n

νn−→ (Rm
′
)n ∼= (Rn)m

′ µm
′

−−→ (Rm)m
′ ∼= Rm×m

′
å

are equal. Given a subtheory T ↪→ SetR, the commutant of T in SetR is, by definition,
the subtheory T ⊥ ↪→ SetR consisting of those mappings µ : Rn → Rm that commute
with every mapping ν : Rn

′ → Rm
′

in T . A subtheory T ↪→ SetR is equivalently a
theory T admitting a faithful representation with carrier R, and the key observation
is now that a mapping µ : Rn → Rn lies in the commutant T ⊥ if and only if µ is a
T -homomorphism (5.9); i.e.,

T ⊥(n,m) = T -Alg(Rn, Rm) .

Hence the ‘duality’ observed above in pairs of faithfully represented theories T ,S is
equivalently the statement that S and T are commutants of one another within the
full finitary theory SetR of a set R; in symbols,

T ∼= S ⊥ T ⊥ ∼= S .

In particular, given a ring or rig R, the theories MatR and MatRop of left and right
R-modules, respectively, are commutants of one another within SetR:

MatR ∼= (MatRop)⊥ (MatR)⊥ ∼= MatRop .

Wraith’s notion of commutant applies not only to subtheories T of the full finitary
theory SetR of a set R but also to subtheories T ↪→ U of an arbitrary Lawvere theory
U . Indeed, in analogy with the above one can again define the notion of commutation
of morphisms in U (4.3), and the commutant

T ⊥ ↪→ U
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of T in U is then defined in the analogous way (5.6). More generally, we can define
the commutant T ⊥A ↪→ U of a morphism of Lawvere theories A : T → U as the
commutant of its image. The commutant is then characterized by a universal prop-
erty, namely that a morphism of theories B : S → U factors uniquely through the
commutant T ⊥A ↪→ U if and only if A commutes with B in a suitable sense (5.1).
Defining a theory over U as a theory T equipped with a morphism A : T → U , it
follows that the operation (−)⊥ on theories over U gives rise to an adjunction between
the category of theories over U and its opposite (6.1), and this adjunction restricts to
a Galois connection on subtheories of U . Since a normal T -algebra R : T → Set is
equivalently described as a morphism R : T → SetR into the full finitary theory of its
carrier R, we recover the commutant of a faithful representation as a special case. In
particular, when T is the subtheory of SetR generated by a specified family of finitary
operations on a given set R, we recover the notion of centralizer clone that has been
studied to some extent in the literature on universal algebra. For example, the paper
[12] characterizes those abstract clones or Lawvere theories T for which there exists a
set R equipped with a family of operations whose centralizer clone is isomorphic to T .

In addition to a general study of the notion of commutant for Lawvere theories2, the
present paper comprises an in-depth study of certain specific examples of commutants.
In particular, we prove several theorems concerning the theory of R-affine spaces for
a ring or rig R and, in particular, R-convex spaces for a preordered ring R. Several
authors have studied axiomatic notions of affine space over a ring or rig, and the
generality afforded by the use of a mere rig permits the consideration of the notion of
convex space as a special case; for example, see [11] and the references there. Whereas
a (left) R-module A is a set equipped with operations (1.0.i) that permit the taking of
linear combinations, a (left) R-affine space or (left) R-affine module is a set equipped
with operations (1.0.i) that permit the taking of affine combinations, i.e. those linear
combinations

∑n
i=1wixi whose coefficients wi sum to 1. More precisely, a left R-affine

space is by definition a normal T -algebra for a certain subtheory

T = Mataff
R ↪→ MatR

of the category of R-matrices, namely the subtheory consisting of all matrices in which
each row sums to 1. This way of defining the notion of R-affine space was given in
[4]. Letting R+ denote the rig of non-negative reals, R+-affine spaces are usually called
convex spaces, and R+-affine combinations are called convex combinations. This way
of defining convex spaces was given in [10].

We pursue answers to the following questions:

1. Does Mataff
R arise as a commutant of some theory over the full finitary theory

SetR of R in Set?

2. What is the commutant of Mataff
R in SetR?

2A further recent preprint [6] by the author of the present paper was made available subsequent to the
initial version of the present paper and treats the general theory of commutants for V -enriched algebraic
theories for a system of arities J ↪→ V . The development is much simpler in the present Set-based case,
and the present paper is principally concerned with specific examples.
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We answer 1 in the affirmative for every rig R. Indeed, defining a pointed right R-
module as a right R-module M equipped with a chosen element ∗ ∈ M , the category
of pointed right R-modules is isomorphic to the category of T -algebras for a Lawvere
theory T = Mat∗Rop . The pointed right R-module (R, 1) determines a morphism
Mat∗Rop → SetR by which Mat∗Rop can be considered as a theory over SetR, though not
in general a subtheory, and we show in 7.2 that

Mataff
R
∼= (Mat∗Rop)⊥

as theories over SetR. Hence

the Lawvere theory of left R-affine spaces is the commutant of
the theory of pointed right R-modules when both are considered
as theories over the full finitary theory of R in Set.

Consequently Mataff
R is its own double-commutant (Mataff

R )⊥⊥ over SetR, so we say that
Mataff

R is a saturated subtheory of SetR.
It is illustrative to note that in the case of the rig R+ one finds here a connection

to the Kakutani-Markov-Riesz representation theorem, since for each finite cardinal n
the resulting bijection Mataff

R+
(n, 1) ∼= (Mat∗R+

)⊥(n, 1) is the correspondence between
probability measures on the finite set n (on the left-hand side) and 1-preserving R+-
linear functionals Rn+ → R+ (on the right).

With regard to question 2 it is natural to ask also whether Mat∗Rop is the commutant
of Mataff

R over SetR. When R is a ring we show that this is indeed the case (9.2), so
that

(Mataff
R )⊥ ∼= Mat∗Rop (1.0.ii)

over SetR. Hence

if R is a ring, then the theories of left R-affine spaces and pointed
right R-modules are commutants of one another within the full
finitary theory of R in Set.

However for arbitrary rigs this is no longer true. For example, when R is the two-
element rig 2 = (2,∨, 0,∧, 1), we show that (i) 2-modules are equivalently (bounded)
join semilattices (2.10), (ii) 2-affine spaces are unbounded join semilattices (i.e., idem-
potent commutative semigroups, 3.3), and (iii) the commutant in Set2 of the theory of
unbounded join semilattices is the theory of join semilattices with a top element (8.2).

Nevertheless, we show that (1.0.ii) does hold for many rigs other than rings. In
particular, we show that it holds for the rig R+ of non-negative reals (10.21), so that

the theory of convex spaces (over R) and the theory of pointed right
R+-modules are commutants of one another within the full finitary
theory of R+ in Set.

(1.0.iii)

This result shows that the connection between convex spaces and pointed R+-modules
that is implicit in the integral representation of probability measures is in fact a perfect
‘duality’ of algebraic theories. Indeed, one of the purposes of the present paper is to
provide an algebraic basis for a study of measure and distribution monads canonically
determined by such dualities in the enriched context [5, 8].
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In order to generalize this result, we study affine spaces over rigs of the form

R+ = {r ∈ R | r > 0}

where R is a preordered ring (3.4). Preordered and partially ordered rings have been
studied at various levels of generality in the literature on ordered algebra, and they
can be defined equivalently as rings R equipped with an arbitrary subrig R+ ↪→ R.
The rigs that occur as the positive part R+ of some preordered ring R are precisely the
additively cancellative rigs (3.4).

Given a preordered ring R, we call left R+-affine spaces left R-convex spaces or left
R-convex modules. In 10.10 we establish a characterization of the class of all preordered
rings R for which the evident analogue of (1.0.iii) holds, and we then proceed to develop
sufficient conditions that entail that a preordered ring R belongs to this class, as we
now outline.

Whereas the archimedean property for totally ordered fields R can be expressed
in several equivalent ways, certain of these statements become inequivalent when one
passes to arbitrary preordered rings R. In particular, we define the notion of firmly
archimedean preordered ring (10.18), noting that a nonzero totally ordered ring is
firmly archimedean if and only if it is archimedean. Given any integer d > 1, we prove
that if R is a firmly archimedean preordered ring and d is invertible in the rig R+,
then the relevant analogue of (1.0.iii) holds (10.20). But d is invertible in R+ if and
only if there exists a (necessarily unique) morphism of preordered rings from the ring
of d-adic fractions Z[1

d ] into R (10.11, 10.13), so this result can be stated as follows:

Let R be a firmly archimedean preordered algebra over Z[1
d ], for some

integer d > 1. Then the Lawvere theory of left R-convex spaces and
the Lawvere theory of pointed right R+-modules are commutants of
one another in the full finitary theory of R+ in Set.

In particular, this applies to (i) the ring of real numbers R = R, (ii) the ring of dyadic
rationals R = Z[1

2 ], (iii) the ring R of all bounded real-valued functions on a set, or any
sub-Z[1

d ]-algebra thereof, and in particular (iv) the ring R = C(X) of all continuous
functions on a compact space X.

We begin in §2 with a survey of basic material concerning Lawvere theories, and
we discuss several examples of Lawvere theories for use in the sequel. In §3 we define
the Lawvere theory of left R-affine spaces for a rig R and the Lawvere theory of left
R-convex spaces for a preordered ring R. In §4 we provide a self-contained treatment
of the notion of commutation of morphisms in a Lawvere theory T by studying in
detail the first and second Kronecker products of morphisms in T (4.3). Noting that
these Kronecker products in T depend on a choice of binary product projections in
the category of finite cardinals (4.1), we show that one specific such choice enables a
rigourous proof that the first Kronecker product of morphisms in the category MatR
of matrices over a rig R is the classical Kronecker product of matrices (4.4), as we are
not aware of any statement or proof of this in the literature. In §5 we study the notion
of commutant of a morphism of Lawvere theories A : T → U , proving that it can be
defined equivalently as the full finitary theory of A in the category of T -algebras in
U (5.9), and we treat the example of the theory of left R-modules for a rig R (5.14).
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In §6 we show that the passage from a theory T over U to its commutant is a ‘self-
adjoint’ contravariant functor (6.1), and we study the notions of saturated and balanced
subtheory (6.2). In §7, 8, 9, 10 we derive our main results concerning the theories of
R-affine and R-convex spaces and their commutants (7.2, 8.2, 9.2, 10.10, 10.17, 10.20).

Acknowledgement. The author thanks the anonymous referee for helpful suggestions
and remarks. In the original version of this paper, Theorems 10.17 and 10.20 were
formulated for preordered algebras R over the dyadic rationals Z[1

2 ]. However, the
referee supplied an argument to the effect that equation (10.17.ii) still holds when one
replaces Z[1

2 ] with the ring of d-adic fractions Z[1
d ] for any integer d > 1, thus showing

that Theorems 10.17 and 10.20 apply to the broader classes of preordered algebras for
which they are now formulated herein.

2 Lawvere theories, their algebras, and several examples

2.1 (Lawvere theories). A Lawvere theory is a small category T equipped with
an identity-on-objects functor τ : FinCardop → T that preserves finite powers, where
FinCard is the full subcategory of Set consisting of the finite cardinals. We may
identify finite cardinals with natural numbers, so that obT = N is the set of all natural
numbers. When we want to emphasize that a natural number n is to be treated as an
object of T , we will sometimes denote it by τ(n).

