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Abstract

We define and study a notion of commutant for V -enriched J -algebraic theories
for a system of arities J , recovering the usual notion of commutant or centralizer
of a subring as a special case alongside Wraith’s notion of commutant for Lawvere
theories as well as a notion of commutant for V -monads on a symmetric monoidal closed
category V . This entails a thorough study of commutation and Kronecker products of
operations in J -theories. In view of the equivalence between J -theories and J -ary
monads we reconcile this notion of commutation with Kock’s notion of commutation
of cospans of monads and, in particular, the notion of commutative monad. We obtain
notions of J -ary commutant and absolute commutant for J -ary monads, and we
show that for finitary monads on Set the resulting notions of finitary commutant and
absolute commutant coincide. We examine the relation of the notion of commutant to
both the notion of codensity monad and the notion of algebraic structure in the sense
of Lawvere.

1 Introduction

Given a pair of endomorphisms µ, ν : S → S in a category T we can ask whether µ
and ν commute, i.e. whether µ · ν = ν · µ. Interestingly, this notion of commutation
generalizes to apply to pairs of morphisms µ : SJ → SJ

′
and ν : SK → SK

′
between

various powers of a given object S in a category T , where J, J ′,K,K ′ are sets. In-
deed, extrapolating from Linton’s classic work [15], the pair µ, ν determines associated
morphisms µ ∗ ν, µ ∗̃ ν : SJ×K → SJ

′×K′ that we call the first and second Kronecker
products of µ and ν, and we say that µ and ν commute if µ ∗ ν = µ ∗̃ ν (5.1). The
importance of this notion of commutation stems from the fact that mappings SJ → S
defined on a power of a given set S are fundamental to Birkhoff’s universal algebra
[1, II], where they are called (J-ary) operations. Classically, one restricts attention to
operations whose arities J are finite cardinals. It is an insight of Lawvere [14] that any
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variety of algebras in Birkhoff’s sense is described by an abstract category T , called
an algebraic theory or Lawvere theory, whose objects are the finite powers S0, S1, S2, ...
of a single object S = S1. Individual algebras of the given variety are then described
equivalently as T -algebras, i.e. functors A : T → Set that preserve finite powers. For
convenience one often takes the objects of T to be the finite cardinals 0, 1, 2, ... . For
example, left R-modules for a ring R can be described as T -algebras where T is a
category whose morphisms are R-matrices, wherein the first Kronecker product µ ∗ ν
of a pair of morphisms is the classical Kronecker product ν ⊗ µ of the matrices ν and
µ [21, 4.4].

Given a subtheory T ↪→ U of a Lawvere theory U , one can define the commutant
of T in U as the subtheory T ⊥ ↪→ U consisting of all morphisms µ ∈ morU such
that µ commutes with every ν ∈ morT . This notion of commutant was introduced
briefly by Wraith [24] and is studied further in the author’s recent paper [21] with
attention to specific examples of theories that arise as commutants.

In the present paper we study a generalization of this notion of commutant in the
context of V -enriched J -algebraic theories for a system of arities J in the sense of
[20], obtaining notions of commutant for V -monads on V as special cases. This entails
a detailed study of several fundamental aspects of the theory of V -enriched universal
algebra for a system of arities J , including commutation and Kronecker products of
operations.

By definition, a system of arities J → V in a symmetric monoidal closed category
V is a fully faithful symmetric strong monoidal V -functor. Up to an equivalence, a
system of arities is therefore simply a full sub-V -category J ↪→ V closed under ⊗
and containing the unit object I of V [20, 3.8, 3.9]. A J -theory [20] is then defined
as a V -category T whose objects are cotensors SJ of a fixed object S = SI , where
J ∈ obJ ⊆ obV , the notion of cotensor SJ here providing the appropriate concept of
‘V -enriched J-th power’ of S, written herein as [J, S]. Without loss of generality, we
require not only that the objects [J, S] of T be in bijective correspondence with the
objects J of J but moreover that concretely obT = obJ .

By considering specific systems of arities J ↪→ V one recovers various existing
notions as instances of the notion of J -theory, as summarized in the following table;
see [20, §3, §4.2] for details.

System of arities J ↪→ V J -theories

FinCard ↪→ Set,
the finite cardinals

Lawvere theories

Vfp ↪→ V ,
the finitely presentable objects, where
V is l.f.p. as a closed category

Power’s enriched Lawvere theories [23]

J = V Dubuc’s V -theories [5]; equivalently,
arbitrary V -monads on V

J = {I} ↪→ V monoids in V
(e.g., rings when V = Ab)

all finite copowers of I the enriched algebraic theories of
Borceux and Day [2]
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Given a J -theory T and a V -category C , a T -algebra in C is by definition a V -
functor A : T → C that preserves cotensors by objects J of J . Most often we take
C = V . We call V -natural transformations between T -algebras T -homomorphisms.
Therefore T -algebras in C form a full sub-V -category T -AlgC ↪→ [T ,C ] of the V -
category of V -functors from T to C , provided that the latter V -category exists. But
T -AlgC may exist even when [T ,C ] does not, and we show herein that T -AlgC always
exists as soon as V has equalizers and intersections of (obJ )-indexed families of strong
monomorphisms (4.11).

Given a J -theory T , we define for each 4-tuple of objects J, J ′,K,K ′ ∈ obJ =
obT a pair of morphisms

kJJ′KK′ , k̃JJ′KK′ : T (J, J ′)⊗T (K,K ′)→ T (J ⊗K,J ′ ⊗K ′)

which, in the classical case J = FinCard ↪→ Set = V , furnish the first and second
Kronecker products of pairs of morphisms in T . In the general case, we can instead
work with pairs of generalized elements µ : V → T (J, J ′) and ν : W → T (K,K ′) of
the hom-objects for T , where V,W ∈ obV , and for any such pair we again obtain first
and second Kronecker products µ ∗ ν, µ ∗̃ ν : V ⊗W → T (J ⊗K,J ′⊗K ′). We say that
µ commutes with ν if the first and second Kronecker products of µ and ν are equal,
and we say that T is commutative if every such pair (µ, ν) commutes, equivalently, if
the first and second Kronecker products in T are equal.

This relation of commutation of generalized elements is symmetric (5.8), and it
induces a notion of commutation of cospans of J -theories, as follows. Given J -
theories T and U , a morphism of J -theories is an identity-on-objects V -functor
A : T → U satisfying a certain condition (3.10). Given a pair of morphisms of
J -theories A : T → U and B : S → U , we say that A commutes with B if the
components AJJ ′ : T (J, J ′)→ U (J, J ′) and BKK′ : S (K,K ′)→ U (K,K ′) commute
for all J, J ′,K,K ′ ∈ obJ . We prove that one can fix J ′ = I = K ′ and still obtain an
equivalent condition (9.2).

In order to define a notion of commutant in this general setting, we exploit a
connection between commutation and the notion of T -homomorphism (6.4). Any
morphism of J -theories A : T → U is, in particular, a T -algebra in U and so can
be considered as an object of the V -category T -AlgU , provided that this V -category
exists. If it does, then for each object J of J there is a (pointwise) cotensor [J,A] of
A by J in T -AlgU , and we define the commutant of A (or of T with respect to A) as
the J -theory T ⊥A whose hom-objects are the objects of T -homomorphisms

T ⊥A (J,K) = T -AlgU ([J,A], [K,A]) = [T ,U ]([J,A], [K,A]) (J,K ∈ obJ )

with composition and identities as in T -AlgU . Hence, as a corollary to our existence
result for categories of T -algebras (4.11), the commutant T ⊥A always exists as soon as
V has equalizers and intersections of (obJ )-indexed families of strong monomorphisms
(7.2).

The commutant of a morphism of J -theories A : T → U is a subtheory T ⊥A of
U (7.5), and we show that it has a universal property, namely that a morphism ofJ -
theories B : S → U commutes with A if and only if B factors through the commutant
T ⊥A ↪→ U (7.8). Letting ThJ denote the category ofJ -theories, and calling objects of
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the slice category ThJ /U theories over U , we show that the assignment to each theory
T over U its commutant T ⊥ extends to a functor (−)⊥ : (ThJ /U )op → ThJ /U
that is right-adjoint to its formal dual (8.6). The resulting adjunction restricts to a
Galois connection on subtheories of U (8.7).

If a given object C of a V -category C is equipped with cotensors [J,C] by each
object J of J ↪→ V , then we can form an associated J -theory CC called the full
J -theory of C in C with hom-objects

CC(J,K) = C ([J,C], [K,C]) (J,K ∈ obJ )

and with composition and identities as in C . In particular, the commutant T ⊥A of a
morphism of J -theories A : T → U is the full J -theory

T ⊥A = (T -AlgU )A

of A in T -AlgU .
This leads to a notion of commutant of an arbitrary T -algebra, as follows. Indeed,

since any T -algebra A : T → C equips its carrier |A| := A(I) with cotensors [J, |A|] =
A(J) by each object J ofJ , we can form the fullJ -theory C|A| of |A| in C , and then
A can be viewed equally as a morphism of J -theories

A : T → C|A| .

The commutant of the T -algebra A is defined as the commutant T ⊥A ↪→ C|A| of this
induced morphism. Consequently, the commutant of A is equivalently characterized as
the full J -theory

T ⊥A = (T -AlgC )A

of A in the V -category of T -algebras in C , provided that the latter V -category exists.
Throughout this paper, we refer the reader to numerous examples of commutants

for classical Lawvere theories that are developed in detail in the author’s recent paper
[21]. The present setting of V -enriched J -theories also admits the classical notion
of centralizer for rings as a source of basic examples, when one takes V to be the
category Ab of a abelian groups with J = {Z} ↪→ Ab. For example, given a ring T
with corresponding {Z}-theory T , a T -algebra M is precisely a left T -module, and
the commutant T ⊥M ↪→ AbM of M in the above sense is the inclusion of endomorphism
rings EndT (M) ↪→ EndZ(M) (7.11).

Given a system of arities j :J ↪→ V , we say that a V -monad T = (T, η, µ) on V is
aJ -ary monad if T preserves (V -enriched) left Kan extensions along j [20, §11]. The
J -ary monads form a full subcategory MndJ (V ) ↪→ MndV -CAT(V ) of the category of
all V -monads on V , and it is proved in [20, 11.8] that there is an equivalence

ThJ ' MndJ (V ) (1.0.i)

between the category ofJ -theories and the category ofJ -ary monads, provided that
the system of arities J is eleutheric ([20, §7], see 10.1 below). By [20, 7.5], all the
systems of arities listed in the above table are always eleutheric save for the last, which
is eleutheric for a wide class of categories V [20, 7.5 #5]. In particular, by taking
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J = V one obtains an equivalence between V -theories and arbitrary V -monads on an
arbitrary symmetric monoidal closed category V .

Whereas Kock defined a notion of commutation of cospans of arbitrary V -monads
on V [13, 4.1], we show that the above notion of commutation for cospans ofJ -theories
accords with Kock’s notion of commutation, in that a cospan ofJ -theories commutes
if and only if the corresponding cospan of J -ary monads commutes in Kock’s sense
(10.5). In particular, a J -theory T is commutative if and only if its corresponding
J -ary monad is commutative (10.6) in the sense defined by Kock [12].

Via the equivalence (1.0.i), the notion of commutant for J -theories induces a cor-
responding notion of commutant for J -ary monads (10.8). Indeed, given a morphism
of J -ary monads α : T → U we can thus define its J -ary commutant, which (if it
exists) is aJ -ary monad T⊥α,j equipped with a canonical morphism T⊥α,j → U. In view
of the above, the J -ary commutant is characterized by a universal property that we
can phrase in terms of Kock’s notion of commutation of cospans of monads (10.11).
In particular, by taking J = V we obtain a notion of commutant for an arbitrary
morphism of V -monads α : T → U on V , namely the ‘V -ary commutant’ which we
call the absolute commutant T⊥α of α (10.8). We obtain strong general existence results
for both J -ary and absolute commutants (10.9).

