Skip to main content
Log in

More on the Functor Induced by z-Ideals

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

An ideal I of a commutative ring A with identity is called a z-ideal if whenever two elements of A belong to the same maximal ideals and one of the elements is in I, then so is the other. For a completely regular frame L we denote by \({{\mathrm{ZId}}}(\mathcal {R}L)\) the lattice of z-ideals of the ring \(\mathcal {R}L\) of continuous real-valued functions on L. It is a coherent frame, and it is known that \(L\mapsto {{\mathrm{ZId}}}(\mathcal {R}L)\) is the object part of a functor \(\mathsf {Z}:\mathbf {CRFrm}\rightarrow \mathbf {CohFrm}\), where \(\mathbf {CRFrm}\) is the category of completely regular frames and frame homomorphisms, and \(\mathbf {CohFrm}\) is the category of coherent frames and coherent maps. We explore when this functor preserves and reflects the property of being a Heyting homomorphism, and also when it preserves and reflects the variants of openness of Banaschewski and Pultr (Appl Categ Struct 2:331–350, 1994). We also record some other properties of this functor that have hitherto not been stated anywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, R.N., Banaschewski, B., Jakl, T., Pultr, A., Walters-Wayland, J.: Tightness relative to some (co)reflections in topology. Quaest. Math. 39, 421–436 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ball, R.N., Walters-Wayland, J.: \(C\)- and \(C^{*}\)-quotients in pointfree topology. Dissert. Math. Rozprawy Mat. 412, 62 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Banaschewski, B.: The real numbers in pointfree topology, Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra (1997a)

  4. Banaschewski, B.: Pointfree topology and the spectra of f-rings. In: Ordered algebraic structures, pp. 123–148. Kluwer Academic Publishers, Dordrecht (1997b)

  5. Banaschewski, B.: Functorial maximal spectra. J. Pure Appl. Algebra 168, 327–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banaschewski, B., Dube, T., Gilmour, C., Walters-Wayland, J.: Oz in pointfree topology. Quaest. Math. 32, 215–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolin. 37, 579–589 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Banaschewski, B., Hager, A.W.: Essential completeness in categories of completely regular frames. Appl. Categ. Struct. 21, 167–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Banaschewski, B., Pultr, A.: Booleanization. Cah. Topol. Géom. Différ. Catég. 37, 41–60 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Banaschewski, B., Pultr, A.: Variants of openness. Appl. Categ. Struct. 2, 331–350 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Banaschewski, B.: Radical ideals and coherent frames. Comment. Math. Univ. Carolin. 37, 349–370 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Dube, T.: Contracting the socle in rings of continuous functions. Rend. Semin. Mat. Univ. Padova 123, 38–53 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dube, T., Ighedo, O.: On \(z\)-ideals of pointfree function rings. Bull. Iran. Math. Soc. 40, 655–673 (2014a)

    MathSciNet  MATH  Google Scholar 

  14. Dube, T., Ighedo, O.: Two functors induced by certain ideals of function rings. Appl. Categ. Struct. 22, 663–681 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dube, T., Naidoo, I.: On openness and surjectivity of lifted frame homomorphisms. Topol. Appl. 157, 2159–2171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dube, T., Naidoo, I.: Erratum to “On openness and surjectivity of lifted frame homomorphisms” [Topology Appl. 157 (2010) 2159–2171]. Topol. Appl. 158, 2257–2259 (2011)

    Article  MATH  Google Scholar 

  17. Gillman, L., Jerison, M.: Quotient fields of residue class rings of function rings. Ill. J. Math. 4, 425–436 (1960a)

    MathSciNet  MATH  Google Scholar 

  18. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960b)

    Book  MATH  Google Scholar 

  19. Gutiérrez García, J., Kubiak, T., Picado, J.: Perfectness in locales. Quaest. Math. (2017). doi:10.2989/16073606.2017.1299810

    MathSciNet  Google Scholar 

  20. Ighedo, O.: Concerning ideals of pointfree function rings, Ph.D. thesis, University of South Africa (2014)

  21. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  22. Madden, J.: \(\kappa \)-frames. J. Pure Appl. Algebra 1–2, 107–127 (1989)

    Google Scholar 

  23. Madden, J., Vermeer, J.: Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. 99, 473–480 (1986)

    Article  MATH  Google Scholar 

  24. Martínez, J., Zenk, E.R.: Dimension in algebraic frames, II: applications to frames of ideals in \(C(X)\). Comment. Math. Univ. Carolin. 46, 607–636 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Mason, G.: \(z\)-Ideals and prime ideals. J. Algebra 26, 280–297 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mason, G.: Prime \(z\)-ideals of \(C(X)\) and related rings. Can. Math. Bull. 23, 437–443 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Montgomery, R.G.: Structures determined by prime ideals of rings of functions. Trans. Amer. Math. Soc. 147, 367–380 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niefield, S.B., Rosenthal, K.I.: Componental nuclei. In: Categorical algebra and its applications (Louvain-La-Neuve, 1987), vol. 1348, pp. 299–306. Lecture Notes in Mathematics, Springer, Berlin (1988)

  29. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Springer, Basel (2012)

    Book  MATH  Google Scholar 

  30. Pultr, A.: Frames. In: Handbook of Algebra, vol. 3, pp. 791–857. North Holland, Amsterdam (2003)

Download references

Acknowledgements

I thank the referee for the comments and suggestions that have helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oghenetega Ighedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ighedo, O. More on the Functor Induced by z-Ideals. Appl Categor Struct 26, 459–476 (2018). https://doi.org/10.1007/s10485-017-9498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-017-9498-7

Keywords

Mathematics Subject Classification

Navigation