Since FinCard has finite copowers, its opposite FinCardop has finite powers and
hence every Lawvere theory T has finite powers, furnished by τ . In particular, each
finite cardinal n is an n-th copower of 1 in FinCard, so n is an n-th power of 1 in T .
In symbols, n = τ(n) = τ(1)n in T . For ease of notation we will sometimes write
T = τ(1) and correspondingly write Tn for the object n of T . Choosing designated
n-th copower cocones (ιi : 1 → n)ni=1 in FinCard in the evident way, we thus obtain
designated n-th power cones (πi = τ(ιi) : Tn → T ) in T . Moreover, τ can then
be characterized as the functor T (−) : FinCardop → T that is given on objects by
n 7→ Tn and sends each mapping f : m → n in FinCard to the induced morphism
T f : Tn → Tm.

We say that an object C of a category C has designated finite powers if it
is equipped with a specified choice of n-th power Cn in C for each n ∈ N. We say
that these designated finite powers of C are standard if C1 = C, with the identity
morphism 1C as the designated projection π1 : C1 → C. For example, the designated
n-th powers of τ(1) in a Lawvere theory (T , τ) are standard, since the designated
morphism ι1 : 1→ 1 in FinCard is necessarily the identity. It shall be convenient to fix
a choice of standard designated finite powers τ(m)n of each of the objects τ(m) = m of
T , and we may assume that this choice of powers extends the basic choice τ(1)n = n
in the case that m = 1.

In fact, a Lawvere theory is equivalently given by a small category T with objects
obT = N in which each object n carries the structure of an n-th power of 1, such that
these designated n-th powers of 1 are standard3.

3Many authors drop the latter condition, with the immaterial consequence that a Lawvere theory T may
then carry an irrelevant specified automorphism π1 : 1→ 1 of 1.
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Notation 2.2. We will use each of the following notations interchangeably to denote
a given Lawvere theory:

T , (T , τ),
Ä
T , T (−)

ä
, (T , T ) .

We regard the last notation as a construct for naming both T and the object T = 1
of T .

2.3 (The category of Lawvere theories). Given Lawvere theories T and U , a
morphism M : T → U is a functor that commutes with the associated functors
FinCardop → T and FinCardop → U . Thus Lawvere theories are the objects of a
category Th. Observe that FinCardop is a Lawvere theory, when equipped with its
identity functor, and hence is an initial object of Th. A morphism of theories may
be equivalently defined as a functor that strictly preserves the designated n-th power
projections πi : n→ 1 (and so, in particular, is identity-on-objects). Given a Lawvere
theory U , a subtheory of U is a Lawvere theory T equipped with a morphism
T ↪→ U that is faithful as a functor. Subtheories are the objects of a full subcategory
SubTh(U ) of the slice category Th/U , and SubTh(U ) is clearly a preordered set.
A concrete subtheory is a subtheory T ↪→ U for which the associated mapping
morT → morU is simply the inclusion of a subset morT ⊆ morU . Clearly every
subtheory of U is isomorphic to a concrete subtheory. A concrete subtheory of (U , U)
is equivalently given by a subset T ⊆ morU such that (i) T contains the designated
projections πi : Un → U , (ii) T is closed under composition, and (iii) given a family
of morphisms {ωi : Un → U | i = 1, ...,m} ⊆ T , the induced morphism ω : Un → Um

lies in T .

2.4 (T -algebras). Given a Lawvere theory (T , T ) and a category C , a T -algebra in
C is a functor A : T → C that preserves finite powers. We call |A| := A(T ) the carrier
of A. Hence for each natural number n, the object A(Tn) is simply an n-th power |A|n

of the carrier |A| in C . However, when C has designated finite powers of each of its
objects, the n-th power A(Tn) = |A|n need not be the designated n-th power. Assuming
that C has standard designated finite powers (2.1), we therefore define a normal T -
algebra to be a functor A : T → C that sends the designated n-th power projections
πi : Tn → T in T to the designated n-th power projections πi : |A|n → |A| in C . Since
a functor on T preserves finite powers as soon as it preserves finite powers of T , every
normal T -algebra is necessarily a T -algebra. Observe that a morphism of Lawvere
theories A : (T , T )→ (U , U) is equivalently defined as a normal T -algebra in U with
carrier A(T ) = U . With this in mind, note also that a normal T -algebra A : T → C
is uniquely determined by its carrier and its components An,1 : T (n, 1)→ C (|A|n, |A|),
n ∈ N. Related to this, observe that a morphism A : T → U is an isomorphism (resp.
a subtheory embedding) if and only if An,1 is an isomorphism (resp. a monomorphism)
in Set for each n ∈ N.

2.5 (The category of T -algebras). Letting (T , T ) be a Lawvere theory, observe
that T -algebras in a given category C are the objects of a full subcategory T -AlgC

of the functor category [T ,C ]. We call natural transformations between T -algebras
T -homomorphisms. When C has standard designated finite powers, we denote by

8



T -Alg!
C the full subcategory of T -Alg with objects all normal T -algebras in C . In

fact we obtain an equivalence of categories

T -Alg!
C ' T -AlgC

between normal T -algebras and arbitrary T -algebras; this is proved in general context
in [7, 5.14].

There is a canonical functor |−| = EvT : T -AlgC → C given by evaluation at T , and
in fact this functor is faithful. Indeed, given a T -homomorphism φ : A→ B, we know
that for each n ∈ N, the morphisms A(πi) : A(Tn)→ A(T ) = |A| present A(Tn) as an
n-th power |A|n of |A| = A(T ) in C , and similarly for B, and the naturality of φ entails
that the component φTn : A(Tn) → B(Tn) is simply the morphism fn : |A|n → |B|n

induced by f := φT : |A| → |B|. Hence the mapping EvT : T -AlgC (A,B)→ C (|A|, |B|)
is injective. In fact, via this injective map we can and will identify T -AlgC (A,B) with
the subset of C (|A|, |B|) consisting of all morphisms f : |A| → |B| such that

|A|n

A(µ)
��

fn // |B|n

B(µ)
��

|A|m
fm
// |B|m

(2.5.i)

commutes for every morphism µ : Tn → Tm in T . Hence we say that a morphism
f : |A| → |B| is a T -homomorphism if it satisfies this condition. To assert merely
that the square (2.5.i) commutes for a particular morphism µ : Tn → Tm, we say that
f preserves µ (relative to A and B). Since each such morphism µ is induced by
a family of morphisms (µi : Tn → T )mi=1, it follows that f preserves µ iff f preserves
each of the µi. Therefore f is a T -homomorphism iff f preserves every morphism of
the form ω : Tn → T in T .

2.6 (Algebraic categories). We shall often call T -algebras in Set simply T -algebras.
We write simply T -Alg for the category of T -algebras in Set and T -Alg! for its
equivalent full subcategory consisting of normal T -algebras. We say that a func-
tor G : A → Set is strictly finitary-algebraic (or that A is strictly finitary-
algebraic over Set, via G) if there exists a Lawvere theory T and an isomorphism
(A , G) ∼= (T -Alg!, |−|) in the slice category CAT/Set. It is well known that G is
strictly finitary-algebraic if and only if G is strictly monadic for a finitary monad T on
Set, meaning that (i) G has a left adjoint F , (ii) the endofunctor T = GF preserves
filtered colimits, and (iii) the comparison functor A → SetT for the associated monad
T = (T, η, µ) is an isomorphism4. The associated theory T is obtained by forming
the Kleisli category SetT and defining T to be the full subcategory of Setop

T with ob-
jects the finite cardinals, so that T (n,m) = Set(m,T (n)) ∼= (T (n))m. Note then that
T (n,m) ∼= A (Fm,Fn), with composition as in A , so that we have a fully faithful
functor T op � A . The associated isomorphism A → T -Alg! sends each object A of
A to a normal T -algebra A : T → Set that has carrier GA and associates to each

4Indeed, this follows from [7, 4.2, 11.3, 11.8, 11.14], noting that the isomorphisms in 11.14 there are
isomorphisms in CAT/Set when V = Set.
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abstract operation ω ∈ T (n, 1) the mapping Aω : (GA)n → GA defined as follows.
Regarding n as a cardinal, we have an associated object Fn of A and an isomorphism
A (Fn,−) ∼= Set(n,G−) = (G−)n. Hence each element a = (a1, ..., an) ∈ (GA)n de-
termines a corresponding morphism a] : Fn → A in A and an underlying mapping
Ga] : GFn → GA. Recalling that GFn = Tn = T (n, 1), the associated mapping
Aω : (GA)n → GA is given by

(Aω)(a) = (Ga])(ω) .

2.7 (Varieties of algebras). Let us now recall some points concerning the relation
of Lawvere theories to classical universal algebra. Mac Lane [9, V.6, p. 120], for
example, gives a concise introduction to the basic framework of classical universal
algebra, defining the category 〈Ω, E〉-Alg of 〈Ω, E〉-algebras for what he calls simply a
type 〈Ω, E〉, where Ω and E are suitable collections of formal operations and equations,
respectively. Any category of the form 〈Ω, E〉-Alg is called a variety of finitary
algebras. Theorem 1 of [9, VI.8] shows that the forgetful functor |−| : 〈Ω, E〉-Alg →
Set is strictly monadic, and, as noted in [9, IX.1, p. 209], |−| creates filtered colimits,
so the induced monad on Set is finitary. Therefore |−| : 〈Ω, E〉-Alg → Set is strictly
finitary-algebraic. In fact, it is well-known (and now straightforward to prove) that a
functor G : A → Set is strictly finitary-algebraic if and only if the object (A , G) of
CAT/Set is isomorphic to (〈Ω, E〉-Alg, |−|) for some type 〈Ω, E〉, though we shall not
make use of this fact.

Example 2.8 (Left R-modules). The category R-Mod of left R-modules for a ring
R is a variety of finitary algebras and so is isomorphic to the category of normal
T -algebras T -Alg! for a Lawvere theory T . By 2.6, the associated theory T has
T (n,m) = (|R|n)m since Rn is the free R-module on n generators, where we write
|R| for the underlying set of R. By identifying (|R|n)m with the set |R|m×n of m× n-
matrices, we can conveniently describe composition in T as matrix multiplication.
Hence T is the category MatR of R-matrices, whose objects are natural numbers and
whose morphisms w : n→ m are m× n-matrices with entries in R.

The normal T -algebra MatR → Set corresponding to a left R-module M necessarily
sends each object n to the n-th power |M |n of the underlying set |M | of M , and we
identify |M |n with the set |M |n×1 of n-element column vectors with entries in M .
Given an m× n-matrix w : n→ m, the associated mapping |M |n×1 → |M |m×1 sends a
column vector x to the matrix product wx, whose entries are the R-linear combinations
(wx)j =

∑n
i=1wjixi in M .

This all applies equally to the case where R is merely a rig (or semiring), i.e. a set
R with two monoid structures (R,+, 0) and (R, ·, 1) with + commutative, such that
· : R×R→ R preserves + and 0 in each variable separately.

Recall that we chose to regard (|R|n)m as the set of m×n-matrices |R|m×n, whereas
we could have considered n×m-matrices instead. This line of inquiry is pursued below
in the course of our discussion on commutants (5.13).

Example 2.9 (The Lawvere theory of commutative k-algebras). Given a com-
mutative ring k, the category k-CAlg of commutative k-algebras is a variety of fini-
tary algebras and so is isomorphic to the category T -Alg! of normal T -algebras for

10



a Lawvere theory T . Since the polynomial ring k[x1, ..., xn] is the free commutative
k-algebra on n-generators, we deduce by 2.6 that T (n, 1) = k[x1, ..., xn], and more
generally T (n,m) = (T (n, 1))m is the set of m-tuples of n-variable polynomials.