Given a morphism of J -ary monads α : T → U we can consider both its J -ary
commutant T⊥α,j and its absolute commutant T⊥α , each of which is characterized by an
(a priori) different universal property when it exists. As we argue in 10.12, we have no
reason to expect that the J -ary and absolute commutants would coincide in general.
Indeed, whereas the absolute commutant is always a submonad T⊥α ↪→ U (10.12), we
have no reason to expect in general that the canonical morphism T⊥α,j → U would be
componentwise monic (10.12).

Nevertheless, we identify one important special case in which theJ -ary and abso-
lute commutants coincide, namely the case in which the system of arities is the inclusion
FinCard ↪→ Set. Indeed, given a morphism of finitary monads α : T → U on Set we
prove that the finitary commutant of α coincides with the absolute commutant of α
(10.13).

Given a T-algebra A for a V -monad T on V , we define the absolute commutant of
A as the V -monad T⊥A corresponding to the commutant T ⊥A of the T -algebra T → V
corresponding to A, where T denotes the V -theory associated to T. Here the notion
of absolute commutant intersects with the notion of codensity monad [11], as T⊥A is
equally the codensity V -monad1 of the V -functor T → V in this case (10.17).

More generally, for an arbitrary system of arities J the notion of commutant of
a T -algebra A : T → C intersects with (a V -enriched generalization of) Lawvere’s
notion of algebraic structure [14, III.1] in the case where C = V (7.13).

Beyond our general existence result for commutants (7.2), we prove that the com-
mutant T ⊥A of a T -algebra A : T → V always exists as soon asJ ↪→ V is eleutheric
and V has equalizers (10.15). In particular, for an arbitrary V -monad T on a symmet-
ric monoidal closed category V with equalizers, the absolute commutant of a T-algebra
A always exists (10.16).

A complementary abstract perspective on notions of commutation in a general

1See [5, Ch. II] for a definition in the enriched setting.

5



framework of duoidal categories is provided by the very recent paper [7]. The authors
define notions of commutation and centralizer in a general setting, but the content,
scope, context, methods, aims, and results of the latter article are very different from
those of the present paper. Elements of the present work were announced in a 2015
conference talk [19], and the present paper provides part of the basis of a framework
for measure and distribution monads outlined in that same talk and expounded in [22].

Acknowledgement. The author thanks the anonymous referee for helpful sugges-
tions, which enabled a greatly shortened proof of 4.10 as well as an improvement to
the proof of 4.1.

2 Some basic notions and lemmas

2.1. A monomorphismm : C → D in a category C is called a strong monomorphism
[8] provided that for all morphisms e : A → B, f : A → C, g : B → D in C , if e is
an epimorphism and g · e = m · f then g factors through2 m. A subobject that is
represented by a strong monomorphism is said to be a strong subobject. Given
a family of parallel pairs of morphisms (hλ, kλ : D → Eλ)λ∈Λ in C indexed by a
class Λ, let us call a limit of the resulting diagram in C a pairwise equalizer of
the family (hλ, kλ). Such a limit is equivalently given by a morphism m : C → D
satisfying an evident universal property, and it is easy to show directly that m is
necessarily a strong monomorphism. If C has an equalizer mλ for each individual pair
(hλ, kλ), then each mλ is necessarily a strong monomorphism [8, 3.1], and a pairwise
equalizer of (hλ, kλ)λ∈Λ is equivalently a (wide) intersection of the family of strong
monomorphisms mλ, i.e. a fibre product of this family.

2.2. Throughout the sequel, we fix an arbitrary closed symmetric monoidal category
(V ,⊗, I, a, `, r, s) and employ the theory of V -enriched categories, as documented in
the classic works [6, 5, 10]. By a morphism in a V -category C we mean a morphism
in the ordinary category C0 underlying C . Concretely, a morphism f : C → D in C is
therefore a morphism I → C (C,D) in V , but nevertheless we sometimes maintain a
notational distinction between these notions by writing the latter morphism as [f ]. We
denote by V the V -category canonically associated to V , whose underlying ordinary
category may be identified with V itself.

2.3. Recall that a V -functor G : A → X is said to be faithful if its component
morphisms GAB : A (A,B) → X (GA,GB) are monomorphisms in V . We shall say
that G is strongly faithful if the GAB are, moreover, strong monomorphisms.

2.4. Given an object C of a V -category C and an object V of V , recall that a cotensor
of C by V in C is, by definition, an object [V,C] of C equipped with an isomorphism
of V -functors

C (−, [V,C]) ∼= V (V,C (−, C)) : C op → V . (2.4.i)

2Since m is a monomorphism it then follows that the morphism d : B → C with m · d = g is unique and
satisfies the equation d · e = f .
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Therefore a cotensor of C by V is exactly a representation of the rightmost V -functor
in (2.4.i) and so is equivalently given by an object [V,C] with a morphism

γCV : V → C ([V,C], C) , (2.4.ii)

called the counit of the representation, having the property that the V -natural trans-
formation C (−, [V,C])→ V (V,C (−, C)) determined by γCV (via Yoneda) is an isomor-
phism.

Given a fixed object V of V and cotensors [V,C] in C for every object C of some
full sub-V -category D ↪→ C , we deduce by [10, §1.10] that there is a unique V -
functor [V,−] : D → C given on objects by C 7→ [V,C] such that the counits (2.4.ii)
are V -natural in C ∈ D . One can of course adapt this in an evident way to the
case in which we instead have an arbitrary V -functor D → C rather than a full
sub-V -category inclusion. In particular, if we are given a pair of objects (C1, C2)
of C and cotensors [V,C1] and [V,C2] in C then the mapping {1, 2} → obC given
by i 7→ Ci determines a fully-faithful V -functor D → C when we define D to have
objects {1, 2} and homs D(i, j) = C (Ci, Cj). Hence we obtain an induced V -functor
[V,−] : D → C . In particular, the given cotensors [V,Ci] thus induce a morphism
[V,−]1,2 : C (C1, C2) → C ([V,C1], [V,C2]) that we will sometimes write as [V,−]C1C2 ,
although strictly speaking this is an abuse of notation. Indeed, we could even have
C1 = C2 and yet still have a given pair of distinct (but isomorphic) cotensors [V,C1]
and [V,C2], so that even our way of writing the given pair of cotensors conceals an
abuse of notation. With care in this regard, we will harness the V -functoriality of
cotensors in several subtle ways in the sequel by means of the following lemma, which
is obvious in the general case but becomes quite useful in the degenerate cases captured
by the corollaries that follow it:

Lemma 2.5. Let C be a V -category, let V be an object of V , and for each i = 1, 2, 3, 4,
let Ci be an object of C equipped with a given cotensor [V,Ci] in C (noting that the
cotensor [V,Ci] depends i rather than just Ci). Let f1 : C1 → C2 and f3 : C3 → C4

be isomorphisms in (the ordinary category underlying) C , and for each i = 1, 3 write
[V, fi] : [V,Ci]→ [V,Ci+1] for the induced isomorphism (noting that [V, fi] depends on
i rather than just fi). Then we have a commutative square

C (C1, C3)
[V,−]13 //

C (f−1
1 ,f3) o

��

C ([V,C1], [V,C3])

C ([V,f1]−1,[V,f3])o
��

C (C2, C4)
[V,−]24

// C ([V,C2], [V,C4])

whose left and right sides are isomorphisms.

Proof. The mapping {1, 2, 3, 4} → obC given by i 7→ Ci extends to an identity-on-
homs V -functor D → C where obD = {1, 2, 3, 4}, and by [10, §1.10] we obtain a
V -functor [V,−] : D → C , given on objects by i 7→ [V,Ci], whose V -functoriality now
entails the needed result.
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Corollary 2.6. Let C be a V -category and let V be an object of V . For each j =
1, 2, let Dj be an object of C , let [V,Dj ]

0 and [V,Dj ]
1 be a given pair of (possibly

distinct) cotensors of Dj by V in C , and let hj : [V,Dj ]
0 → [V,Dj ]

1 denote the induced
isomorphism. Then we have a commutative triangle

C (D1, D2)

[V,−]112 **

[V,−]012 // C ([V,D1]0, [V,D2]0)

C (h−1
1 ,h2)o

��
C ([V,D1]1, [V,D2]1)

whose right side is an isomorphism.

Proof. Invoke 2.5 with C1 = C2 = D1, C3 = C4 = D2, [V,C1] = [V,D1]0, [V,C2] =
[V,D1]1, [V,C3] = [V,D2]0, [V,C4] = [V,D2]1, f1 = 1D1 , and f3 = 1D2 . Then h1 =
[V, f1], h2 = [V, f3], and the result is obtained.

Corollary 2.7. Let C be a V -category, let V be an object of V , and for each i =
1, 2, 3, 4, let Ci be an object of C . For each i = 1, 3, let fi : Ci → Ci+1 be an isomor-
phism in C , and let Ei be an object of C that is equipped with two cotensor structures

[V,Ci] = Ei = [V,Ci+1]

in C such that the induced isomorphism [V, fi] : [V,Ci] → [V,Ci+1] is the identity
morphism on Ei. Then we have a commutative triangle

C (C1, C3)
[V,−]13

))
C (f−1

1 ,f3) o
��

C (C2, C4)
[V,−]24

// C (E1, E3)

whose left side is an isomorphism, where [V,−]13 and [V,−]24 are defined as in 2.5.

Proof. This follows immediately from 2.5.

3 Enriched algebraic theories and their algebras

In the present section we review some basic material concerning enriched algebraic
theories for a system of arities [20], together with certain further points needed for the
sequel, and we consider several examples, including a number of specific examples of
classical Lawvere theories that are treated in more detail in [21].

3.1 (J -theories for a system of arities). In the terminology of [20], a system of
arities in a symmetric monoidal closed category V is a fully faithful symmetric strong
monoidal V -functor j : J � V . Any full sub-V -category J ↪→ V containing I and
closed under ⊗ is a system of arities, and any system of arities is equivalent to one of
this special form [20, 3.8]. Hence by the convention of [20, 3.9] we often write as if
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given systems of arities are of this form, and for many purposes we can assume this
without loss of generality. Given a system of arities j :J ↪→ V , aJ -theory [20, 4.1]
is a V -category T equipped with an identity-on-objects V -functor τ :J op → T that
preserves J -cotensors, i.e. that preserves cotensors by all objects J of J (or, rather,
their associated objects j(J) of V ). The notion ofJ -theory specializes to yield various
different existing notions of enriched algebraic theory for different choices ofJ and V ,
as in the following examples from [20, §3, 4.2]:

Example 3.2.

(a) Letting V = Set, we can take J = FinCard ↪→ V to be the full subcategory
consisting of all finite cardinals, and then the resulting notion of J -theory is
Lawvere’s notion of algebraic theory [14]. These are often called Lawvere the-
ories.

(b) Letting V be locally finitely presentable as a closed category [9], we can take
J ↪→ V to be the full sub-V -category Vfp consisting of the finitely presentable
objects, and then the resulting notion of J -theory is the notion of enriched
Lawvere theory defined by Power in [23].

(c) LettingJ = V and taking j : V → V to be the identity V -functor, the resulting
notion of J -theory is Dubuc’s notion of V -theory [4], which coincides, up to an
equivalence, with the notion of V -monad on V [20, 11.10].

(d) The one-object full sub-V -category {I} ↪→ V carries the structure of a system
of arities, and {I}-theories are the same as monoids in the monoidal category
V . This example is analyzed in [20, 3.6, 4.2] on the basis of the fact that the
V -category {I} is isomorphic to the unit V -category I, which is the one-object
V -category determined by the commutative monoid I in V and has the property
that V -functors I → C valued in any V -category C correspond bijectively to
objects of C . When V = Ab is the category of abelian groups, {Z}-theories are
the same as rings.

(e) Assuming that V has finite copowers n · I (n ∈ N) of the unit object I, there is a
system of arities j : NV � V with obNV = N, such that j is given on objects by
n 7→ n·I and j is identity-on-homs. NV is a symmetric strict monoidal V -category
under multiplication of natural numbers. The resulting notion of J -theory for
this particular system of arities is equivalent to the notion of enriched algebraic
theory defined by Borceux and Day in [2]; see [20, 4.2 #6].

3.3. An object C of a V -category C is said to have designated J -cotensors if
it is equipped with a specified choice of cotensor [J,C] in C for each object J of
J . These designated J -cotensors are said to be standard if [I, C] is just C itself,
with the identity morphism I → C (C,C) as counit. We say that C has (standard)
designatedJ -cotensors if each object of C has (standard) designatedJ -cotensors.
For example, V itself is endowed with standard designated J -cotensors [J, V ] of each
of its objects V when we force [I, V ] = V and take [J, V ] = V (J, V ) otherwise. In
anyJ -theory T the object I has standard designatedJ -cotensors (by [20, 4.3]) since
each object J ofJ serves as a cotensor [J, I] = J in T , with counit γJ defined as the
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composite
J
∼−→ V (I, J) =J op(J, I)

τJI−−→ T (J, I) , (3.3.i)

whose first factor is the canonical isomorphism. Moreover, every J -theory T has
standard designatedJ -cotensors of each of its objects; see 3.19 below. In fact, by [20,
5.8] the notion of J -theory is equivalently defined as a V -category T with obT =
obJ in which each object J is equipped with the structure of a cotensor [J, I] such that
these designatedJ -cotensors are standard. In this way, the seemingly trifling condition
of standardness of J -cotensors is in fact implicit in the definition of J -theory.

3.4 (T -algebras). Given a J -theory T and a V -category C , a T -algebra in C
is a J -cotensor-preserving V -functor A : T → C . We often call T -algebras in V
simply T -algebras. A V -functor A : T → C is a T -algebra as soon as it preservesJ -
cotensors of I ([20, 5.9]). Given a T -algebra A : T → C , we call the object |A| := AI
of C the carrier of A. Since T has standard designated J -cotensors [J, I] = J of I
and A preservesJ -cotensors, AJ is a cotensor of |A| by J for each object J ofJ , and
A thus equips its carrier |A| with standard designated J -cotensors. Now supposing
that C (already) has standard designated J -cotensors, a normal T -algebra in C
is, by definition, a V -functor A : T → C that strictly preserves the designated J -
cotensors [J, I] = J of I in T , i.e. sends them to the designated J -cotensors [J, |A|]
of |A| in C .

3.5 (The V -category of T -algebras). Given T -algebras A,B : T → C , we call
V -natural transformations between T -algebras T -homomorphisms. The object of
T -homomorphisms from A to B is, by definition, the object of V -natural transfor-
mations from A to B, i.e. the end

T -AlgC (A,B) =

∫
J∈T

C (AJ,BJ)

in V , which may or may not exist. If T -AlgC (A,B) exists for all T -algebras A and
B in C , then we obtain a V -category T -AlgC whose objects are the T -algebras in C .
Analogously we define the V -category T -Alg!

C of normal T -algebras in C , which is
then a full sub-V -category of T -AlgC when the latter exists. In this case, there is in
fact an equivalence of V -categories T -Alg!

C ' T -AlgC ([20, 5.14]). In the case where
C = V , we often write simply T -Alg (resp. T -Alg!) for the V -category of T -algebras
in V .

When T -AlgC exists, we obtain by [10, §2.2] a V -functor

|−| = EvI : T -AlgC → C

given by evaluation at I. Therefore |−| sends each T -algebra A to its carrier |A|.

Example 3.6 (Left R-modules with V = Ab). For the system of arities {I} ↪→ V
of 3.2(d), we know that an {I}-theory R is the same as a monoid R in V , with
R = R(I, I), and in the case of V = Ab (where I = Z) these are rings. Moreover, an
R-algebra M : R → V in the above sense is the same as a left R-module M in V [20,
5.3 #3]. For example, when V = Ab these are precisely left R-modules in the usual
sense. Thus a ring R can be viewed as the {Z}-theory of left R-modules.
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Example 3.7 (Left R-modules with V = Set). The category R-Mod of left R-
modules for a ring R, or more generally a rig (or semiring) R, is isomorphic to the
category of normal T -algebras T -Alg! for a Lawvere theory T ; see, e.g., [21, 2.8]. The
associated theory T is the category MatR of R-matrices, whose objects are natural
numbers and whose morphisms X : n→ m are m× n-matrices with entries in R, with
composition given by matrix multiplication.

Example 3.8 (The Lawvere theory of commutative k-algebras). Given a com-
mutative ring k, the category of commutative k-algebras is isomorphic to the category
T -Alg! of normal T -algebras for a Lawvere theory T in which T (n, 1) = k[x1, ..., xn]
is the set of polynomials in n variables over k; see, e.g. [21, 2.9]

Example 3.9 (The Lawvere theory of semilattices). A (bounded) join semi-
lattice is a partially ordered set with finite joins. Equipping the set 2 = {0, 1} with
the structure of a rig with additive monoid (2,∨, 0) and multiplicative monoid (2,∧, 1),
the category of join semilattices (and maps preserving finite joins) is isomorphic to the
category 2-Mod of 2-modules and so (by 3.7) is isomorphic to the category T -Alg! of
normal T -algebras for the Lawvere theory T = Mat2. See, e.g., [21, 2.10].

3.10 (Morphisms of J -theories). GivenJ -theories (T , τ) and (U , υ), a (normal)
morphism of J -theories A : T → U is a V -functor such that A ◦ τ = υ. A
morphism of J -theories A : T → U is the same as a normal T -algebra in U with
carrier I [20, 5.16]. Observe that J op, when equipped with the identity V -functor, is
an initial object of the resulting category of J -theories ThJ . A subtheory of a
J -theory U is a J -theory T equipped with a morphism ι : T ↪→ U that is faithful
(as a V -functor, 2.3), and we say that T is a strong subtheory of U if, moreover, ι
is strongly faithful (2.3).

Example 3.11 (Ring homomorphisms). Given monoids R and U in V , we can
consider R and U as {I}-theories R and U for the system of arities {I} ↪→ V , and
then morphisms of {I}-theories a : R → U are the same as homomorphisms of monoids
a : R→ U in V . When V = Ab, these are the same as ring homomorphisms R→ U .

Remark 3.12. Given a normal T -algebra A : T → C with carrier C (and in partic-
ular, any morphism of J -theories), A preserves the designated cotensors [J, I] = J of
I and so it follows that for all J,K ∈ obJ we have a commutative square

T (J,K)

o
��

AJK // C ([J, |A|], [K, |A|])

o
��

V (K,T (J, I))
V (K,AJI)

// V (K,C ([J, |A|], |A|))

whose left and right sides are isomorphisms. Thus AJK can be expressed in terms
of AJI . Hence a normal T -algebra A is uniquely determined by its carrier and its
components AJI (J ∈ obJ ).

Example 3.13 (Affine spaces over a ring or rig). Let R be a ring, or more
generally, a rig. Recall that the category of R-matrices MatR is the Lawvere theory of
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left R-modules (3.7). There is a subtheory Mataff
R of MatR consisting of those matrices

in which each row sums to 1, and we call normal Mataff
R -algebras (left)R-affine spaces.

See, e.g., [21, 3.2].

Example 3.14 (Convex spaces). The set R+ of all non-negative real numbers is a
rig, as it is a subrig of the ring R. We call R+-affine spaces (R-)convex spaces. See,
e.g., [21].

Example 3.15 (Unbounded semilattices as affine spaces). An unbounded join
semilattice is a poset in which every pair of elements has a join. The category of
unbounded join semilattices and maps preserving binary joins is isomorphic to the
category of affine spaces over the rig (2,∨, 0,∧, 1) [21, 3.3].

The following is a direct generalization of §2.11 of the author’s paper [21] in the
finitary Set-based case, which we have adapted word-for-word in order to clearly em-
phasize the parallel:

Definition 3.16 (The full theory of an object). If a given object C of a V -category
C has standard designated J -cotensors [J,C] then we obtain a J -theory CC , called
the full J -theory of C in C , with

CC(J,K) = C ([J,C], [K,C]), J,K ∈ obCC = obJ

such that the mapping obJ → obC , J 7→ [J,C], extends to an identity-on-homs V -
functor CC � C , which is evidently a CC-algebra in C with carrier C. When V = Set
and J = FinCard, we call CC the full finitary theory of C in C .

In particular, any T -algebra A : T → C endows its carrier |A| = AI with standard
designatedJ -cotensors [J, |A|] = AJ (3.4), with respect to which we can form the full
J -theory of |A|, which we shall denote by CA. The given T -algebra A then factors
uniquely as

T

A !!

A′ // CA
��

��
C

where A′ is a morphism ofJ -theories, given on homs just as A. By abuse of notation,
we often write simply A to denote the morphism A′.

In the case that C has standard designatedJ -cotensors, morphisms ofJ -theories
T → CC into the full J -theory of an object C of C are evidently in bijective corre-
spondence with normal T -algebras in C with carrier C. Note also that the canonical
CC-algebra CC � C is normal in this case.

Example 3.17 (The endomorphism ring of an abelian group). Take V = Ab
and J = {Z}, and let M be an abelian group. Then the full {Z}-theory AbM of M
in Ab is the ring EndZ(M) of all endomorphisms of M .

Example 3.18 (The Lawvere theory of Boolean algebras). The category of
Boolean algebras is isomorphic to the category T -Alg! of normal T -algebras where
T = Set2 is the full finitary theory of 2 = {0, 1} in Set; see [14, III.1, Example 4] and
[21, 2.12].
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3.19 (The left, right, and designatedJ -cotensors in a theory T ). As we noted
above, every J -theory T has all J -cotensors, and in the sequel it will be convenient
to make use of multiple distinct ways of forming J -cotensors in T , with separate
notations for each, as follows.

1. Firstly, for each pair of objects J,K of J , the coevaluation morphism

Coev : J → V (K,J ⊗K) =J op(J ⊗K,K)

exhibits J ⊗K as a cotensor [J,K] of K by J in J op. Hence the composite

γKJ =
(
J

Coev−−−→J op(J ⊗K,K)
τJ⊗K,K−−−−−→ T (J ⊗K,K)

)
exhibits J ⊗K as a cotensor [J,K] in T , which we write as

[J,K]` = J ⊗K

and call the left cotensor of K by J .

2. Secondly, since V is symmetric monoidal closed, we have another coevaluation
morphism Coev′ : J → V (K,K ⊗ J) that is related to the morphism Coev from
1 via the equation Coev′ = V (K, sJK) · Coev, where sJK : J ⊗K → K ⊗ J is the
symmetry. It follows that the composites

J
Coev′−−−→ V (K,K ⊗ J) =J op(K ⊗ J,K)

τK⊗J,K−−−−−→ T (K ⊗ J,K) (3.19.i)

and

J
γKJ−−→ T (J ⊗K,K)

T (τ(sJK),1)−−−−−−−−→ T (K ⊗ J,K)

are equal and present K ⊗ J as a cotensor of K by J in T , which we write as

[J,K]r = K ⊗ J

and call the right cotensor of K by J .

3. Thirdly, recall that the objects J of T themselves serve as standard designated
J -cotensors [J, I] = J of I (3.3). These are in general neither the left nor the
right cotensors (which are not standard in general), and so it is convenient to fix
a choice of standard designated J -cotensors [J,K] in T that coincides with the
basic choice [J, I] = J in the case that K = I. We shall call these the (standard)
designatedJ -cotensors in T and write them simply as [J,K].

Remark 3.20. A morphism of J -theories A : T → U strictly preserves the left
J -cotensors [J,K]` = J ⊗K and also the rightJ -cotensors [J,K]r = K ⊗ J . Indeed,
this follows immediately from the descriptions of the right and left cotensor counits
given in 3.19.

3.21 (Cotensors of algebras). If C is a V -category with J -cotensors, then the V -
category of T -algebras T -AlgC hasJ -cotensors as soon as it exists. Indeed, given an
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object J ofJ and a T -algebra A : T → C , a cotensor [J,A] can be formed pointwise,
as the composite

[J,A−] =

Å
T

A−→ C
[J,−]−−−→ C

ã
,

which is a T -algebra since [J,−] preserves cotensors.
In the case where C is itself a J -theory C = U , the three canonical choices of

J -cotensors in U (3.19) give rise to three different choices of pointwiseJ -cotensors in
T -AlgU , namely the (pointwise) left cotensors [J,A]` = [J,A−]`, the (pointwise) right
cotensors [J,A]r = [J,A−]r, and the (pointwise) designated cotensors [J,A] = [J,A−].