Example 2.10 (The Lawvere theory of semilattices). A (bounded) join semi-
lattice can be defined either as a partially ordered set with finite joins, or, equivalently,
as a commutative monoid in which every element is idempotent. Hence the category
SLat∨ of join semilattices (and their homomorphisms) is a variety of finitary algebras.
The powerset 2n of a finite cardinal n is the free join semilattice on n generators, namely
the singletons {i} with i ∈ n. By 2.6, SLat∨ is therefore isomorphic to the category
T -Alg! of normal T -algebras for a Lawvere theory T with T (n,m) = (2n)m = 2m×n,
and we find that composition in T is given by matrix multiplication when we view
2 = {0, 1} as a rig (2.8) with underlying additive monoid (2,∨, 0) and multiplicative
monoid (2,∧, 1). Hence T = Mat2 is the category of 2-matrices, and SLat∨ = 2-Mod,
so that join semilattices are the same as 2-modules by 2.8.

Exchanging joins for meets, the category SLat∧ of (bounded) meet semilattices
is isomorphic to SLat∨, via an isomorphism that commutes with the forgetful functors
to Set.

Definition 2.11 (The full finitary theory of an object). If a given object C of
a locally small category C has standard designated finite powers Cn, n ∈ N, then we
obtain a Lawvere theory CC , called the full finitary theory of C in C , with

CC(n,m) = C (Cn, Cm), n,m ∈ obCC = N

such that the mapping N → obC , n 7→ Cn, extends to an identity-on-homs functor
CC � C , which is evidently a CC-algebra in C with carrier C.

In particular, given a Lawvere theory (T , T ), any T -algebra A : T → C endows
its carrier |A| = A(T ) with standard designated finite powers |A|n = A(Tn) (2.4), with
respect to which we can form the full finitary theory of |A| in C , which we shall denote
by CA. The given T -algebra A then factors uniquely as

T

A !!

A′ // CA
��

��
C

where A′ is a morphism of Lawvere theories, given on homs just as A. By abuse of
notation, we write simply A to denote the morphism A′.

In the case that C has standard designated finite powers, morphisms of Lawvere
theories T → CC into the full finitary theory of an object C of C are evidently in
bijective correspondence with normal T -algebras in C with carrier C.

Example 2.12 (The Lawvere theory of Boolean algebras). The category Bool
of Boolean algebras is a variety of finitary algebras and so is isomorphic to the category
T -Alg! of normal T -algebras for a Lawvere theory T . In fact, it is well-known that
the morphism of theories T → Set2 determined by the Boolean algebra 2 = {0, 1} is
an isomorphism between T and the full finitary theory Set2 of 2 in Set. Indeed, this
follows from [3, III.1, Example 4].
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3 Affine and convex spaces

3.1 (The affine core of a Lawvere theory). Every Lawvere theory (T , T ) has
a subtheory T aff ↪→ T called the affine core of T [4, §3], consisting of all those
morphisms ω : Tn → Tm for which the composite

T
(1T ,...,1T )−−−−−−→ Tn

ω−→ Tm

equals (1T , ..., 1T ) : T → Tm. We say that T is affine if T equals its affine core.

3.2 (Affine spaces over a ring or rig). Let R be a ring, or more generally, a rig.
Recall that the category of R-matrices MatR is the Lawvere theory of left R-modules
(2.8). By definition, a (left) R-affine space (or (left) R-affine module) is a normal
T -algebra for the affine core T = Mataff

R of MatR. Hence R-affine spaces are the
objects of a category R-Aff = Mataff

R -Alg!. Since the projection morphisms πi : n→ 1
in MatR are the standard basis vectors for R1×n, one deduces that the affine part Mataff

R

consists of the R-matrices in which each row sums to 1. By 2.4, an R-affine space E
is therefore given by a set E (the carrier) equipped with a suitable family of mappings
Mataff

R (n, 1)→ Set(En, E) that associate to each n-element row vector w = [w1, ..., wn]
with

∑n
i=1wi = 1 a mapping En → E whose value at a given column vector x ∈ En

we write as
∑n
i=1wixi and call a (left) R-affine combination of the xi. For example,

since the morphism of theories Mataff
R ↪→ MatR induces a functor R-Mod → R-Aff,

every left R-module M carries the structure of a left R-affine space. The morphisms
in the category of (left) R-affine spaces R-Aff are (left) R-affine maps, i.e. those
mappings that preserve left R-affine combinations.

Example 3.3 (Unbounded semilattices as affine spaces). An unbounded join
semilattice may be defined as a poset in which every pair of elements has a join or,
equivalently, as a commutative semigroup in which every element is idempotent. The
set 2n\{0} of all nonempty subsets of a given finite cardinal n is closed under binary
joins in the semilattice 2n (2.10) and so carries the structure of an unbounded join
semilattice, and the singletons {i} with i ∈ n exhibit 2n\{0} as the free unbounded
join semilattice on n generators. The category USLat∨ of unbounded semilattices
and their homomorphisms is a variety of finitary algebras and so is isomorphic to the
category of normal T -algebras for a Lawvere theory T with T (n,m) = (2n\{0})m.
The latter set may be identified with the subset of 2m×n consisting of all m×n-matrices
in which each row is nonzero, whereupon we deduce that T is a subtheory of the theory
Mat2 of modules over the rig (2,∨, 0,∧, 1), i.e. (bounded) semilattices (2.10). Indeed,
T is precisely the theory Mataff

2 of affine spaces over the rig (2,∨, 0,∧, 1). Hence
USLat∨ ∼= 2-Aff, i.e. unbounded semilattices are the same as affine spaces over the rig
(2,∨, 0,∧, 1).

3.4 (Preordered abelian groups and preordered rings). By definition, a pre-
ordered commutative monoid is a commutative monoid object in the cartesian
monoidal category Ord of preordered sets and monotone maps. Preordered commuta-
tive monoids are the objects of a category CMon(Ord), the category of commutative
monoids in Ord. We say that a preordered commutative monoid M is a preordered
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abelian group if its underlying commutative monoid (in Set) is an abelian group.
Note then that the negation map − : M → M is not monotone but rather is order-
reversing. Preordered abelian groups form a full subcategory Ab6 of the category of
preordered commutative monoids.

It is well-known that the notion of preordered abelian group can be equivalently
defined as an abelian group M equipped with a submonoid M+ ↪→ M . Indeed, given
a preordered abelian group M , one takes M+ = {m ∈ M | 0 6 m}, and conversely,
given a submonoid M+ of an abelian group M one defines a preorder 6 on M by
m 6 m′ ⇔ m′ − m ∈ M+. It is conventional to call M+ the positive part of M
despite the fact that 0 ∈M+. Morphisms of preordered abelian groups can be described
equivalently as homomorphisms of the underlying abelian groups h : M → N with the
property that h(M+) ⊆ N+.

The category Ab6 of preordered abelian groups is symmetric monoidal when we
define the monoidal product M ⊗N of preordered abelian groups M and N to be the
usual tensor product of abelian groups equipped with the submonoid (M ⊗ N)+ ↪→
M ⊗N generated by the pure symbols m⊗ n with m ∈M+, n ∈ N+. The unit object
is Z, with the natural order.

By definition, a preordered ring is a monoid in the monoidal category of pre-
ordered abelian groups Ab6. Equivalently, a preordered ring is a ring R equipped with
an arbitrary subrig R+ ↪→ R. Note that any rig S that occurs as the positive part R+

of some preordered ring R is necessarily additively cancellative, meaning that the
commutative semigroup (S,+) is cancellative (i.e., s+ t = s+ u ⇒ t = u). Moreover,
the rigs that occur as positive parts of preordered rings are precisely the additively
cancellative rigs, since if S is additively cancellative then we can embed S into its ring
completion, mimicking the usual construction of Z from N.

Preordered rings are the objects of a category Ring6, the category of monoids in
the monoidal category Ab6, in which the morphisms are ring homomorphism that are
also monotone.

Definition 3.5 (Convex spaces over a preordered ring). Given a preordered ring
R, a (left) R-convex space (or (left) R-convex module) is a left R+-affine space,
i.e. a left affine space over the rig R+ obtained as the positive part of R (3.4). Hence an
R-convex space is by definition a set equipped with operations that permit the taking of
left R+-affine combinations (3.2), which we call (left) R-convex combinations. We
write R-Cvx := R+-Aff for the category of R-convex spaces. Note that R-convex spaces
are the normal T -algebras for the Lawvere theory T = Mataff

R+
, whose morphisms are

R+-matrices in which each row sums to 1.

Example 3.6 (Convex spaces over the reals). For example, when R is the real
numbers R with the usual order, the notion of R-convex space is the familiar notion of
convex space. Observe that when n > 0, Mataff

R+
(n, 1) ⊆ R1×n is the standard geometric

(n− 1)-simplex, presented in terms of barycentric coordinates.

Example 3.7 (Convex spaces over a ring of continuous functions). Given a
topological space X, let C(X) denote the ring of all real-valued continuous functions on
X. The pointwise partial order on C(X) makes it a preordered ring whose positive part
C(X)+ is the set C(X,R+) of all continuous R+-valued functions. Given any convex
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subset S of Rn, the set C(X,S) of all continuous S-valued functions on X carries the
structure of a C(X)-convex space.

4 Commutation and Kronecker products of operations

4.1. Given a pair of finite cardinals (j, k), regarded as sets, the cartesian product j×k
in Set has cardinality jk, so jk serves as a product in FinCard of the objects j and k.
Despite this apparently simple way of forming binary products in FinCard, one must

also choose projections π
(j,k)
1 : jk → j and π

(j,k)
2 : jk → k if jk is to be equipped

with the structure of a product of (j, k) in FinCard, and there is more than one way
to do this. In the present section, we must fix a determinate choice of such product
projections—equivalently, we must fix designated bijections j × k → jk in Set that
let us encode elements of the cartesian product j × k as elements of jk. For example,
we shall see in 4.4 that the definition of the classical Kronecker product of matrices
depends on one specific such encoding (4.4.ii). With such a choice, FinCard is cartesian
monoidal. When jk is to be regarded as a product of (j, k) via the chosen projections
we shall denote it by j × k. It is important to note that the symmetry isomorphism
sj,k : j × k → k × j is not in general the identity map on jk = kj. We shall take the
designated projections π1 : j = j × 1 → j and π2 : k = 1 × k → k to be the identity
maps.