For a morphism of J -theories A : T → U , we have

[J,A]` = [J,A−]` = [J,−]` ◦A = A ◦ [J,−]` = A([J,−]`) (3.21.i)

[J,A]r = [J,A−]r = [J,−]r ◦A = A ◦ [J,−]r = A([J,−]r) (3.21.ii)

for all J ∈ obJ , since A strictly preserves the right and left J -cotensors (3.20).

4 The object of homomorphisms

Our study of commutation and commutants forJ -theories will be enabled by a detailed
study of the object of T -homomorphisms T -AlgC (A,B) =

∫
J∈T C (AJ,BJ) for a pair

of T -algebras A,B : T → C (3.5). We begin by treating the case of the initial
J -theory J op.

Proposition 4.1. For all J op-algebras A,B :J op → C , there are morphisms

C (|A|, |B|)
λAB
J = [J,−]|A||B|−−−−−−−−−−−→ C (AJ,BJ) (J ∈J ) (4.1.i)

that present C (|A|, |B|) as the object of J op-homomorphisms

C (|A|, |B|) = [J op,C ](A,B) .

Proof. By [20, 5.8], B is the V -functor [−, BI] : J op → C induced by the cotensors
BJ = [J,BI] (J ∈ obJ ). Hence if we let I denote the unit V -category and let
ι : I → J op denote the V -functor determined by the object I of J op, then the
identity transformation Bι ⇒ Bι presents B as a right Kan extension of Bι along ι.
By [10, Thm. 4.38] we therefore have an isomorphism

ϕ : [J op,C ](A,B)
∼−→ [I,C ](Aι,Bι) = C (AI,BI),

given by evaluation at I, and in particular, the object of V -natural transformations
[J op,C ](A,B) exists in V .

The cotensors AJ = [J,AI] and BJ = [J,BI] (J ∈ obJ ) induce an extraordi-
narily V -natural family as in (4.1.i), and the induced morphism λ] : C (AI,BI) →
[J op,C ](A,B) is a section of ϕ, so λ] = ϕ−1.

Corollary 4.2. The V -category J op-AlgC always exists. If C has standard desig-
nated J -cotensors, then J op-Alg!

C is isomorphic to C , which is therefore equivalent
to J op-AlgC .
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Proof. It follows immediately from [20, 5.7] that the assignment to each normal J op-
algebra A its carrier |A| is a bijection between normalJ op-algebras and objects of C .
Hence the result follows from the preceding Proposition.

Remark 4.3. Despite the equivalence J op-AlgC ' C , there is a useful distinction to
be made between J op-algebras and mere objects of C . Indeed, by [20, 5.7], a J op-
algebra is precisely an object C of C together with a choice of standard designated
J -cotensors [J,C] (J ∈ obJ ).

In particular, every T -algebra A : T → C comes equipped with a choice of J -
cotensors for its carrier |A|, and this information is encapsulated by the associated
J op-algebra

A ◦ τ =
(
J op τ−→ T

A−→ C
)
.

Definition 4.4. Let A,B : T → C be T -algebras, and let f : V → C (|A|, |B|) be
a morphism in V . By 4.1, C (|A|, |B|) is an end

∫
J∈J op C ((A ◦ τ)J, (B ◦ τ)J), so f

determines a corresponding family of morphisms

fJ : V → C ((A ◦ τ)J, (B ◦ τ)J) = C (AJ,BJ) ,

V -natural in J ∈J op. We say that f is valued in T -homomorphisms from A
to B if the latter family is V -natural in J ∈ T , i.e. if (fJ : V → C (AJ,BJ)) is an
extraordinarily V -natural family for the V -functor

C (A−, B−) : T op ⊗T → V .

In the special case where V = I, we say that a morphism f : |A| → |B| in C0 is a
T -homomorphism fromA toB if f : I → C (|A|, |B|) is valued in T -homomorphisms,
equivalently, if the corresponding family (fJ : I → C (AJ,BJ)) is a T -homomorphism
A⇒ B in the sense of 3.5.

4.5. Let A,B and f : V → C (|A|, |B|) be as in the preceding Definition. By definition,
f is valued in T -homomorphisms iff the diagram

T (J,K)

C (A−,BK)KJ

��

C (AJ,B−)JK // V (C (AJ,BJ),C (AJ,BK))

V (fJ ,1)
��

V (C (AK,BK),C (AJ,BK))
V (fK ,1)

// V (V,C (AJ,BK))

(4.5.i)

commutes for all J,K ∈ obT = obJ . Defining

φJK :=

Ç
T (J,K)⊗ C (|A|, |B|)

AJK⊗λAB
K−−−−−−−→ C (AJ,AK)⊗ C (AK,BK)

c−→ C (AJ,BK)

å
,

ψJK :=

Ç
T (J,K)⊗ C (|A|, |B|)

BJK⊗λAB
J−−−−−−−→ C (BJ,BK)⊗ C (AJ,BJ)

c−→ C (AJ,BK)

å
,
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where c denotes the relevant composition morphism, we find that f is valued in T -
homomorphisms if and only if the diagram

T (J,K)⊗ V

1⊗f
��

1⊗f // T (J,K)⊗ C (|A|, |B|)

ψJK

��
T (J,K)⊗ C (|A|, |B|)

φJK

// C (AJ,BK)

(4.5.ii)

commutes for every pair of objects J,K ∈ obJ , since the two composites in this
diagram are exactly the transposes of the two composites in (4.5.i). Transposing once
again, we therefore obtain the following:

Proposition 4.6. Let f : V → C (|A|, |B|) be as in 4.4, and for all J,K ∈ obJ , let

ΦJK ,ΨJK : C (|A|, |B|)→ V (T (J,K),C (AJ,BK)) (4.6.i)

be the transposes of the morphisms φJK , ψJK of 4.5. Then f is valued in T -homo-
morphisms iff the following equations hold:

ΦJK · f = ΨJK · f (J,K ∈ obJ ). (4.6.ii)

It now follows that the object of T -homomorphisms can be equivalently character-
ized as a certain pairwise equalizer (2.1) in V , as follows:

Theorem 4.7.

1. If V has equalizers and wide intersections of arbitrary (class-indexed) families
of strong subobjects, then the V -category of T -algebras T -AlgC exists for every
V -category C .

2. Given T -algebras A,B : T → C , the object of T -homomorphisms from A to B
is equivalently defined as a pairwise equalizer of the family of parallel pairs (4.6.i),
i.e., a strong subobject

T -AlgC (A,B) ↪→ C (|A|, |B|)

characterized by the property that an arbitrary morphism f : V → C (|A|, |B|)
factors through this subobject iff f is valued in T -homomorphisms (4.4).

Proof. Let us prove 2, as 1 then follows by the remarks in 2.1. By 4.4 and 4.6, V -
natural families fJ : V → C (AJ,BJ) (J ∈ T ) are in bijective correspondence with
morphisms f : V → C (|A|, |B|) that satisfy the equations (4.6.ii), where f = fI under
this bijection. With reference to the definition of ends in V given in [10, §2.1], the
result follows.

Remark 4.8. When T -AlgC exists, the V -functor |−| = EvI : T -AlgC → C is
strongly faithful (2.3) since its structure morphisms are exactly the strong monomor-
phisms |−|AB : T -AlgC (A,B) ↪→ C (|A|, |B|) of 4.7.

16



It will be convenient to introduce the following terminology for the sequel:

Definition 4.9. Given T -algebras A,B : T → C , a morphism f : V → T (|A|, |B|) in
V , and objects J,K ofJ , we say that f preserves T -operations of input arity J
and output arity K if the following equivalent conditions are satisfied: (i) Equation
(4.6.ii) holds; (ii) the diagram (4.5.ii) commutes; (iii) the diagram (4.5.i) commutes.

Note that f is valued in T -homomorphisms iff f preserves T -operations of every
input arity J and every output arity K. The following shows that we can fix K = I
and still obtain an equivalent condition:

Proposition 4.10. Let A,B : T → C be T -algebras, and let f : V → C (|A|, |B|).
Then f is valued in T -homomorphisms if and only if the following equations hold:

ΦJI · f = ΨJI · f (J ∈ obJ ).

Proof. Let us fix an object J of J . It suffices to assume that the diagram (4.5.i)
commutes for K = I and then show that the same diagram commutes for every K ∈
obJ . For each K ∈ obJ , let us denote the lower and upper composites in (4.5.i) by

pK , qK : T (J,K) −→ V (V,C (AJ,BK)) ,

respectively. By examining the diagram (4.5.i) and recalling from 4.4 that the mor-
phisms fK : V → C ((A◦τ)K, (B◦τ)K)) are extraordinarily V -natural in K ∈J op, we
deduce that the morphisms pK and qK are V -natural in K ∈J op—i.e., they constitute
V -natural transformations

p, q : T (J, τ−) =⇒ V (V,C (AJ, (B ◦ τ)−)) : J op −→ V .

By assumption pI = qI , whereas it suffices to show that p = q. But the V -functors
T (J, τ−), V (V,C (AJ, (B ◦ τ)−)) : J op → V are J op-algebras in V , so p and q are
J op-homomorphisms. By 4.1, we have a fully faithful V -functor EvI :J op-AlgV → V
that sends both p and q to pI = qI , so p = q.

Using the preceding Proposition, we obtain the following strengthened variant of
Theorem 4.7:

Theorem 4.11.

1. If V has equalizers and intersections of (obJ )-indexed families of strong sub-
objects, then the V -category of T -algebras T -AlgC exists for every V -category
C .

2. Given T -algebras A,B : T → C , the object of T -homomorphisms from A to B
is equivalently defined as a pairwise equalizer T -AlgC (A,B) ↪→ C (|A|, |B|) of the
(obJ )-indexed family of parallel pairs ΦJI ,ΨJI (J ∈ obJ ).
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5 Commutation and Kronecker products of operations

Let T be a J -theory for a given system of arities J ↪→ V . For each pair of objects
J,K ∈ obJ = obT we have V -functors

[J,−]`, [K,−]r : T → T (5.0.i)

that supply the left cotensors by J and the right cotensors by K, respectively (3.19).
On objects

[J,K]` = J ⊗K = [K,J ]r ,

so we have reason to ask whether the V -functors (5.0.i) might be the partial V -functors
[10, §1.4] of a V -functor in two variables

T ⊗T → T

given on objects by (J,K) 7→ J ⊗K. By [10, (1.21)], this is the case if and only if the
following composite morphisms are equal

T (J, J ′)T (K,K ′)
[K,−]r[J ′,−]`−−−−−−−−→ T (JK, J ′K)T (J ′K,J ′K ′)

c−→ T (JK, J ′K ′) (5.0.ii)

T (J, J ′)T (K,K ′)
[K′,−]r[J,−]`−−−−−−−−→ T (JK ′, J ′K ′)T (JK, JK ′)

c−→ T (JK, J ′K ′), (5.0.iii)

for all J, J ′,K,K ′, where we have written the monoidal product ⊗ in V as juxtaposition
and written c to denote the relevant composition morphisms. This leads us to the
following:

Definition 5.1.

1. For all J, J ′,K,K ′ ∈ obT = obJ , we define the first and second Kronecker
products

kJJ′KK′ , k̃JJ′KK′ : T (J, J ′)⊗T (K,K ′)→ T (J ⊗K,J ′ ⊗K ′)

as the composite morphisms (5.0.ii) and (5.0.iii), respectively.

2. Given morphisms µ : V → T (J, J ′) and ν : W → T (K,K ′) in V for objects
J, J ′,K,K ′ of J , we call the composites

µ ∗ ν =

Å
V ⊗W µ⊗ν−−→ T (J, J ′)⊗T (K,K ′)

k
JJ′KK′−−−−−→ T (J ⊗K,J ′ ⊗K ′)

ã
µ ∗̃ ν =

Ç
V ⊗W µ⊗ν−−→ T (J, J ′)⊗T (K,K ′)

k̃
JJ′KK′−−−−−→ T (J ⊗K,J ′ ⊗K ′)

å
the first and second Kronecker products of µ and ν, respectively. When
V = W = I, so that µ and ν are morphisms in the underlying ordinary category
T0 of T , the first and second Kronecker products of µ and ν correspond to evident
morphisms J ⊗K → J ′ ⊗K ′ in T0, for which we use the same notations µ ∗ ν
and µ ∗̃ ν.
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3. We write µ ⊥ ν and say that µ commutes with ν (in T ) if

µ ∗ ν = µ ∗̃ ν : V ⊗W → T (J ⊗K,J ′ ⊗K ′),

i.e., if the first and second Kronecker products of µ and ν are equal.

Remark 5.2. For any triple of objects A,B,C in V -category C we have composition
morphisms C (A,B)⊗C (B,C)→ C (A,C) and C (B,C)⊗C (A,B)→ C (A,C) that are
related to one another by composition with the symmetry in V . We shall call these the
diagrammatic and textual composition morphisms, respectively. Observe that the
first Kronecker product in aJ -theory T involves diagrammatic composition, whereas
the second Kronecker product involves textual composition. The repercussions of this
will be evident in Example 5.5 and implicit in Example 5.4.

Example 5.3 (Kronecker products of operations in Lawvere theories). For
the system of arities FinCard ↪→ Set, the Kronecker products defined in 5.1 can be
characterized in terms of the Kronecker products3 µ∗ν, µ ∗̃ν : j×k → j′×k′ of pairs of
individual morphisms µ : j → j′, ν : k → k′ in the Lawvere theory T , for which explicit
formulas are given in [21, §4]. Here, the objects j, j′, k, k′ are finite cardinals, and the
product j × k is the usual product of cardinals jk, with chosen product projections in
FinCard [21, 4.1].

Example 5.4 (The Kronecker product of matrices). Given a rig R, recall that
the Lawvere theory of left R-modules is the category T = MatR of R-matrices, whose
morphisms j → j′ are j′ × j-matrices. Letting X ∈ MatR(j, j′) = Rj

′×j and Y ∈
MatR(k, k′) = Rk

′×k, the first Kronecker product X ∗ Y is the classical Kronecker
product Y ⊗X of the matrices Y and X [21, 4.4], which is a certain j′k′ × jk-matrix
whose entries are products of entries drawn from Y and X. The second Kronecker
product X ∗̃Y is in general distinct, but coincides with Y ⊗X when R is commutative
[21, 4.6].

Example 5.5 (Multiplication in a ring and its opposite). Given a monoid R in
V (e.g. a ring if V = Ab), our convention is to consider R as a one-object V -category
R whose unique textual composition morphism (5.2) is the multiplication morphism
mR : R ⊗R→ R carried by R. R is then an {I}-theory (3.2), and its first Kronecker
product k has exactly one component, namely the diagrammatic composition morphism
carried by R, i.e. the multiplication morphism mRop : R ⊗ R → R carried by the
opposite monoid Rop. Contrastingly, the unique component of the second Kronecker
product k̃ for R is the multiplication morphism mR carried by R itself.

We shall employ the following lemma in order to establish a basic relation between
the first and second Kronecker products.

3At present, the term Kronecker product in this sense does not seem to be in widespread use in the
literature on algebraic theories, despite its use in the classical case of matrices (5.4). Nevertheless the closely
related tensor product of theories [24, §13] is often called the Kronecker product of theories, as distinguished
from the above Kronecker products of operations.
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Lemma 5.6. Given objects J,K,K ′ of J , we have a commutative diagram

T (K,K ′)

[J,−]r ((

[J,−]` // T (J ⊗K,J ⊗K ′)

T (τ(sJK),τ(sK′J ))

��
T (K ⊗ J,K ′ ⊗ J)

in which the right side is an isomorphism.

Proof. We have cotensors [J,K]` = J⊗K and [J,K]r = K⊗J of K by J in T , and by
3.19 the induced isomorphism [J,K]`

∼−→ [J,K]r is τ(sKJ) : J ⊗K → K ⊗ J . Similar
remarks apply with K ′ in place of K, so the result follows by 2.6 since s−1

KJ = sJK .

The first and second Kronecker products are related in the following way:

Proposition 5.7. Given objects J, J ′,K,K ′ of J , we have a commutative square

T (J, J ′)⊗T (K,K ′)

s

��

k̃
JJ′KK′ // T (J ⊗K,J ′ ⊗K ′)

T (τ(sJK),τ(sK′J′ ))
��

T (K,K ′)⊗T (J, J ′)
k
KK′JJ′

// T (K ⊗ J,K ′ ⊗ J ′)

whose left and right sides are isomorphisms. Here s denotes the symmetry isomorphism
in V .

Proof. Apply the definitions of k and k̃, together with the preceding Lemma.

Proposition 5.8. The commutation relation ⊥ is symmetric. I.e.,

µ⊥ν ⇐⇒ ν⊥µ .

Proof. With µ and ν as in 5.1, suppose that µ⊥ν. Then µ ∗ ν = µ ∗̃ ν : V ⊗W →
T (J ⊗K,J ′ ⊗K ′). Two separate applications of 5.7 show not only that

ν ∗̃ µ ∼= µ ∗ ν = µ ∗̃ ν ∼= ν ∗ µ

in the arrow category of V , but moreover that in fact the composite isomorphism is
an identity ν ∗̃ µ = ν ∗ µ.

Definition 5.9. A J -theory T is commutative if its first and second Kronecker
products are equal, i.e., if kJJ′KK′ = k̃JJ′KK′ for all objects J, J ′,K,K ′ of J . Equiv-
alently, T is commutative iff µ commutes with ν for all objects J, J ′,K,K ′ and all
morphisms µ : V → T (J, J ′) and ν : W → T (K,K ′) in V . Indeed, note that
kJJ′KK′ = 1T (J,J ′) ∗ 1T (K,K′) and k̃JJ′KK′ = 1T (J,J ′) ∗̃ 1T (K,K′).

Example 5.10 (R-modules and commutativity). The Lawvere theory MatR of
left R-modules for a rig R is commutative if and only if R is commutative [21, 4.6]. In
particular, the Lawvere theory Mat2 of semilattices (3.9) is commutative.
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Example 5.11 (Commutative rings as commutative {Z}-theories). By 5.5, com-
mutative monoids R in V are the same as commutative {I}-theories. In particular,
commutative rings are the same as commutative {Z}-theories when V = Ab.

Definition 5.12 (Commutation of morphisms of theories). A pair of morphisms
of J -theories A : T → U and B : S → U is said to commute if the associated
morphisms

AJJ ′ : T (J, J ′)→ U (J, J ′) BKK′ : S (K,K ′)→ U (K,K ′)

commute in U for all objects J, J ′,K,K ′ of J .

Remark 5.13. Observe that aJ -theory T is commutative iff the identity morphism
1T commutes with itself.

Example 5.14 (Commutation of ring homomorphisms). Let a : R → U and
b : S → U be morphisms of monoids in V , with corresponding morphisms of {I}-
theories A : R → U and B : S → U . Then A commutes with B if and only if
mU · (a⊗ b) = mUop · (a⊗ b) : R ⊗ S → U in the notation of 5.5. In particular, when
V = Ab, the homomorphisms of rings a and b commute in this sense if and only if
a(r)b(s) = b(s)a(r) in U for all r ∈ R and s ∈ S.

Proposition 5.15. Let P : P → T , Q : Q → T , and A : T → U be morphisms of
J -theories. Firstly, if P commutes with Q, then AP commutes with AQ. Secondly, if
A is a subtheory embedding and AP commutes with AQ, then P commutes with Q.

Proof. For all J, J ′,K,K ′ ∈ obJ , we have a diagram

T (J, J ′)T (K,K ′)
AJJ′AKK′ //

[K,−]r[J ′,−]`
��

U (J, J ′)U (K,K ′)

[K,−]r[J ′,−]`
��

T (JK, J ′K)T (J ′K,J ′K ′)

c
��

AJK,J′KAJ′K,J′K′ // U (JK, J ′K)U (J ′K,J ′K ′)

c
��

T (JK, J ′K ′)
AJK,J′K′

// U (JK, J ′K ′)

in which we have written the monoidal product ⊗ in V as juxtaposition. The upper
square commutes by (3.21.i) and (3.21.ii), and the lower square commutes by the V -
functoriality of A. But the composites on the left and right sides are the first Kronecker
products kT

JJ′KK′ and kU
JJ′KK′ for T and U , respectively. It suffices to show firstly that

if

(i) kT
JJ′KK′ · (PJJ ′ ⊗QKK′) = k̃

T
JJ′KK′ · (PJJ ′ ⊗QKK′)

then

(ii) kU
JJ′KK′ · ((AP )JJ ′ ⊗ (AQ)KK′) = k̃

U
JJ′KK′ · ((AP )JJ ′ ⊗ (AQ)KK′) ,
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and secondly that (ii) implies (i) when A is a subtheory embedding. But by the above
we now know that the left-hand side of (ii) is

kU
JJ′KK′ · (AJJ ′ ⊗AKK′) · (PJJ ′ ⊗QKK′) = AJK,J ′K′ · kT

JJ′KK′ · (PJJ ′ ⊗QKK′) ,

and we find similarly that the right-hand side of (ii) is

k̃
U
JJ′KK′ · (AJJ ′ ⊗AKK′) · (PJJ ′ ⊗QKK′) = AJK,J ′K′ · k̃

T
JJ′KK′ · (PJJ ′ ⊗QKK′) .

The result now follows.

Proposition 5.16. Any subtheory T of a commutative J -theory U is commutative.

Proof. Letting A : T ↪→ U be a subtheory embedding, the commutativity of U
immediately entails that A commutes with itself, but since A = A ◦ 1T and A is a
subtheory embedding, it follows from 5.15 that 1T commutes with itself.

Example 5.17 (Affine and convex spaces). The Lawvere theory Mataff
R of R-affine

spaces (3.13) for a commutative ring or rig R is commutative, as it is a subtheory of the
commutative theory MatR of R-modules (5.10). In particular, the theory of R-convex
spaces Mataff

R+
(3.14) is commutative, as is the theory of unbounded join semilattices

Mataff
2 (3.15).

6 Commutation via T -homomorphisms

In the present section we establish a link between commutation and the notion of T -
homomorphism. The connection between these notions will play a fundamental role
in our study of commutants in subsequent sections. We begin with some technical
lemmas, as follows.

Lemma 6.1. For each object J of J , the V -functors

[J,−]`, [J,−]r : J op →J op

are simply J ⊗ (−) and (−)⊗ J , respectively.

Proof. The left J -cotensor counits γKJ = Coev : J →J op(J ⊗K,K) = V (K,J ⊗K)
(3.19) are (extraordinarily) V -natural in K ∈ J op with respect to the V -functor
J ⊗ (−). But by 2.4, [J,−]` is the unique V -endofunctor on J op that is given on
objects by K 7→ J ⊗K and makes the γKJ V -natural in K ∈J op, so [J,−]` = J ⊗ (−).
By a similar argument, [J,−]r = (−)⊗ J .

Lemma 6.2. For all J,K,K ′ ∈ obJ , the diagram

J

γKJ
��

γJ // T (J, I)

[K,−]r
��

T (J ⊗K,K)
T (1,τ(`K))

// T (J ⊗K, I ⊗K)
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commutes, where γJ is the counit for the designated cotensor [J, I] = J in T , γKJ is
the counit for the left cotensor [J,K]` = J ⊗K in T , and τ(`K) : K

∼−→ I ⊗K is the
isomorphism in T obtained from the isomorphism `K : I ⊗K → K in J by applying
τ :J op → T .

Proof. By 3.10 and 3.20, τ strictly preserves the designated cotensors [J, I] = J as well
as all the left and rightJ -cotensors, so we readily reduce to the case of T =J op. In
this case, 6.1 entails that the diagram in question is simply

J

Coev
��

γJ // V (I, J)

(−)⊗K
��

V (K,J ⊗K)
V (`,1)

// V (I ⊗K,J ⊗K)

recalling that γJ here is the transpose of rJ : J ⊗ I → J . Upon taking transposes of
the two composites in this diagram, we obtain the morphisms

J ⊗ `K , rJ ⊗K : J ⊗ I ⊗K → J ⊗K

which are equal, by one of the axioms for monoidal categories (MC2 of [6, II.1]).