4.2. Let (T , T ) be a Lawvere theory. Since the product jk of natural numbers j and
k carries the structure of a product j × k in FinCard (4.1), there is an associated
canonical way of equipping the object T j×k of T with the structure of both a j-th
power of T k and also a k-th power of T j , which we may signify informally by writing

(T k)j = T j×k = (T j)k . (4.2.i)

Writing p(j,k) = (p
(j,k)
v : T j×k → T k)jv=1 and q(j,k) = (q

(j,k)
t : T j×k → T j)kt=1 for the

associated power cones, we call (T j×k, p(j,k)) the left j-th power of T k, and we call
(T j×k, q(j,k)) the right k-th power5 of T j . Writing T j ∗ T k = T j×k, we therefore
obtain evident functors

T j ∗ (−) : T → T , T k 7→ T j×k (j ∈ N)

(−) ∗ T k : T → T , T j 7→ T j×k (k ∈ N)

induced by left j-th and right k-th power structures, respectively, carried by the objects
T j×k with (j, k) ∈ N×N. This now begs the question as to whether these are the partial
functors of a bifunctor

∗ : T ×T → T

5It is instructive to note that the right k-th power cone q(j,k) is not in general equal to the left k-th power
cone p(k,j), despite the fact that these cones both equip the same object T jk with the structure of a k-th
power of T j . Indeed, the automorphism of T jk induced by this pair of k-th power cones is the isomorphism
T k×j → T j×k determined by the symmetry isomorphism j × k → k × j in FinCard (4.1).
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given on objects by (T j , T k) 7→ T j×k. By [9, II.3, Prop. 1], this is the case if and only
if for every pair of morphisms µ : T j → T j

′
and ν : T k → T k

′
in T the composites

1. T j ∗ T k µ∗Tk

−−−→ T j
′ ∗ T k T j′∗ν−−−→ T j

′ ∗ T k′

2. T j ∗ T k T j∗ν−−−→ T j ∗ T k′ µ∗Tk′

−−−−→ T j
′ ∗ T k′

(4.2.ii)

are equal. This leads to the following:

Definition 4.3.

1. Given morphisms µ : T j → T j
′

and ν : T k → T k
′

in T , the first and second
Kronecker products µ ∗ ν and µ ∗̃ ν of µ with ν are defined as the composites
1 and 2 in (4.2.ii), respectively, i.e.

µ ∗ ν =

Ç
T j×k

µ∗Tk

−−−→ T j
′×k T j′∗ν−−−→ T j

′×k′
å
,

µ ∗̃ ν =

Ç
T j×k

T j∗ν−−−→ T j×k
′ µ∗Tk′

−−−−→ T j
′×k′
å
.

2. We say that µ commutes with ν if µ ∗ ν = µ ∗̃ ν.

3. We say that T is commutative if µ commutes with ν for every pair of morphisms
µ and ν in T .

Example 4.4 (The Kronecker product of matrices). Given a ring R, or even
just a rig R, consider the Lawvere theory of left R-modules, i.e. the category MatR of
R-matrices (2.8). Recall that morphisms j → j′ in MatR are j′×j-matrices. Since such
matrices are usually indexed by pairs of positive integers, it shall be convenient here
to depart from the usual von Neumann definition of the ordinals and instead identify
each object j of FinCard with the set of all positive integers less than or equal to j,
so that the above j′ × j-matrices are families indexed by the usual cartesian product6

j′ × j.
Letting X ∈ MatR(j, j′) = Rj

′×j and Y ∈ MatR(k, k′) = Rk
′×k, the classical

Kronecker product of Y by X is the j′k′ × jk-matrix Y ⊗X with entries

(Y ⊗X)〈u,s〉〈v,t〉 = YstXuv u ∈ j′, s ∈ k′, v ∈ j, t ∈ k . (4.4.i)

where in general we write 〈v, t〉 to denote the element

〈v, t〉 = v + j(t− 1) (4.4.ii)

of jk associated to the pair (v, t) ∈ j × k. The hidden reason behind the seemingly
arbitrary convention (4.4.ii) is that it provides one standard way of assigning to each
pair of finite cardinals (j, k) a bijection 〈−,−〉 : j×k → jk, so that jk is thus equipped
with the structure of a product of (j, k) in FinCard. Indeed, each element of jk can
be written in the form 〈v, t〉 for unique v ∈ j and t ∈ k, and the maps π1 : jk → j and

6putting aside for the moment our similar notation for the product in FinCard (4.1).
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π2 : jk → k given by π1(〈v, t〉) = v and π2(〈v, t〉) = t present jk as a product j × k in
Set and hence in FinCard.

With this choice of binary products in FinCard, we claim that

X ∗ Y = Y ⊗X ,

i.e., the first Kronecker product X ∗ Y in MatR is the usual Kronecker product of
matrices Y ⊗X.

In order to prove this, recall that X ∗ Y is defined as the composite

jk
X∗k−−→ j′k

j′∗Y−−−→ j′k′

in MatR, where here we write the objects Tn of the theory T = MatR simply as n
(since concretely Tn = n). In order to examine the entries of the matrices X ∗ k and
j′ ∗ Y , let us first note that for each object n of MatR, the designated n-th power
cone (Pi : n → 1)i∈n in MatR consists of the standard basis row-vectors Pi ∈ R1×n,
having a 1 in the i-th position and zeros everywhere else. In particular, jk is a jk-th
power of 1 in MatR, via the morphisms P〈v,t〉 : jk → 1 with (v, t) ∈ j × k. For fixed

t ∈ k, these morphisms induce a unique morphism Q
(j,k)
t : jk → j in MatR such that

PvQ
(j,k)
t = P〈v,t〉 (v ∈ j), and the resulting family7 (Q

(j,k)
t )t∈k presents jk as a k-th

power of j in MatR. Explicitly, Q
(j,k)
t is the j × jk-matrix with entries

(Q
(j,k)
t )vb = { 1 if b = 〈v, t〉, 0 otherwise

where v ∈ j and b ∈ jk. Similarly, morphisms (Q
(j′,k)
t : j′k → j′)t∈k present j′k as a

k-th power of j′ in MatR. By definition, X ∗ k : jk → j′k is the unique morphism such

that jk
X∗k−−→ j′k

Q
(j′,k)
t−−−−→ j′ equals jk

Q
(j,k)
t−−−→ j

X−→ j′ for all t ∈ k. It is straightforward
to show therefore that X ∗ k is the j′k × jk-matrix with entries

(X ∗ k)〈u,t1〉〈v,t2〉 = { Xuv if t1 = t2, 0 otherwise,

where u ∈ j′, v ∈ j, and t1, t2 ∈ k. Analogously8, j′ ∗ Y : j′k → j′k′ is the j′k′ × j′k-
matrix with entries

(j′ ∗ Y )〈u1,s〉〈u2,t〉 = { Yst if u1 = u2, 0 otherwise,

where u1, u2 ∈ j′, s ∈ k′ and t ∈ k. But X ∗ Y is the matrix product (j′ ∗ Y )(X ∗ k) ∈
Rj
′k′×jk, and one now readily computes that the entries of the latter product are exactly

those of the Kronecker product Y ⊗X (cf. 4.4.i).

Proposition 4.5 (Relation between the first and second Kronecker products).
Given morphisms µ : T j → T j

′
and ν : T k → T k

′
in a Lawvere theory T , the second

7This family is the right k-th power cone q(j,k) in the terminology of 4.2.
8This time we use the left j′-th power cones p(j

′,k) and p(j
′,k′) in the terminology of 4.2.
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Kronecker product µ ∗̃ ν can be expressed in terms of the first Kronecker product ν ∗ µ
via the commutativity of the diagram

T j×k

o
��

µ∗̃ν // T j
′×k′

o
��

T k×j ν∗µ
// T k

′×j′

in which the left and right sides are the isomorphisms induced by the symmetry iso-
morphisms k × j → j × k and k′ × j′ → j′ × k′ in FinCard (4.1). As a consequence,
the commutation relation is symmetric, i.e.

µ commutes with ν if and only if ν commutes with µ.

Proof. This follows from the fact that for each fixed n ∈ N, the symmetry isomorphisms
m× n→ n×m in FinCard (4.1) with m ∈ N induce isomorphisms Tn×m → Tm×n in
T that constitute a natural isomorphism Tn ∗ (−)⇒ (−) ∗ Tn.

Example 4.6 (The second Kronecker product of matrices). Continuing Exam-
ple 4.4, it now follows from 4.5 that the second Kronecker product X ∗̃ Y : jk → j′k′

of morphisms X : j → j′ and Y : k → k′ in MatR is the j′k′ × jk-matrix with entries

(X ∗̃ Y )〈u,s〉〈v,t〉 = (Y ∗X)〈s,u〉〈t,v〉 = (X ⊗ Y )〈s,u〉〈t,v〉 = XuvYst

where u ∈ j′, s ∈ k′, v ∈ j, t ∈ k. Hence if R is commutative then X ∗̃ Y = Y ⊗X =
X ∗ Y , showing that MatR is commutative. Conversely, if MatR is commutative then
by taking j = j′ = k = k′ = 1 we find that R is commutative. Hence we have proved
the following:

The Lawvere theory MatR of left R-modules for a rig R is
commutative if and only if R is commutative.

(4.6.i)

In particular, the Lawvere theory Mat2 of semilattices is commutative.

Clearly any subtheory of a commutative theory is commutative. In particular, the
following Lawvere theories are commutative, as each is a subtheory of a theory of the
form MatR for a commutative rig R:

Example 4.7. The following Lawvere theories are commutative:

1. The theory Mataff
R of R-affine spaces for a commutative ring or rig R.

2. The theory of R-convex spaces Mataff
R+

for a commutative preordered ring R.

3. The theory of unbounded semilattices Mataff
2 .

4.8. Let (T , T ) be a Lawvere theory. Given j ∈ N, any choice of j-th powers in T
determines an endofunctor (−)j : T → T , and since this endofunctor (−)j preserves
finite powers it can be regarded as a T -algebra in T . In particular, if we employ the left
j-th powers in T (4.2), then the resulting endofunctor is the functor T j ∗(−) : T → T
of 4.2, given on objects by T k 7→ T j×k. Therefore T j ∗ (−) is a T -algebra in T with
carrier T j×1 = T j . We employ this observation in the following:
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Proposition 4.9. Let µ : T j → T j
′

and ν : T k → T k
′

be morphisms in a Lawvere

theory (T , T ), and denote by (µu : T j → T )j
′

u=1 and (νs : T k → T )k
′
s=1 the families

inducing µ and ν, respectively. Then we have T -algebras A = T j∗(−) and B = T j
′∗(−)

in T with carriers |A| = T j, |B| = T j
′
, respectively, and the following are equivalent:

1. µ commutes with ν.

2. µ : |A| → |B| preserves ν relative to A and B (2.5).

3. µu : T j → T commutes with νs : T k → T for all indices u and s.

4. µ commutes with each of the components νs of ν.

Proof. The equivalence 1 ⇔ 2 follows readily from the definitions. By 2.5, 2 is equiv-
alent to the following statement:

5. µ : |A| → |B| preserves each of the components νs of ν.

Now invoking the equivalence 1⇔ 2 with respect to the morphisms µ and νs, we deduce
that 5 is equivalent to 4. By symmetry, 4 holds iff each component νs commutes with
µ. Having established the equivalence of 1 and 4 for an arbitrary pair of morphisms
(µ, ν), we can now invoke this equivalence with respect to each pair (νs, µ) to deduce
that 4 holds if and only if each νs commutes with each of the components µu of µ, and
by symmetry this is equivalent to 3.

Remark 4.10. Having reduced the notion of commutation of morphisms µ and ν
in a Lawvere theory (T , T ) to the case of morphisms of the form µ : T j → T and
ν : T k → T , observe that the definition of the first and second Kronecker products of
such morphisms reduces to the following:

µ ∗ ν =

Å
T j×k

µ∗Tk

−−−→ T k
ν−→ T

ã
, µ ∗̃ ν =

Å
T j×k

T j∗ν−−−→ T j
µ−→ T

ã
.

5 Commutants

Definition 5.1. Let U be a Lawvere theory.