Lemma 6.3. Let A : T → U and B : S → U be morphisms of J -theories, and let
J, J ′,K,K ′ be objects of J . Write υ :J op → U for the unique morphism of theories.
Then the following conditions are equivalent:

1. AJJ ′ : T (J, J ′)→ U (J, J ′) commutes with BKK′ : S (K,K ′)→ U (K,K ′).

2. The composite

S (K,K ′)
BKK′−−−−→ U (K,K ′)

θKK′−−−→ U (I ⊗K, I ⊗K ′)

preserves T -operations of input arity J and output arity J ′ (4.9), where the
objects I ⊗ K and I ⊗ K ′ of U are considered here as the carriers of the T -
algebras [K,A]r, [K

′, A]r : T → U (3.21), respectively, and θKK′ is defined as
the isomorphism U (υ(`−1

K ), υ(`K′)).

Proof. Recall from 3.21 that the pointwise right cotensor [K,A]r of A in T -AlgU is
the composite [K,−]r ◦ A of A with the V -functor [K,−]r : U → U , and similarly
for [K ′, A]. Therefore it follows immediately from the definition that AJJ ′ and BKK′

commute if and only if the diagram

T (J, J ′)S (K,K ′)

1⊗BKK′
��

1⊗BKK′ // T (J, J ′)U (K,K ′)

[K,A]r[J ′,−]`
��

T (J, J ′)U (K,K ′)

[K′,A]r[J,−]`
��

U (JK, J ′K)U (J ′K,J ′K ′)

c

��
U(JK ′, J ′K ′)U (JK, JK ′) c

// U (JK, J ′K ′)

(6.3.i)
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commutes, where we have omitted some subscripts and written ⊗ as juxtaposition.
On the other hand, condition 2 is (by definition) equivalent to the commutativity

of a diagram of the form (4.5.ii), and one finds that this diagram is almost exactly the
same as (6.3.i), except that one must substitute the composites

U (K,K ′)
θKK′−−−→ U (IK, IK ′)

λ
[K,A]r [K

′,A]r
J−−−−−−−−−→ U (JK, JK ′) (6.3.ii)

U (K,K ′)
θKK′−−−→ U (IK, IK ′)

λ
[K,A]r [K

′,A]r
J′−−−−−−−−−→ U (J ′K,J ′K ′)

in place of the morphisms [J,−]` and [J ′,−]` that appear in (6.3.i), noting that
[K,A]r(I) = IK, [K,A]r(J) = JK, and similarly with J ′,K ′ in place of J,K. Here

the morphisms λ
[K,A]r[K′,A]r
J , λ

[K,A]r[K′,A]r
J ′ are as defined in 4.1.

Hence it suffices to show that the composite (6.3.ii) equals [J,−]` for all objects
J,K,K ′ of J . This we will accomplish through a suitable invocation of 2.7. First
observe that since [K,A]r = [K,−]r ◦A and [K,A]r is a T -algebra, the composite

γ̃KJ :=

Å
J

γJ−→ T (J, I)
AJI−−→ U (J, I)

([K,−]r)JI−−−−−−→ U (JK, IK)

ã
(6.3.iii)

presents JK as a cotensor [J, IK] of IK by J in U . But [J,K]` = JK is also a cotensor
of K ∼= IK by J in U , so the isomorphism υ(`K) : K → IK induces an isomorphism
[J, υ(`K)] : [J,K]` → [J, IK] = JK.

We claim that this induced isomorphism [J, υ(`K)] is the identity arrow on JK.
Indeed, the counit (6.3.iii) is equally the composite

γ̃KJ =

Å
J

γJ−→ U (J, I)
([K,−]r)JI−−−−−−→ U (JK, IK)

ã
since A strictly preserves the designated cotensors [J, I] = J , and by 6.2 this composite
can be re-expressed as

γ̃KJ =

Ç
J

γKJ−−→ U (JK,K)
U (1,υ(`K))−−−−−−−→ U (JK, IK)

å
. (6.3.iv)

Similar remarks apply with K ′ in place of K, and by definition the morphism

λ
[K,A]r[K′,A]r
J appearing in (6.3.ii) is the morphism [J,−] : U (IK, IK ′)→ U (JK, JK ′)

induced by the cotensors [J, IK] = JK and [J, IK ′] = JK ′. We can now invoke 2.7 to
deduce that the composite (6.3.ii) equals [J,−]`, as needed.

Theorem 6.4. Let A : T → U and B : S → U be morphisms of J -theories. Then
the following are equivalent:

1. A commutes with B.

2. For all objects K,K ′ of J , BKK′ : S (K,K ′) → U (K,K ′) is valued in T -
homomorphisms (4.4) between the pointwise designated cotensors [K,A] and [K ′, A]
of the T -algebra A (3.21).
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Proof. By 6.3 we know that 1 is equivalent to the statement that for all K,K ′ ∈ obJ ,
θKK′ · BKK′ is valued in T -homomorphisms from [K,A]r to [K ′, A]r. But we have
isomorphisms of T -algebras α : [K,A] → [K,A]r and β : [K ′, A] → [K ′, A]r whose
underlying morphisms |α| and |β| in U are the canonical isomorphisms [K, I]→ [K, I]r
and [K ′, I] → [K ′, I]r between the designated and right cotensors of I by K and
K ′ (3.19). It is straightforward to show that these isomorphisms in U are υ(`K) :
K → I ⊗ K and υ(`K′) : K ′ → I ⊗ K ′, respectively, in the notation of 6.3, so since
θKK′ = U (υ(`−1

K ), υ(`K′)) = U (|α|−1, |β|) the result now follows.

7 Commutants

Let T and U denote J -theories for which the V -category T -AlgU of T -algebras in
U exists. Recall that any morphism of J -theories A : T → U is, in particular, a
T -algebra in U .

Definition 7.1. Given a morphism of J -theories A : T → U , the commutant T ⊥A
of T with respect to A, also called the commutant of A, is the full J -theory of A in
T -AlgU . In symbols,

T ⊥A = (T -AlgU )A .

Explicitly,
T ⊥A (J,K) = T -AlgU ([J,A], [K,A]) (J,K ∈ obJ ), (7.1.i)

where [J,A], [K,A] : T → U are the cotensors in T -AlgU (3.21). Even if T -AlgU

does not exist, we can clearly still define the commutant T ⊥A as soon as the relevant
objects of T -homomorphisms (7.1.i) exist, in which case we say that the commutant
exists.

Theorem 7.2. If V has equalizers and intersections of (obJ )-indexed families of
strong subobjects, then the commutant of any morphism of J -theories exists.

Proof. This follows immediately from 4.11.

Definition 7.3. A J -theory over U is a J -theory T equipped with a morphism
T → U . Given a J -theory T over U , we denote the commutant of the associated
morphism T → U as simply T ⊥ and call it the commutant of T . Similarly, given
J -theories T and S over U , we say that T and S commute if their associated
morphisms to U commute, in which case we write T ⊥ S .

Remark 7.4. It is helpful to consider the case of a subtheory T ↪→ U , in which case
we also call T ⊥ the commutant of T in U . Fittingly, T ⊥ is always a subtheory of
U , even when T is not:

Proposition 7.5. Given a morphism of J -theories A : T → U , the commutant T ⊥A
is a strong subtheory of U .

Proof. Let ι denote the composite V -functor

T ⊥A = (T -AlgU )A
i
� T -AlgU

|−|−−→ U
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whose first factor i is the canonical identity-on-homs V -functor (3.16) and whose second
factor |−| is the ‘forgetful’ V -functor (3.5). Taking the J -cotensors in (7.1.i) to be
the pointwise designated cotensors (3.21), it follows that |−| strictly preserves the
designated J -cotensors. But i is a normal T ⊥A -algebra (3.16), so the composite ι is a
normal T ⊥A -algebra with carrier ι(I) = |A| = I, equivalently, a morphism ofJ -theories
(3.10). Further, ι is strongly faithful since |−| is strongly faithful (4.8).

Example 7.6 (The commutant or centralizer of a subring). Let a : R→ U be a
morphism of monoids in V , with corresponding morphism of {I}-theories A : R → U .
Then the commutant of A is a submonoid R⊥a ↪→ U , namely the equalizer of the pair
of morphisms ΨII ,ΦII : U → V (R,U) (in the notation of 4.6.i) obtained as transposes
of the composites mU · (a⊗ 1U ), mUop · (a⊗ 1U ) : R⊗U → U in the notation of 5.5,
5.14. When V = Ab, so that a is a homomorphism of rings, R⊥a ⊆ U is the familiar
centralizer (or commutant) of the image a(R) ⊆ U of a.

Example 7.7 (Commutants for Lawvere theories). When V = Set and J =
FinCard we recover the notion of commutant for Lawvere theories that is studied in
[21] and is due to Wraith [24], who defined a similar notion of commutant for Linton’s
equational theories [16] (i.e. J -theories with J = V = Set). By [21, 5.6, 5.9], the
commutant of a subtheory T of a Lawvere theory U is the subtheory T ⊥ ↪→ U
consisting of those morphisms µ of U with the property that µ commutes with every
morphism ν of T .

The link that was established in 6.4 between commutation and the notion of T -
homomorphism now enables us to make the connection between commutants and com-
mutation in our general context:

Theorem 7.8. Let A : T → U and B : S → U be morphisms of J -theories. Then
A and B commute if and only if B factors through the commutant T ⊥A ↪→ U of A.

Proof. B factors through T ⊥A ↪→ U if and only if each of its components BKK′ factors
through the subobject

T ⊥A (K,K ′) = T -AlgU ([K,A], [K ′, A]) ↪→ U (K,K ′) , (7.8.i)

where [K,A] and [K ′, A] are the pointwise designated cotensors. This holds if and only
if each component BKK′ is valued in T -homomorphisms from [K,A] to [K ′, A], so the
result follows from 6.4.

Corollary 7.9. Given aJ -theory T over U , the commutant T ⊥ ↪→ U is the largest
subtheory of U that commutes with T .

Proof. By the preceding theorem, a subtheory S ↪→ U commutes with T if and only
if S is contained in T ⊥, i.e., iff S ↪→ U factors through T ⊥ ↪→ U . In particular,
T ⊥ ↪→ U therefore commutes with T .

Definition 7.10. Given a T -algebra A : T → C , the commutant T ⊥A of A is defined
as the commutant of the associated morphism of J -theories A : T → CA (where CA
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is the full J -theory of A in C , 3.16). Equivalently, T ⊥A is the full J -theory of A in
T -AlgC , provided that the latter V -category exists. By 7.5, T ⊥A is a strong subtheory
of CA. By 3.16 we have a fully faithful CA-algebra CA� C with carrier |A|, and so the
composite T ⊥A ↪→ CA → C is a T ⊥A -algebra that we call the canonical T ⊥A -algebra.
Observe that the canonical T ⊥A -algebra has the same carrier as A itself.

Example 7.11 (The commutant of an R-module when V = Ab). Let R be a ring
and M a left R-module M . We can view M equally as an R-algebra for the {Z}-theory
R corresponding to R, and then the commutant R⊥M := R⊥M of M is the commutant of
the morphism of rings R→ EndZ(M) determined by M , where EndZ(M) denotes the
ring of endomorphisms of the abelian group underlying M . Hence R⊥M is the subring
EndR(M) of EndZ(M) consisting of all left R-linear maps.

Example 7.12 (The Lawvere theory of left R-modules). Let R be a ring or
rig, and let T = MatR be the Lawvere theory of left R-modules (3.7). R itself is a
left R-module, equivalently, a normal T -algebra, and the corresponding morphism of
theories R : T → SetR (3.16) presents T as a theory over the full finitary theory SetR
of R in Set. It is proved in [21, 5.14] that the commutant T ⊥ of T = MatR over SetR
is (isomorphic to) the theory MatRop of right R-modules.

Remark 7.13. Generalizing Lawvere’s notion of the algebraic structure of a set-valued
functor U : B → Set [14, III.1], we can define theJ -algebraic structure Str(U) of a
V -functor U : B → V as the full J -theory of U in the V -functor V -category [B,V ],
if the latter exists; more generally we, can still similarly define Str(U) as soon as the
objects of V -natural transformations

Str(U)(J,K) = [B,V ]([J, U ], [K,U ]) (J,K ∈ obJ )

exist, where [J, U ] denotes the pointwise cotensor. The case whereJ = V was studied
by Dubuc [4]. Lawvere showed that the structure functor Str is left adjoint to seman-
tics—the passage from a theory to its category of algebras, equipped with its canonical
functor to Set—and Dubuc established an analogous result in the J = V case.

Note that the notion of commutant intersects with the above notion ofJ -algebraic
structure: Indeed, the commutant of a V -valued T -algebra A : T → V is equally
the J -algebraic structure Str(A) of A. On the other hand, the notion of commutant
applies to T -algebras A : T → C valued in an arbitrary V -category C , rather than
just C = V . Clearly one can immediately generalize the above notion of J -algebraic
structure to apply to any such C , but the relation of structure and semantics has
not been studied in this context within the literature4. Furthermore, the theory of
commutants has a different character in several respects, as is particularly evident in
§8. It is also notable that one has strong general existence results for the commutant of
a morphism ofJ -theories as soon as certain wide intersections and equalizers exist in
V (7.2), and in the case of a V -valued T -algebra A we shall establish below a further
result to effect that the commutant T ⊥A = Str(A) always exists for many systems of
arities J (10.15) including J = V when V has equalizers.

4But see Linton’s related work [17] in the non-enriched context.
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Suppose T is a J -theory for which the V -category of T -algebras in T exists.

Definition 7.14. The centre of the J -theory T is the commutant of T in itself,
i.e. the commutant Z(T ) := T ⊥1T

of the identity morphism on T . A morphism of
J -theories A : S → T is central if it commutes with the identity morphism on
T . Hence A is central iff A factors through the centre Z(T ) ↪→ T . Note that T is
commutative if and only if it is isomorphic to its centre (as a subtheory of T ).

Proposition 7.15. The unique morphism τ : J op → T is central. Therefore, the
commutant of τ is isomorphic to T .

Proof. There is a unique morphism of J -theories z : J op → Z(T ), and since the
subtheory embedding ι : Z(T ) ↪→ T is a morphism of J -theories, we have ι ◦ z =
τ .

8 The self-adjoint commutant functor

Let U be a J -theory for which the commutant of each J -theory over U exists. For
example, this is true for everyJ -theory U as soon as V has equalizers and intersections
of (obJ )-indexed families of strong subobjects (7.2).

Definition 8.1. Let ThJ denote the category of allJ -theories and their morphisms.
We shall denote by ThJ /U the category of J -theories over U , i.e. the slice
category over U in ThJ . We denote by SubThJ (U ) the full subcategory of ThJ /U
consisting of all subtheories of U .

Remark 8.2. Observe that for theories T and S over U , if S is a subtheory of U
then there is at most one morphism T → S in the category over J -theories over
U . In particular, SubThJ (U ) is therefore a preordered set. Further, we obtain the
following corollary to 7.8:

Proposition 8.3. Let S and T be J -theories over U . Then S and T commute if
and only if there is a (necessarily unique) morphism S → T ⊥ in ThJ /U .

Corollary 8.4. For each J -theory T over U , there is a unique morphism

ηT : T → T ⊥⊥

in ThJ /U .

Proof. Since T and T ⊥ commute, this follows from the preceding Proposition.

Corollary 8.5. There is a unique functor (−)⊥ : (ThJ /U )op → ThJ /U that sends
each J -theory T over U to its commutant T ⊥.

Proof. Given a morphism M : S → T in ThJ /U , we obtain a composite morphism

S
M−→ T

ηT−−→ T ⊥⊥
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in ThJ /U , so by 8.3 we deduce that S commutes with T ⊥, so T ⊥ commutes with
S and hence, by 8.3 again, there is a unique morphism

M⊥ : T ⊥ → S ⊥

in ThJ /U . In other words, T ⊥ 6 S ⊥ in the preorder SubThJ (U ), and the result
follows.

Theorem 8.6. There is an adjunction

ThJ /U
(−)⊥
> 00 (ThJ /U )op

(−)⊥
qq

between the category of J -theories over U and its opposite, in which both the left
and right adjoints are given by the same contravariant functor (−)⊥, which sends a
J -theory T over U to its commutant T ⊥.

Proof. It suffices to show that (T ⊥, ηT : T → T ⊥⊥) is a universal arrow for the
putative right adjoint (−)⊥. Indeed, given a morphism M : T → S ⊥ in ThJ /U ,
we know by 8.3 that T ⊥ S , so S ⊥ T and hence there is a unique morphism
M̃ : S → T ⊥ in ThJ /U . Further, M̃⊥ · ηT and M are both morphisms T → S ⊥

in ThJ /U and so, by 8.2, are equal.

Recall that the term Galois connection is an alias for the notion of adjunction
for preordered sets, especially when one of the two preorders involved is presented as
a dual.

Corollary 8.7. Suppose that the system of arities J ↪→ V admits V -categories of
algebras, and let U be a J -theory. Then there is a Galois connection

SubThJ (U )
(−)⊥
> 00 SubThJ (U )op

(−)⊥
pp

on the preordered set SubThJ (U ) of subtheories of U , given by taking the commutant
T ⊥ of each subtheory T of U .

Definition 8.8. Let T be a J -theory over U .

1. T is said to be saturated if T ⊥⊥ ∼= T as theories over U .

2. T is said to be balanced if T ⊥ ∼= T as theories over U .

Remark 8.9. The following are immediate consequences of the definitions:

1. A saturated J -theory T over U is necessarily a subtheory of U .

2. Any balanced J -theory T over U is necessarily saturated.

Hence we refer to saturated (resp. balanced)J -theories over U equally as saturated
subtheories (resp. balanced subtheories) of U .
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Remark 8.10. We say that a subtheory T of U is commutative if T is commutative
as aJ -theory. Observe that by 5.15, a subtheory T of U is commutative if and only
if the given embedding T ↪→ U commutes with itself, equivalently, iff T 6 T ⊥ as
subtheories of U . Hence we deduce the following:

Proposition 8.11. Any balanced J -theory T over U is necessarily a commutative,
saturated subtheory of U .

Example 8.12 (Maximal commutative subrings as balanced subtheories). Let
R be a subring of a ring U . Taking V = Ab, let U denote the {Z}-theory corresponding
to U . Then the subtheory R ↪→ U corresponding to R is balanced if and only if R
is equal to its own centralizer CU (R) in U . It is well-known (and easy to prove) that
this is the case if and only if R is a maximal commutative subring of U , i.e. a maximal
element of the poset of commutative subrings of U under inclusion.

Example 8.13 (Double centralizers of left R-modules). LetM be a leftR-module
for a ring R. Taking V = Ab and letting R denote the {Z}-theory corresponding to R,
the R-algebra M determines a morphism of {Z}-theories R → AbM , which is simply
the canonical ring homomorphism R → EndZ(M) induced by M . Thus regarding R
as a {Z}-theory over AbM , we deduce by 7.11 that the double commutant R⊥⊥ over
AbM is precisely the double centralizer of M in the sense of [3], i.e. the centralizer of
the subring EndR(M) ↪→ EndZ(M). Hence R is saturated over AbM if and only if
the left R-module M is faithful and has the double centralizer property in the sense of
[3]. The reader is warned that our use of the term balanced for J -theories does not
accord with the use of this term in ring theory, where it is sometimes used to refer to
R-modules with the double centralizer property.

Example 8.14 (The opposite ring as a commutant). Letting R be a ring and
taking V = Ab, we can regard R as a {Z}-theory. The endomorphism ring EndZ(R) is
the full {Z}-theory AbR of R in Ab. Since R is a left R-module, we have a canonical
ring homomorphism R→ EndZ(R). Thus regarding R as a {Z}-theory over EndZ(R),
the commutant R⊥ of R is the subring EndR(R) ↪→ EndZ(R). On the other hand, since
R is also a right R-module we have an injective ring homomorphism Rop → EndZ(R)
whose image is precisely EndR(R) = R⊥, so that R⊥ ∼= Rop as {Z}-theories over
EndZ(R). Applying this result also to the ring Rop, we find that R is necessarily
saturated when regarded as a {Z}-theory over EndZ(R). Moreover, we claim that R is
a balanced {Z}-theory over EndZ(R) if and only if R is commutative. Indeed, if R is
a commutative ring then R = Rop ∼= R⊥ as {Z}-theories over EndZ(R). Conversely, if
R is a balanced {Z}-theory over EndZ(R) then R is a commutative ring by 8.11 and
5.11.

Example 8.15 (The Lawvere theories of left and right R-modules). Any ring
or rig R can be viewed as a left R-module and so determines a morphism MatR → SetR
from the Lawvere theory of left R-modules MatR into the full finitary theory SetR of
R in Set. R is also a right R-module (equivalently, a left Rop-module) and hence also
determines a morphism MatRop → SetR. It is proved in [21, 6.5] that MatR and MatRop

are commutants of one another over SetR. In particular, MatR is a saturated subtheory
of SetR, and this subtheory is balanced if and only if R is commutative [21, 6.5].
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Example 8.16. By 8.15, the Lawvere theory of join semilattices Mat2 (3.9) is a bal-
anced subtheory of the Lawvere theory of Boolean algebras Set2 (3.18).

Example 8.17 (A non-saturated subtheory). Let k be an infinite integral domain,
and let T be the Lawvere theory of commutative k-algebras (3.8). k itself is a com-
mutative k-algebra and so determines a morphism of Lawvere theories T → Setk into
the full finitary theory Setk of k in Set. This morphism presents T as a subtheory of
Setk, but this subtheory is not saturated [21, 6.7]. Indeed, T ⊥ ∼= FinCardop over Setk
and consequently T ⊥⊥ ∼= Setk 6∼= T [21, 6.7].

Example 8.18 (The theories of affine and convex spaces). Let R be ring or
rig. By definition, a pointed right R-module is a right R-module M equipped with an
arbitrary chosen element ∗ ∈M . The category of pointed right R-modules (with right
R-linear maps preserving the chosen points) is isomorphic to the category of normal
T -algebras T -Alg! for a certain Lawvere theory T = Mat∗Rop [21, 7.1]. R itself is a
pointed right R-module with chosen point 1 ∈ R and so determines a morphism of
Lawvere theories Mat∗Rop → SetR into the full finitary theory of R in Set. Similarly
considering the theory of left R-affine spaces Mataff

R (3.13) as a theory over SetR via
the morphism Mataff

R → SetR determined by the left R-affine space R, it is proved in
[21, 7.2] that Mataff

R is the commutant of Mat∗Rop over SetR. In particular, Mataff
R is

therefore a saturated subtheory of SetR. Further, it is proved in [21, 9.3] that if R
is a ring then the theories Mataff

R and Mat∗Rop are commutants of one another over
SetR. However for rigs R that are not rings this need not hold; for example, when R
is the rig 2 of 3.15, the commutant over Set2 of the theory Mataff

2 of unbounded join
semilattices is the theory of join semilattices with top element [21, 8.2]. Nevertheless,
for the commutative rig R+ of non-negative reals, the theory Mataff

R+
of R-convex spaces

(3.14) and the theory Mat∗R+
of pointed R+-modules are commutants of one another

over SetR+ [21, 10.20, 10.21].

9 The reduction to single-output operations

By definition, morphisms of theories A,B commute iff AJJ ′ , BKK′ commute for all
objects J, J ′,K,K ′ ofJ , but we now show that we can fix J ′ = I and K ′ = I and still
obtain an equivalent condition.