1. Letting A : T → U and B : S → U be morphisms of Lawvere theories, we say
that A commutes with B (or that A and B commute) if A(µ) commutes with
B(ν) in U for all morphisms µ in T and ν in S .

2. A Lawvere theory over U is a Lawvere theory T equipped with a morphism
T → U . The category of Lawvere theories over U is the slice category
Th/U .

3. Given Lawvere theories T and S over U , we say that T commutes with S
if the associated morphisms to U commute.

4. Subtheories T and S of U are said to commute if they commute as Lawvere
theories over U , i.e. if µ commutes with ν for all µ ∈ morT and ν ∈ morS .

Proposition 5.2. Let A : (T , T ) → (U , U) and B : (S , S) → (U , U) be morphisms
of Lawvere theories. Then A commutes with B if and only if A(µ) commutes with B(ν)
in U for all morphisms of the form µ : T j → T in T and ν : Sk → S in S .
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Proof. This follows from 4.9, since A and B strictly preserve the designated finite
powers of T and S, respectively.

Definition 5.3. A morphism of Lawvere theories A : T → U is said to be central if
it commutes with the identity morphism 1U : U → U .

Example 5.4. Given a Lawvere theory (T , T ), the unique morphism of Lawvere
theories T (−) : FinCardop → T is central. Indeed, a morphism of the form T j → T in
T lies in the image of T (−) if and only if it is a projection πi : T j → T , and given any
operation ν : T k → T in T , the diagram

T j×k

πi∗Tk

��

T j∗ν // T j = T j×1

πi
��

T k
ν // T

commutes since its left and right sides are equally the left j-th power projections p
(j,k)
i

and p
(j,1)
i (4.2), respectively.

Proposition 5.5. Given a set of morphisms Ω ⊆ morU in a Lawvere theory (U , U),
the set of morphisms

Ω⊥ = {µ ∈ morU | µ commutes with every ν ∈ Ω}

is a concrete subtheory of U (2.3).

Proof. Using the functoriality of (−) ∗ Uk : U → U for each k ∈ N, one computes
straightforwardly that Ω⊥ is closed under composition in U . By 5.4, Ω⊥ contains all
the projections πi : U j → U . Lastly, given a family of morphisms {µi : U j → U | i =
1, ..., j′} ⊆ Ω⊥, the induced morphism µ : U j → U j

′
lies in Ω⊥ by 4.9.

Definition 5.6. Let U be a Lawvere theory.

1. Given a set of morphisms Ω ⊆ morU , we call the subtheory Ω⊥ ↪→ U of 5.5 the
commutant of Ω (in U ).

2. Given a morphism of Lawvere theories A : T → U , the commutant T ⊥A of A
(or of T with respect to A) is defined as the commutant of the image A(morT ) ⊆
morU .

3. Given a Lawvere theory T over U , the commutant T ⊥ of T is defined as the
commutant of the associated morphism T → U .

4. The commutant of a subtheory T ↪→ U is defined as the commutant T ⊥

of T , considered as a theory over U . Equivalently, T ⊥ is the commutant of
morT ⊆ morU .

The following is immediate from the definitions:

Proposition 5.7. Let A : T → U and B : S → U be morphisms of Lawvere theories.
Then A and B commute if and only if B factors through the commutant T ⊥A ↪→ U of
A.
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Remark 5.8. By 5.7, the commutant T ⊥ of a theory T over U is characterized, up
to isomorphism, by a universal property. Hence we will sometimes also call any theory
over U isomorphic to T ⊥ the commutant of T .

Theorem 5.9. Given a morphism of Lawvere theories A : (T , T ) → (U , U), let us
regard A as a T -algebra in U . Then the commutant T ⊥A of A is isomorphic to the
full finitary theory of A in the category T -AlgU of T -algebras in U . In symbols,

T ⊥A
∼= (T -AlgU )A

as theories over U . Further, we can choose standard designated finite powers in
T -AlgU in such a way that this isomorphism is an identity.

Proof. Given an arbitrary object Uk of U , note that the left j-th powers (Uk)j = U j×k

of Uk (j ∈ N) are standard (2.1), and for k = 1 these are precisely the designated j-th
powers U j of U in U . Let us now use these finite powers as our designated finite
powers in U (2.1), calling them the left finite powers. The resultant pointwise finite
powers in T -AlgU are standard, and we shall use them in forming the full finitary
theory (T -AlgU )A of A in T -AlgU . Observe that for each j ∈ N, the designated j-th
power Aj of A in T -AlgU is therefore the composite

T
A−→ U

Uj∗(−)−−−−→ U

whose second factor is the endofunctor of U induced by the left j-th powers in U
(4.2). In particular, Aj has carrier U j and is given on objects by Aj(T k) = U j×k.

The faithful functor |−| : T -AlgU → U strictly preserves the designated finite
powers and so induces a subtheory embedding (T -AlgU )A ↪→ U|A| = UU = U , and

we shall now show that this is precisely the subtheory inclusion T ⊥ ↪→ U . Fix a pair
of natural numbers j, j′. Per 2.5, we have identified T -homorphisms Aj → Aj

′
with

certain morphisms µ : |Aj | → |Aj′ | in U between the carriers of the T -algebras Aj and
Aj
′
, namely those µ that preserve each operation ν : T k → T k

′
in T . But by using

preceding description of the designated powers Aj and Aj
′
, we find that µ preserves ν

iff the following diagram commutes

U j×k

Uj ∗ A(ν)
��

µ∗Uk
// U j

′×k

Uj′∗ A(ν)
��

U j×k
′

µ∗Uk′
// U j

′×k′

i.e. iff µ : U j → U j
′

commutes with A(ν) : Uk → Uk
′
.

Definition 5.10. Given a T -algebra A : T → C for a Lawvere theory T , the
commutant T ⊥A of A (or of T with respect to A) is defined as the commutant of the
associated morphism of theories A′ : T → CA, where CA is the full finitary theory of
A in C (2.11). By 5.9 we obtain the following equivalent definition:
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Corollary 5.11. The commutant T ⊥A of a T -algebra A : T → C is the full finitary
theory of A in the category of T -algebras in C , i.e. T ⊥A

∼= (T -AlgC )A as theories
over CA. For suitable choices of finite powers An in T -AlgC , this isomorphism is an
identity, so that T ⊥A (n,m) = T -AlgC (An, Am) for all n,m ∈ N.

Proof. This is verified straightforwardly by applying 5.9 and using the fact that the
canonical functor ι : CA → C is fully faithful and preserves finite powers (2.11). With
reference to the proof of 5.9, the pointwise left finite powers of A′ : T → CA in
T -AlgCA

induce standard designated finite powers of A in T -AlgC by composition
with ι. Employing these in forming (T -AlgC )A, we find that ι induces an isomorphism
of theories (T -AlgCA

)A′ ∼= (T -AlgC )A over CA, but the convention of (2.5.i) entails
that the associated morphisms to CA are concrete subtheory embeddings, so the latter
isomorphism is an equality of concrete subtheories.

Remark 5.12. In the case where C = Set, the commutant T ⊥A of a T -algebra A :
T → Set is (by 5.11) an instance of Lawvere’s notion of the algebraic structure of
a Set-valued functor [3, III.1].

Example 5.13 (The Lawvere theory of R-modules). Letting R be a ring or rig,
recall that left R-modules are the same as normal T -algebras for the Lawvere theory
T = MatR (2.8). In particular, R is a left R-module and so determines a morphism
R : T → SetR into the full finitary theory SetR of R in Set. Thus regarding T
as a theory over SetR, its commutant T ⊥ has T ⊥(n,m) = R-Mod(Rn, Rm) by 5.11
once we identify R-Mod with the isomorphic category T -Alg!. Moreover, we have an
identity-on-homs functor T ⊥ → R-Mod given on objects by n 7→ Rn.

Let us first observe that T ⊥ ∼= T op as categories. Indeed, as noted in 2.6 we
have a fully faithful functor y : T op � R-Mod sending n ∈ obT = N to the free R-
module Rn. The constituent isomorphisms Rm×n = T (n,m) ∼= R-Mod(Rm, Rn) send
each m× n-matrix u to the left R-linear map Rm → Rn given by right multiplication
by u, i.e., we regard Rm and Rn as sets of row vectors so that the associated map
R1×m → R1×n is given by x 7→ xu.

Next observe that the identity-on-objects functor (MatR)op → MatRop given by
transposition is an isomorphism of categories

(MatR)op ∼= MatRop

so that
T ⊥ ∼= T op ∼= MatRop

as categories. The composite isomorphism MatRop → T ⊥ commutes with the asso-
ciated morphisms to SetR = SetRop , as it associates to an m × n-matrix u over Rop

the (left R-linear) map Rn → Rm given by x 7→ ux when we regard each x ∈ Rn as
a column vector with entries in Rop. We thus obtain the following, recalling that left
Rop-modules are the same as right R-modules.

Theorem 5.14. Let R be a ring or rig. Then the commutant (MatR)⊥ with respect
to R of the theory of left R-modules MatR is the Lawvere theory of right R-modules
MatRop. Indeed, we have an isomorphism

(MatR)⊥ ∼= MatRop

21



in the category of Lawvere theories over SetR.

6 Saturated and balanced subtheories

Proposition 6.1. Let U be a Lawvere theory.

1. Lawvere theories T and S over U commute if and only if there exists a (nec-
essarily unique) morphism S → T ⊥ in the category of Lawvere theories over
U .

2. There is a unique functor (−)⊥ : (Th/U )op → Th/U sending each theory T
over U to its commutant T ⊥.

3. The functor (−)⊥ in 2 is right adjoint to its formal dual (−)⊥ : Th/U →
(Th/U )op.

4. The adjunction in 3 restricts to a Galois connection on the preordered set SubTh(U )
of subtheories of U (2.3), i.e., an adjunction between SubTh(U ) and its opposite.

Proof. 1 follows from 5.7. Every theory T over U commutes with its commutant
T ⊥, so by 1 there is a unique morphism T → T ⊥⊥ in Th/U . Given a morphism

M : S → T in Th/U , we obtain a composite morphism S
M−→ T → T ⊥⊥, so by 1

T ⊥ and S commute and hence there is a unique morphism T ⊥ → S ⊥ in Th/U and
2 follows. 3 and 4 now follow readily.

Definition 6.2.

1. Given a Lawvere theory T over U , we say that

(a) T is saturated if T ⊥⊥ ∼= T in Th/U .

(b) T is balanced if T ⊥ ∼= T in Th/U .

2. Given a pair of Lawvere theories S and T over U , we say that T and S are
mutual commutants in U if T ∼= S ⊥ and T ⊥ ∼= S .

We readily deduce the following:

Proposition 6.3.

1. Any saturated theory T over U is necessarily a subtheory of U .

2. A theory T over U is saturated if and only if it is (isomorphic to) a commutant
S ⊥ of some theory S over U .

3. Theories T and S over U are mutual commutants if and only if T is saturated
and S is its commutant.

4. A subtheory T of U is commutative (as a Lawvere theory) if and only if T is
contained in its commutant.

Corollary 6.4. Every balanced theory over U is a commutative, saturated subtheory
of U .
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Theorem 6.5. Let R be a ring or rig.

1. The Lawvere theories MatR and MatRop of left and right R-modules (respectively)
are mutual commutants in the full finitary theory SetR of R in Set.

2. The Lawvere theory of left R-modules MatR is a saturated subtheory of SetR.

3. The subtheory MatR ↪→ SetR is balanced if and only if R is commutative.

Proof. 1 is obtained by two applications of 5.14, and 2 then follows immediately. If R
is commutative then MatR = MatRop as theories over SetR, so MatR is balanced, by 1.
Conversely, if MatR is balanced over SetR, then MatR is commutative by 6.4, so R is
commutative by (4.6.i).

Example 6.6. By 6.5, the Lawvere theory of semilattices Mat2 (2.10) is a balanced
subtheory of the Lawvere theory of Boolean algebras Set2 (2.12).

Example 6.7 (A non-saturated subtheory). Let k be an infinite integral domain,
and consider the Lawvere theory of commutative k-algebras T (2.9). The domain k
itself is a commutative k-algebra and so determines a morphism of Lawvere theories κ :
T → Setk into the full finitary theory Setk of k in Set (2.11). For each natural number
n, the associated component κn,1 : T (n, 1)→ Setk(n, 1) is the mapping k[x1, ..., xn]→
Set(kn, k) that sends a polynomial f to the polynomial function kn → k determined
by f . Since k is an infinite integral domain, this mapping κn,1 is injective (e.g. by
[1, III.4, Thm. 7]), so κ presents T as a subtheory of Setk. The commutant of this
subtheory T is the subtheory T ⊥ ↪→ Setk in which T ⊥(n, 1) = k-CAlg(kn, k) is the
set of all k-algebra homomorphisms ϕ : kn → k. But any such homomorphism ϕ is
k-linear and so is a linear combination ϕ =

∑n
i=1 ciπi of the projections πi : kn → k

(i = 1, ..., n), where ci = ϕ(bi) is the image of the i-th standard basis vector bi for kn.
We also know that 1 = ϕ(1) =

∑
i ci. Hence since i 6= j implies bibj = 0 in kn and

ϕ preserves multiplication, it follows that ϕ = πi for a unique i. Therefore T ⊥(n, 1)
is just the set of all n projections kn → k, and (since k has at least two elements)
it follows that T ⊥ is isomorphic to the initial Lawvere theory FinCardop. Therefore
T ⊥ ↪→ Setk is central (by 5.4) and hence T ⊥⊥ = Setk, but Setk 6∼= T by a cardinality
argument: # Setk(1, 1) = (#k)#k > 2#k > #k = #k[x] = #T (1, 1).

7 The theories of affine and convex spaces as commutants

Let R be ring or, more generally, a rig.

7.1 (Pointed R-modules). By definition, a pointed (left) R-module is a (left) R-
module M equipped with an arbitrary chosen element ∗ ∈M . Pointed R-modules are
objects of a category R-Mod∗ in which the morphisms are R-module homomorphisms
that preserve the chosen points ∗. By 2.7, R-Mod∗ is strictly finitary-algebraic over
Set. Given a natural number n, the free pointed R-module on n-generators is the
free R-module on 1 +n generators R1+n. Indeed, writing the successive standard basis
vectors for R1+n as γ0, γ1, ..., γn, we find that R1+n is a free pointed R-module on the n
generators γ1, ..., γn when we take ∗ = γ0 = (1, 0, 0, ..., 0). By 2.6, R-Mod∗ is therefore
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isomorphic to the category of normal T -algebras for a Lawvere theory T = Mat∗R
with Mat∗R(n,m) = (R1+n)m = Rm×(1+n).

The notion of pointed right R-module is defined similarly, so that pointed right
R-modules are the same as pointed left Rop-modules, equivalently, normal Mat∗Rop-
algebras. Given a pointed right R-module M , we shall now record a detailed description
of the corresponding normal Mat∗Rop-algebra M : Mat∗Rop → Set for use in the sequel.
By 2.6, M has the same carrier as M and associates to each w ∈ Mat∗Rop(n, 1) = R1+n

the mapping ΦM
w : Mn → M defined as follows. Recalling that R1+n is a free pointed

right R-module on the n generators γ1, ..., γn ∈ R1+n, each n-tuple x = (x1, ...xn) ∈Mn

induces a unique morphism of pointed right R-modules x] : R1+n →M with x](γi) = xi
(i = 1, ..., n), and the associated mapping ΦM

w : Mn →M is given by

ΦM
w (x) = x](w) = ∗ · w0 +

n∑
i=1

xiwi

where ∗ ∈M is the designated point and w = (w0, w1, ..., wn) ∈ R1+n.
In particular, we can consider R itself as a pointed right R-module with chosen

point 1 ∈ R. Therefore R is the carrier of a normal Mat∗Rop-algebra, and we can thus
consider Mat∗Rop as a Lawvere theory over the full finitary theory SetR of R in Set.
Explicitly, we have a morphism

ΦR : Mat∗Rop → SetR (7.1.i)

sending each w = (w0, ..., wn) ∈ R1+n to the mapping ΦR
w : Rn → R given by

ΦR
w(x) = w0 +

n∑
i=1

xiwi . (7.1.ii)

Theorem 7.2. The Lawvere theory of left R-affine spaces Mataff
R is the commutant

with respect to R of the theory of pointed right R-modules Mat∗Rop. Indeed,

Mataff
R
∼= (Mat∗Rop)⊥

as Lawvere theories over SetR when Mataff
R is equipped with the morphism Mataff

R →
SetR determined by the left R-affine space R.

Proof. By 6.5 we know that MatR ∼= (MatRop)⊥ over SetR, so the theory Mataff
R is

isomorphic to the affine core T aff of T = (MatRop)⊥. This yields an isomorphism
Mataff

R
∼= T aff as theories over SetR since the inclusion Mataff

R ↪→ MatR is a morphism
over SetR. Recall that T is the concrete subtheory of SetR consisting of all right R-
linear maps ϕ : Rn → Rm. Therefore the affine core T aff of T is the subtheory of SetR
consisting of all right R-linear maps ϕ : Rn → Rm that commute with the ‘diagonal’
maps (1, ..., 1) : R1 → Rj with j = n,m. But these are precisely the homomorphisms
of pointed right R-modules ϕ : Rn → Rm, where we regard the powers Rj of R as
pointed right R-modules with chosen point 1 = (1, ..., 1) ∈ Rj . With this convention
Rj is the j-th power of R = R1 in the category of pointed right R-modules, so the
subtheory T aff of SetR is precisely the commutant with respect to R of the theory of
pointed right R-modules Mat∗Rop . Hence Mataff

R
∼= T aff = (Mat∗Rop)⊥ over SetR.
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Corollary 7.3.

1. The Lawvere theory of left R-affine spaces Mataff
R is a saturated subtheory of the

full finitary theory SetR of R in Set.

2. When R is commutative, Mataff
R is a commutative, saturated subtheory of SetR.

3. If R 6= 0, then the subtheory Mataff
R ↪→ SetR is not balanced.

Proof. 1 and 2 follow immediately from 7.2, 6.3, and 4.7. For 3, suppose that R 6= 0,
and fix some nonzero element r of R. Considering Mataff

R and Mat∗Rop as Lawvere
theories over SetR, we know by 7.2 that Mataff

R
∼= (Mat∗Rop)⊥, so in order to show that

Mataff
R is not balanced it suffices to show that (Mataff

R )⊥ 6≤ (Mat∗Rop)⊥ as subtheories
of SetR. But the constant map Rn → R with value r is left R-affine and is not right
R-linear, so this constant map is an element of (Mataff

R )⊥(n, 1) = R-Aff(Rn, R) but is
not an element of (Mat∗Rop)⊥(n, 1) = Rop-Mod∗(Rn, R).

Example 7.4. By 7.3, the theory Mataff
2 of unbounded join semilattices (equivalently,

2-affine spaces, 3.3) is a non-balanced, commutative, saturated subtheory of the theory
Set2 of Boolean algebras (2.12).

8 The commutant of the theory of unbounded semilattices

Given a ring or rig R, we showed in the previous section that the theory of left R-affine
spaces Mataff

R is the commutant of the theory Mat∗Rop of pointed right R-modules,
considered as a theory over SetR. In the remainder of the paper, we shall examine the
commutant of Mataff

R over SetR, and in particular we ask whether this commutant is
Mat∗Rop , i.e. whether the theories Mataff

R and Mat∗Rop are mutual commutants in the
full finitary theory of R in Set. We shall later show that this is indeed the case for all
rings (9.2) and also for many rigs that are not rings (10.20). But first we will examine
a notable example of a rig for which this is not the case.

Writing simply 2 to denote the rig (2,∨, 0,∧, 1), recall that 2-affine spaces are
the same as unbounded join semilattices (3.3), equivalently, idempotent commutative
semigroups, whereas 2-modules are (bounded) join semilattices (2.10). By 7.4, we know
that the theory of unbounded join semilattices is a saturated subtheory of the theory
Set2 of Boolean algebras, and in the present section we characterize its commutant.

8.1 (Join semilattices with top element). Let SLat∨> denote the category whose
objects are join semilattices with a top element and whose morphisms are homomor-
phisms of join semilattices that preserve the top element. Join semilattices with a
top element can be described equivalently as idempotent commutative monoids S with
an additional constant > satisfying a single additional equation s · > = > (s ∈ S), so
SLat∨> is a variety of finitary algebras and hence (by 2.7) is isomorphic to the category
of normal T -algebras for a Lawvere theory T = T⊥∨>.

In order to obtain a description of T⊥∨>, observe that for each finite cardinal n,
the free join-semilattice-with-top-element F (n) on n generators can be obtained by
artificially adjoining a new top element > to the free join semilattice 2n = P(n) on n
generators (2.10), where as generators we take the standard basis vectors b1, ..., bn ∈ 2n,
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i.e., the singleton subsets of n. More precisely, we let F (n) := P(n)+{>} and observe
that F (n) then carries a unique join semilattice structure such that > is a top element of
F (n) and such that the inclusion P(n) ↪→ F (n) is a homomorphism of join semilattices.
Now let S be a join semilattice with a top element, and let x = (x1, ..., xn) ∈ Sn. The
universal property of P(n) as a join semilattice now clearly entails that there is a
unique morphism x] : F (n)→ S in SLat∨> with x](bi) = xi for all i.

Hence by 2.6 the theory T⊥∨> has

T⊥∨>(n, 1) = F (n) = 2n + {>} .

The join semilattice 2 = (2,∨, 0) has top element 1 and so (by 2.11) determines a
morphism of theories

2 : T⊥∨> → Set2 (8.1.i)

by means of which T⊥∨> can be considered as a theory over the full finitary theory
Set2 of 2 in Set. Recalling that Set2 is the theory of Boolean algebras (2.12), we shall
prove the following:

Theorem 8.2. The following Lawvere theories are mutual commutants in the theory
of Boolean algebras:

1. The theory Mataff
2 of unbounded join semilattices (equivalently, 2-affine spaces);

2. the theory T⊥∨> of join semilattices with top element.

Proof. By 7.2 we know that Mataff
2
∼= (Mat∗2)⊥ as theories over Set2, where Mat∗2 is

the theory of pointed 2-modules, equivalently, pointed join semilattices. Explicitly,
(Mat∗2)⊥ is the concrete subtheory of Set2 consisting of all homomorphisms of join
semilattices ϕ : 2n → 2m that preserve the designated points 1 = (1, ..., 1) ∈ 2j with
j = n,m. But the join semilattice 2 has top element 1 ∈ 2, and the finite powers 2j of
2 in SLat∨> have top element 1 = (1, ..., 1) ∈ 2j , so (Mat∗2)⊥ consists of all morphisms
ϕ : 2n → 2m in SLat∨>. Hence

Mataff
2
∼= (Mat∗2)⊥ = (T⊥∨>)⊥

as theories over Set2.
In particular, T⊥∨> and Mataff

2 commute over Set2, so the morphism (8.1.i) factors
through the commutant (Mataff

2 )⊥ ↪→ Set2. We therefore have a morphism

2 : T⊥∨> → (Mataff
2 )⊥

that sends each ω ∈ T⊥∨>(n, 1) = F (n) = 2n+{>} to an element 2ω ∈ (Mataff
2 )⊥(n, 1) =

USLat∨(2n, 2), i.e. a homomorphism of unbounded join semilattices 2ω : 2n → 2. By
2.6, this map 2ω sends each x = (x1, ..., xn) ∈ 2n to 2ω(x) = x](ω), recalling from 8.1
that x] : F (n) → 2 is the unique morphism in SLat∨> such that x](bi) = xi for all i.
Explicitly,

2ω(x) = x](ω) =

{∨n
i=1(ωi ∧ xi) if ω = (ω1, ..., ωn) ∈ 2n

1 if ω = >
.
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Hence it suffices to show that each homomorphism of unbounded join semilattices ϕ :
2n → 2 is equal to 2ω for a unique ω ∈ 2n+{>}. If ϕ(0) = 0 then ϕ is a homomorphism
of join semilattices (or 2-modules) so since the theory of 2-modules Mat2 is a balanced
subtheory of Set2 (6.6) it follows that ϕ is one of the 2-module operations (1.0.i)
carried by 2. More precisely, there is a unique row vector ω ∈ 2n = Mat2(n, 1) such
that ϕ : 2n → 2 is given by x 7→ ∨n

i=1(ωi ∧ xi), and ω is then the unique element of
2n + {>} with 2ω = ϕ. On the other hand, if ϕ(0) 6= 0 then ϕ(0) = 1, but ϕ preserves
binary joins and hence is monotone, so ϕ : 2n → 2 must be the constant map with value
1 and hence we find that ω = > is the unique element ω ∈ 2n + {>} with 2ω = ϕ.

9 The commutant of the theory of affine spaces over a ring

The remainder of the paper is devoted to showing that the theories of left R-affine
spaces and pointed right R-modules are mutual commutants in SetR for many rigs R.
In the present section, we show that this holds for all rings.

9.1. Given an arbitrary rig R, we will consider Mat∗Rop and Mataff
R as theories over

SetR, via the morphisms to SetR determined by R (7.1, 7.2). By 7.2 we know that
these theories over SetR commute, so the canonical morphism ΦR : Mat∗Rop → SetR
factors through the inclusion (Mataff

R )⊥ ↪→ SetR via a unique morphism

ΦR : Mat∗Rop → (Mataff
R )⊥ (9.1.i)

for which we use the same notation ΦR. By 7.1, the components Mat∗Rop(n, 1) →
(Mataff

R )⊥(n, 1) of this morphism are the maps

ΦR
(−) : R1+n → R-Aff(Rn, R) (9.1.ii)

that send each element w = (w0, ..., wn) of R1+n to the R-affine map ΦR
w : Rn → R

given by

ΦR
w(x) = w0 +

n∑
i=1

xiwi .

Theorem 9.2. Given a ring R, the commutant (Mataff
R )⊥ with respect to R of the

theory Mataff
R of left R-affine spaces is the theory Mat∗Rop of pointed right R-modules.

Indeed, the morphism (9.1.i) is an isomorphism

Mat∗Rop
∼= (Mataff

R )⊥

in the category of Lawvere theories over the full finitary theory SetR of R in Set.

Proof. Let n ∈ N. For each left R-affine map ψ : Rn → R let us denote by

wψ = (wψ0 , w
ψ
1 , ..., w

ψ
n )

the element of R1+n defined by

wψ0 = ψ(0), wψi = ψ(bi)− ψ(0) (i = 1, ..., n)
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where bi = (bi1, ..., bin) ∈ Rn is the i-th standard basis vector (with bii = 1 and bij = 0
for j 6= i). This defines a map

w(−) : R-Aff(Rn, R)→ R1+n

which we claim is inverse to the mapping ΦR
(−) of (9.1.ii). Indeed, it is easy to see

that w(−) is a retraction of ΦR
(−), so it suffices to show that for any left R-affine map

ψ : Rn → R, if we let w = wψ then ΦR
w : Rn → R is exactly ψ. To this end, observe

that any element x = (x1, ..., xn) of Rn can be expressed as a left R-affine combination

x =

(
1−

n∑
i=1

xi

)
0 +

n∑
i=1

xibi

of the elements 0, b1, ..., bn of Rn, so ψ necessarily sends x to

ψ(x) =

(
1−

n∑
i=1

xi

)
ψ(0) +

n∑
i=1

xiψ(bi)

= ψ(0) +
n∑
i=1

xi(ψ(bi)− ψ(0)) = ΦR
w(x) .

By 7.2, we obtain the following:

Corollary 9.3. For a ring R, the Lawvere theory of left R-affine spaces and the Law-
vere theory of pointed right R-modules are mutual commutants in the full finitary theory
of R in Set.

10 The commutant of the theory of convex spaces for a preordered
ring

Having shown that theories of left R-affine spaces and pointed right R-modules for
a ring R are mutual commutants in SetR (9.3), we now set ourselves to the task of
widening the applicability of this result to include certain rigs that are not rings. In
particular, we will focus on additively cancellative rigs S (3.4), which are precisely
the positive parts S = R+ of preordered rings R. Our study of the commutant of
the theory of R+-affine spaces (which we also call R-convex spaces) begins with the
following observations:

Lemma 10.1. Let R be a preordered ring, and let ϕ : Rn+ → R+ be a (left) R+-affine
map with n ∈ N. Then ϕ is a restriction of at most one R-affine map ψ : Rn → R.
Further, the following are equivalent:

1. ϕ is a restriction of some R-affine map ψ : Rn → R.

2. ϕ is a restriction of the R-affine map ΦR
wϕ : Rn → R (9.1) determined by

wϕ = (ϕ(0), ϕ(b1)− ϕ(0), ..., ϕ(bn)− ϕ(0)) ∈ R1+n ,

where bi ∈ Rn+ is the i-th standard basis vector.
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3. For every element x = (x1, ..., xn) ∈ Rn+,

ϕ(x) = ϕ(0) +
n∑
i=1

xi(ϕ(bi)− ϕ(0)) (10.1.i)

in R.

Proof. It is clear from the proof of 9.2 that an R-affine map ψ : Rn → R is uniquely
determined by its values on the elements 0, b1, ..., bn of Rn and so is uniquely determined
by its restriction to Rn+. The equivalence of 2 and 3 is immediate from the definitions,
and clearly 2 implies 1. If 1 holds, then ϕ, ψ, and ΦR

wϕ all agree on the elements
0, b1, ..., bn of Rn, so ψ and ΦR

wϕ are equal and hence 2 holds.

Definition 10.2. We say that a preordered ring R has the affine extension property
if every R+-affine map ϕ : Rn+ → R+ (n ∈ N) satisfies the equivalent conditions of 10.1.

We shall find that the affine extension property is a necessary condition for the
Lawvere theories of left R-convex spaces and pointed right R+-modules to be mutual
commutants in SetR+ . In order to obtain necessary and sufficient conditions, we will
also need to impose a certain weakening of the archimedean property. The familiar
archimedean property for totally ordered fields has been generalized to the context of
partially ordered rings and abelian groups in a number of slightly different ways in the
literature. We shall now recall one common definition, which appears for example in
[2], and then proceed to define the weaker property that we shall require.

Definition 10.3. Let R be a preordered ring.

1. We say that R is archimedean provided that for each element r ∈ R, if {nr |
n ∈ N} has an upper bound in R then r 6 0.

2. Given an element r ∈ R, we call the subset {sr | s ∈ R+} ⊆ R the (left) ray of
r.

3. We say that R is (left) auto-archimedean provided that for every element r
of R, if the ray of r has an upper bound in R, then r 6 0.

Remark 10.4. Observe that an archimedean preordered ring R is necessarily auto-
archimedean.

Remark 10.5. By considering the additive inverse −r of each r ∈ R, we find that a
preordered ring R is auto-archimedean precisely when for every r ∈ R, if the ray of r
has a lower bound in R, then r > 0.

Example 10.6 (The real numbers). The totally ordered ring of real numbers R is
archimedean and hence auto-archimedean. It is well-known that R also has the affine
extension property, and in 10.17 we will prove a more general result that entails this
fact.

Example 10.7 (The integers). The ring of integers Z under the natural order is
archimedean, but Z does not have the affine extension property. Indeed, Z+ = N and
every mapping Nn → N is N-affine (n ∈ N), so for example the mapping ϕ = 2(−) :
N→ N is N-affine but does not extend to a Z-affine map Z→ Z.
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Lemma 10.8. For a preordered ring R, the following are equivalent:

1. R is auto-archimedean.

2. For all r, c ∈ R, if the R-affine map R → R given by x 7→ c + xr maps R+ into
R+, then r, c ∈ R+.

3. For every n ∈ N and every w ∈ R1+n, if the associated R-affine map ΦR
w : Rn → R

maps Rn+ into R+, then w ∈ R1+n
+ .

Proof. By 10.5, 1 holds iff

∀r, b ∈ R : (∀s ∈ R+ : b 6 sr) ⇒ r ∈ R+ ,

and (by taking c = −b) we find that this holds iff

∀r, c ∈ R : (∀s ∈ R+ : c+ sr ∈ R+) ⇒ r ∈ R+ . (10.8.i)

Hence 1 holds iff for all r, c ∈ R, if the map R→ R given by x 7→ c+ xr maps R+ into
R+, then r ∈ R+. But if c+ xr ∈ R+ for all x ∈ R+ then we necessarily have c ∈ R+,
so 1 is equivalent to 2. Also, 3 clearly implies 2. Assume 2 holds, and suppose that
ΦR
w : Rn → R maps Rn+ into R+, where w = (w0, w1, ..., wn) is an element of R1+n. For

each i = 1, ..., n we have a mapping (−) · bi : R→ Rn given by r 7→ rbi where bi ∈ Rn
is the i-th standard basis vector, and the composite

ϕi =

Å
R

(−)·bi−−−→ Rn
ΦR

w−−→ R

ã
is given by ϕi(x) = ΦR

w(xbi) = w0 + xwi. But since ΦR
w maps Rn+ into R+ it follows

that ϕi maps R+ into R+, so by 2 we deduce that w0, wi ∈ R+. Therefore if n > 1 then
w ∈ R1+n

+ , but if n = 0 then it is readily seen that w = w0 ∈ R1
+. Hence 3 holds.

Lemma 10.9. For each n ∈ N, the composite

R1+n
+

Φ
R+
(−)−−−→ R+-Aff(Rn+, R+)

w(−)

−−−→ R1+n

is the inclusion R1+n
+ ↪→ R1+n, where Φ

R+

(−) is the mapping (9.1.ii) associated to the rig

R+ and w(−) is the mapping sending an R+-affine map ϕ to the vector wϕ ∈ R1+n of

10.1. Equivalently, if ϕ = Φ
R+
w then w = wϕ. In particular, Φ

R+

(−) is injective.

Proof. Any R+-affine map of the form ϕ = Φ
R+
w is a restriction of the R-affine map

ΦR
w : Rn → R and and so by 10.1 we deduce that ΦR

w = ΦR
wϕ , whence w = wϕ by

9.2.

Theorem 10.10. The following are equivalent for a preordered ring R:

1. R is auto-archimedean and has the affine extension property.

2. The commutant with respect to R+ of the theory Mataff
R+

of left R-convex spaces
(i.e., left R+-affine spaces) is isomorphic to the theory of pointed right R+-
modules Mat∗Rop

+
, where both theories are considered as Lawvere theories over

SetR+.
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Proof. By 9.1, we know that there is a unique morphism Mat∗Rop
+
→ (Mataff

R+
)⊥ in

Th/SetR+ , namely ΦR+ , so 2 holds iff the mapping

Φ
R+

(−) : R1+n
+ → R+-Aff(Rn+, R+)

is a bijection for each n ∈ N. But by 10.9 this mapping is necessarily injective and has
as its image the set of all R+-affine maps ϕ : Rn+ → R+ such that the element wϕ of

R1+n lies in R1+n
+ and ϕ = Φ

R+
wϕ . Hence 2 holds iff

2′. For each R+-affine map ϕ : Rn+ → R+, wϕ ∈ R1+n
+ and ϕ = Φ

R+
wϕ .

This is clearly equivalent to the following:

2′′. For each R+-affine map ϕ : Rn+ → R+, wϕ ∈ R1+n
+ and ϕ is a restriction of

ΦR
wϕ : Rn → R.

If 1 holds then this holds, since if ϕ : Rn+ → R+ is R+-affine then the affine extension
property entails that ϕ is a restriction of ΦR

wϕ (10.1), and since R is auto-archimedean
10.8 entails that wϕ ∈ R1+n

+ . Conversely, suppose that 2′′ holds. Then R clearly has
the affine extension property, and we show by way of condition 3 in 10.8 that R is
auto-archimedean. Suppose that ΦR

w : Rn → R maps Rn+ into R+. Then its restriction
ϕ : Rn+ → R+ is R+-affine, and by 2′′ we know that ϕ is also a restriction of ΦR

wϕ .
Hence by 10.1 we deduce that ΦR

w = ΦR
wϕ , so by 9.2 we find that w = wϕ, and by 2′′

we know that wϕ ∈ R1+n
+ .

10.11. Letting d be a positive integer, we shall denote by Z[1
d ] the subring of Q con-

sisting of all rational numbers that can be expressed in the form p
dn with p ∈ Z and

n ∈ N. Equivalently, Z[1
d ] is the localization of Z at the element d ∈ Z, i.e., the local-

ization of Z with respect to the multiplicative subset {dn | n ∈ N} ⊆ Z. We shall call
Z[1

d ] the ring of d-adic fractions. The ring Z[1
2 ] is usually called the ring of dyadic

rationals9. Under the natural order that Z[1
d ] inherits from Q, Z[1

d ] is a preordered
ring.

10.12. For any preordered ring R, there is a unique morphism of preordered rings
e : Z→ R, and for each element n ∈ Z we denote the associated element e(n) of R by
n, in accordance with the usual abuse of notation.

Proposition 10.13. For a preordered ring R and a positive integer d, the following
are equivalent:

1. The element d of R is invertible and its inverse lies in R+.

2. There is a unique morphism of preordered rings e] : Z[1
d ]→ R.

Proof. The implication 2 ⇒ 1 is immediate since d is invertible in Z[1
d ] and its inverse

lies in Z[1
d ]+. Conversely if 1 holds then by using the universal property of the local-

ization Z[1
d ] of Z and the fact that Z is an initial object of the category of rings, we

find that there is a unique ring homomorphism e] : Z[1
d ]→ R. Further, e] is monotone

since if p
dn ∈ Z[1

d ]+ with p ∈ Z then p ∈ Z+ and hence e]( p
dn ) = p · (d−1)n ∈ R+ since

p, d−1 ∈ R+.

9However, the term p-adic rational for a prime p is often employed in other senses, in connection with
the p-adic numbers. For this reason, we have chosen to use a different name for the localization Z[ 1d ].
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Definition 10.14. Let d be a positive integer. A preordered ring R is said to be a
preordered algebra over the d-adic fractions, or a preordered Z[1

d ]-algebra, if
R satisfies the equivalent conditions of 10.13. Note that since e : Z → R maps Z into
the centre of R, it follows that e] : Z[1

d ]→ R maps Z[1
d ] into the centre of R. For each

d-adic fraction q ∈ Z[1
d ] we write the element e](q) of R simply as q.

Example 10.15. If we define a preordered ring R by taking the underlying ring of R
to be Q but taking R+ to be the subrig N ⊆ R, then R is not a preordered Z[1

2 ]-algebra
in the above sense.

Definition 10.16. An element u of a preordered commutative monoid (M,+, 0) is an
order unit for M if for every x ∈ M there exists some n ∈ N such that x 6 nu. An
element u of a preordered ring R is said to be an order unit for the positive part
of R if u is an order unit for the additive monoid of R+.

Theorem 10.17. Let R be a preordered algebra over the d-adic fractions, for some
integer d > 1, and suppose that 1 is an order unit for the positive part of R. Then R
has the affine extension property.

Proof. We need to show that if ϕ : Rn+ → R+ is a left R+-affine map then

ϕ(x) = ϕ(0) +
n∑
i=1

xi(ϕ(bi)− ϕ(0)) (10.17.i)

in R for all x = (x1, ..., xn) ∈ Rn+, where bi ∈ Rn+ is the i-th standard basis vector. Let
us first treat the case where n = 1, so that ϕ : R+ → R+. Letting δ = ϕ(1)−ϕ(0) ∈ R,
we must show that ϕ(x) = ϕ(0) + xδ for all x ∈ R+. To this end, we shall first prove
that for each m ∈ N,

ϕ(m+ 2)− ϕ(m+ 1) = ϕ(m+ 1)− ϕ(m) (10.17.ii)

(with the notational convention of 10.12). Indeed, the equation

m+ 1 =
1

d
m+

d− 2

d
(m+ 1) +

1

d
(m+ 2)

holds in R and expresses m + 1 as a left R+-affine combination of the elements
m,m+ 1,m+ 2 of R+, so

ϕ(m+ 1) =
1

d
ϕ(m) +

d− 2

d
ϕ(m+ 1) +

1

d
ϕ(m+ 2) .

Multiplying both sides of this equation by d, we readily compute that (10.17.ii) holds.
By induction on m ∈ N the common difference (10.17.ii) is δ = ϕ(1) − ϕ(0), so by
another induction on m ∈ N we find that ϕ(m) = ϕ(0) + mδ in R. Now for an
arbitrary element x ∈ R+, since 1 is an order unit for R+ there is some m ∈ N such
that x 6 m in R, and we can take m to be a power of d so that m has an inverse
1
m ∈ R+ since R is a preordered Z[1

d ]-algebra. But then 1
mx 6 1 in R and hence both

1− 1
mx and 1

mx lie in R+, so we can express x as a left R+-affine combination

x = (1− 1

m
x) · 0 +

1

m
x ·m
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of the elements 0,m ∈ R+ (using the fact that 1
m ,m lie in the centre of R). Hence

since ϕ is left R+-affine we compute that

ϕ(x) =
Ä
1− 1

mx
ä
ϕ(0) + 1

mxϕ(m) =
Ä
1− 1

mx
ä
ϕ(0) + 1

mx(ϕ(0) +mδ)

= ϕ(0)− 1
mxϕ(0) + 1

mxϕ(0) + 1
mxmδ = ϕ(0) + xδ

since m, 1
m lie in the centre of R.

Having thus established (10.17.i) in the case n = 1, we now treat the general case.
Given a left R+-affine map ϕ : Rn+ → R+ and an element x ∈ Rn+, note that the
composite map

ϕx =

Å
R+

(−)·x−−−→ Rn+
ϕ−→ R+

ã
is left R+-affine and is given by ϕx(r) = ϕ(rx), so by what we have established above
we find that

ϕ(rx) = ϕx(r) = ϕx(0) + r(ϕx(1)− ϕx(0))
= ϕ(0x) + r(ϕ(1x)− ϕ(0x)) = ϕ(0) + r(ϕ(x)− ϕ(0)) .

(10.17.iii)

for all r ∈ R+. Next let γ =
∑n
i=1 xi. Since γ lies in R+ and 1 is an order unit for

R+ there is some m ∈ N such that γ 6 m in R, and we can take m to be a power
of d so that m has an inverse 1

m ∈ R+. Now 1
mγ 6 1, so 1 − 1

mγ > 0. The elements
1− 1

mγ,
1
mx1, ...,

1
mxn of R+ sum to 1, and so we can now express 1

mx as a left R+-affine
combination

1

m
x = (1− 1

m
γ) · 0 +

n∑
i=1

1

m
xibi

of the elements 0, b1, ..., bn of Rn+. Hence since ϕ is left R+-affine we find that

ϕ(
1

m
x) = (1− 1

m
γ)ϕ(0) +

n∑
i=1

1

m
xiϕ(bi) .

But by (10.17.iii) we know that ϕ( 1
mx) = ϕ(0) + 1

m(ϕ(x)− ϕ(0)), so

ϕ(0) +
1

m
(ϕ(x)− ϕ(0)) = (1− 1

m
γ)ϕ(0) +

n∑
i=1

1

m
xiϕ(bi) .

Multiplying both sides by m,

mϕ(0) + (ϕ(x)− ϕ(0)) = (m− γ)ϕ(0) +
n∑
i=1

xiϕ(bi) ,

so

ϕ(x) = (1− γ)ϕ(0) +
n∑
i=1

xiϕ(bi)

=

(
1−

n∑
i=1

xi

)
ϕ(0) +

n∑
i=1

xiϕ(bi) = ϕ(0) +
n∑
i=1

xi(ϕ(bi)− ϕ(0))

as needed.
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We now focus on the following class of preordered rings, given by a slight weakening
of the notion of strongly archimedean partially ordered ring from [2].

Definition 10.18. We say that a preordered ring R is firmly archimedean if R is
archimedean and 1 is an order unit for the positive part of R.

Remark 10.19. Observe that a nonzero totally ordered ring R is firmly archimedean
if and only if R is archimedean. Indeed, in a nonzero archimedean totally ordered ring,
1 is necessarily an order unit for (R,+, 0).

Theorem 10.20. Let R be a firmly archimedean preordered algebra over the d-adic
fractions, for some integer d > 1. Then the Lawvere theory of left R-convex spaces
(i.e., left R+-affine spaces) and the Lawvere theory of pointed right R+-modules are
mutual commutants in the full finitary theory of R+ in Set.

Proof. This now follows from 10.17, 10.10, and 7.2.

Example 10.21. Let us fix an integer d > 1.

1. Any subring R of R containing the d-adic fractions is a firmly archimedean pre-
ordered Z[1

d ]-algebra. In particular, 10.20 applies to both R = R and R = Z[1
d ].

2. Given a set X, the ring R of all bounded real-valued functions on X is a firmly
archimedean preordered Z[1

d ]-algebra under the pointwise order.

3. Let R be any subring of the ring of all bounded real-valued functions on a given set
X, and suppose that R contains all constant functions with values in Z[1

d ]. Then
R is a firmly archimedean preordered Z[1

d ]-algebra under the pointwise order.

4. Given a compact topological space, the ring R = C(X) of all continuous real-
valued functions on X is a firmly archimedean preordered Z[1

d ]-algebra.
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