Lemma 9.1. Let A : T → U and B : S → U be morphisms of J -theories, and let
K,K ′ ∈ obJ . Then the following are equivalent:

1. For all J, J ′ ∈ obJ , AJJ ′ ⊥ BKK′.
2. For all J ∈ obJ , AJI ⊥ BKK′.

Proof. By 6.3, 1 holds if and only if θKK′ · BKK′ is valued in T -homomorphisms
from [K,A]r to [K ′, A]r, and by 4.10 this is equivalent to the statement that for every
J ∈ obJ , θKK′ · BKK′ preserves T -operations of input arity J and output arity I.
But by another application of 6.3 this is equivalent to 2.

Theorem 9.2. Let A : T → U and B : S → U be morphisms of J -theories. Then
A and B commute if and only if AJI commutes with BKI for all objects J,K of J .
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Proof. By 9.1, A commutes with B if and only if AJI ⊥ BKK′ for all J,K,K ′ ∈ obJ .
By now using the symmetry of ⊥ and exchanging the roles of A and B, we can invoke
9.1 again to deduce that A commutes with B if and only if BKI ⊥ AJI for all J,K ∈
obJ .

Whereas commutation of morphisms of theories is defined in terms of the Kronecker
products kJJ′KK′ and k̃JJ′KK′ , the preceding theorem entails that just the Kronecker
products with J ′ = I = K ′ suffice, and the form of these can be simplified considerably,
as follows.

Definition 9.3. Given a J -theory T and objects J,K of J , the first and second
Kronecker products of single-output operations of arities J and K are defined
as

kJK :=

Å
T (J, I)⊗T (K, I)

[K,−]JI⊗1−−−−−−→ T (J ⊗K,K)⊗T (K, I)
c−→ T (J ⊗K, I)

ã
,

k̃JK :=

Å
T (J, I)⊗T (K, I)

1⊗[J,−]KI−−−−−−→ T (J, I)⊗T (J ⊗K,J)
c−→ T (J ⊗K, I)

ã
,

where c denotes the relevant composition morphism, [K,−]JI denotes the morphism
induced by the cotensors [K,J ]r = J ⊗K and [K, I] = K per 2.4, and [J,−]KI denotes
the morphism induced by the cotensors [J,K]` = J ⊗K and [J, I] = J .

Proposition 9.4. Given a J -theory (T , τ), the diagram

T (J, I)⊗T (K, I)

kJK ))

kJIKI // T (J ⊗K, I ⊗ I)

T (1,τ(`−1
I ))o

��
T (J ⊗K, I)

commutes, where the right side is the isomorphism determined by the canonical iso-
morphism `−1

I = r−1
I : I → I ⊗ I in J . Further, the similar diagram obtained by

substituting k̃ for k also commutes.

Proof. Observe that the given diagram is the same as the periphery of the following
diagram

T (J, I)T (K, I)

[K,−]⊗1 ++

[K,−]r[I,−]` // T (JK, IK)T (IK, II)

T (1,τ(`−1))T (τ(`),τ(`−1))
��

c // T (JK, II)

T (1,τ(`−1))
��

T (JK,K)T (K, I) c
// T (JK, I)

which commutes, since the rightmost square clearly commutes and the commutativity
of the leftmost square follows from the following claims:

1. [I,−]` : T (K, I)→ T (IK, II) is equal to T (τ(`−1
K ), τ(`I)).
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2. The following diagram commutes.

T (J, I)

[K,−] &&

[K,−]r// T (JK, IK)

T (1,τ(`−1
K ))

��
T (JK,K)

In order to prove 1, observe that we have two cotensors [I,K] = K and [I,K]` = IK
of the same object K by I in T , and we claim that the induced isomorphism [I,K]→
[I,K]` is simply τ(`K) : K → IK. Indeed, the counit for the cotensor [I,K]` = IK is
defined as the composite

I
Coev−−−→ V (K, IK) =J op(IK,K)

τIK,K−−−−→ T (IK,K) , (9.4.i)

but one readily verifies that the coevaluation morphism Coev here is simply the mor-
phism [`−1

K ] that picks out the canonical isomorphism `−1
K : K → IK. Hence the counit

(9.4.i) for [I,K]` is [τ(`−1
K )], whereas the counit for [I,K] = K is the identity arrow

[1K ] : I → T (K,K), so the morphism T (τ(`K),K) : T (IK,K) → T (K,K) com-
mutes with these cotensor counits, proving that τ(`K) is the induced isomorphism of
cotensors, as needed. Similarly, we have two cotensors [I, I] = I and [I, I]` = II of
I by I in T , and, by the same reasoning, the induced isomorphism [I, I] → [I, I]` is
τ(`I). We can now invoke 2.6 to deduce that 1 holds, using the fact that the morphism
[I,−] : T (K, I) → T (K, I) induced by the cotensors [I,K] = K and [I, I] = I is the
identity morphism.

To prove 2, note that we have a pair of cotensors [K, I]r = IK and [K, I] = K of the
same object I of T by the object K of V , and we claim that the induced isomorphism
[K, I]r → [K, I] is τ(`−1

K ) : IK → K. Indeed, for this it suffices to show that the
following diagram commutes

K

γK
��

γ′IK // T (IK, I)

T (K, I)
T (τ(`−1

K ),1)

88

where γK and γ′IK denote the respective cotensor counits, and this follows readily from
the definition of γK and the characterization of γ′IK given at (3.19.i). Hence we can
now invoke 2.6 with C = T , V = K, D1 = J , D2 = I, [V,D1]0 = [K,J ]r = [V,D1]1,
[V,D2]0 = [K, I]r, and [V,D2]1 = K to deduce that 2 holds.

Corollary 9.5. Let T be J -theory, let J,K be objects of J , and let µ : V → T (J, I)
and ν : W → T (K, I) be morphisms in V . Then µ commutes with ν if and only if

kJK · (µ⊗ ν) = k̃JK · (µ⊗ ν) .

This immediately entails the following corollary to 9.2:

Theorem 9.6. Morphisms of J -theories A : T → U and B : S → U commute if
and only if kJK · (AJI ⊗BKI) = k̃JK · (AJI ⊗BKI) for all objects J,K of J .
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10 Commutants forJ -ary monads on V

10.1 (Correspondence between J -theories and J -ary monads). Given a sys-
tem of arities j : J ↪→ V , we say that a V -monad T = (T, η, µ) on V is a J -ary
V -monad [20, §11] if T preserves (V -enriched) left Kan extensions along j. For ex-
ample, for the system of arities J = FinCard ↪→ Set = V , we recover the usual
notion of finitary monad [20, 11.3]. It is shown in [20, §11] that there is an equivalence
between J -theories and J -ary V -monads on V [20, 11.8] as soon as the system of
arities j :J ↪→ V is eleutheric [20, §7]. The latter condition on j means that every
V -functor J → V has a left Kan extension along j and that, furthermore, these Kan
extensions are preserved by the V -functors V (J,−) : V → V associated to objects J
ofJ . Each of the systems of arities listed in Example 3.2(a)-(d) is eleutheric [20, 7.5],
and the system of arities in 3.2(e) is eleutheric for a broad class of categories V [20,
7.5 #5] that includes every countably cocomplete cartesian closed category V . For the
remainder of this section we shall fix an eleutheric system of arities j :J ↪→ V . The
precise result relating J -theories and J -ary monads is then as follows:

Theorem 10.2 ([20, 11.8]). There is an equivalence

ThJ ' MndJ (V )

between the category ThJ of J -theories and the full subcategory MndJ (V ) of the cat-
egory of V -monads on V with objects all J -ary V -monads.

10.3. Explicitly, given a J -theory T one obtains a V -monad T = m(T ) whose
underlying endo-V -functor T : V → V is the left Kan extension of

TI := T (τ−, I) :J → V (10.3.i)

along j : J ↪→ V , where τ : J op → T is the identity-on-objects V -functor as-
sociated to T . Given a morphism A : T → U between J -theories (T , τ) and
(U , υ), the associated morphism m(A) : m(T ) → m(U ) is obtained by applying
Lanj : V -CAT(J ,V ) → V -CAT(V ,V ) to the V -natural transformation Aτ−,I :
T (τ−, I) → U (Aτ−, AI) = U (υ−, I) , recalling that A ◦ τ = υ since A is a mor-
phism of J -theories.

In the other direction, given a J -ary V -monad T on V , let V T denote the Kleisli
V -category for T and let J T denote its full sub-V -category on the objects of J .
The J -theory t(T) associated to T is then the opposite J op

T , which we therefore call
the Kleisli J -theory for T. These assignments extend to mutually pseudo-inverse
functors m, t between ThJ and MndJ (V ).

In particular, if we take J = V and j = 1V then 10.2 yields an equivalence
ThV ' MndV (V ) = MndV -CAT(V ) between V -theories and arbitrary V -monads on V ,
since each of the latter is V -ary, trivially.

A notion of commutation of morphisms of arbitrary V -monads on V was introduced
by Kock in the paper [13] of 1970, and we shall now reconcile that notion with the
notion of commutation of morphisms of J -theories. Kock had defined the notion of

34



commutative monad in [12], observing that for any V -monad T = (T, η, µ) on V one
can define for each pair of objects V,W of V a pair of canonical morphisms

κTVW , κ̃
T
VW : TV ⊗ TW → T (V ⊗W )

(see [12, 2.1, 3.1]) that we shall call the first and second Kock-Kronecker products
carried by T. One says that T is a commutative monad if κTVW = κ̃TVW for all
objects V and W . Kock’s notion of commutation generalizes this:

Definition 10.4 (Kock, [13, 4.1]). Let α : T → U and β : S → U be morphisms of
V -monads on V . We say that α commutes with β if the two composites in

TV ⊗ SW αV ⊗βW // UV ⊗ UW
κUV W //

κ̃UV W

// U(V ⊗W )

are equal for all objects V and W of V .

Theorem 10.5. Let A : T → U and B : S → U be morphisms of J -theories, and
let α : T→ U and β : S→ U denote the corresponding morphisms ofJ -ary V -monads
on V . Then A commutes with B if and only if α commutes with β.

Proof. The morphisms κUVW , κ̃
U
VW constitute V -natural transformations κ, κ̃ as in the

leftmost of the following diagrams.

V ⊗ V

T⊗S
��

U⊗U
��

⊗ // V

U

��

J ⊗J

TI⊗SI

��
UI⊗UI

��

⊗ //J

UI

��
V ⊗ V ⊗

// V V ⊗ V ⊗
// V

k, k̃

3;

κ, κ̃

3;α⊗β +3 A⊗B+3

(10.5.i)

The first and second single-output Kronecker products k and k̃ for U (9.3) constitute
V -natural transformations as in the rightmost diagram, where we have employed the
notation TI = T (τ−, I) of (10.3.i) and written simply A for the natural transformation
Aτ−,I : TI → UI of 10.3, and similarly for B.

Now α commutes with β iff the leftmost diagram is a fork, meaning that the pasted
2-cells involving κ, κ̃ obtained therein are equal, whereas A commutes with B iff the
rightmost diagram is a fork (9.6). Since T = Lanj TI and S = Lanj SI , it follows by a

short computation with coends that the composite V ⊗ V
T⊗S−−−→ V ⊗ V

⊗−→ V is a left
Kan extension of its restriction along j ⊗ j :J ⊗J → V ⊗V . From this it follows by
[10, 4.43] that the leftmost diagram in (10.5.i) is a fork iff it ‘is a fork when whiskered
with j ⊗ j’, i.e. iff

κ ◦ (α⊗ β) ◦ (j ⊗ j) = κ̃ ◦ (α⊗ β) ◦ (j ⊗ j) , (10.5.ii)

where ◦ denotes pasting/whiskering as applicable. Hence it is our task to show that the
latter equation is equivalent to the statement that the rightmost diagram in (10.5.i) is
a fork.
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In the diagram

J ⊗J

TI⊗SI

��

j⊗j

%%

J ⊗J

UI⊗UI

��

j⊗j

%%

⊗ //J

UI

��

j

��
V ⊗ V

T⊗Syy

V ⊗ V

U⊗Uyy

⊗ // V

U��
V ⊗ V V ⊗ V ⊗

// V

(10.5.iii)

let the 2-cell α ⊗ β occupy the leftmost cell on the lower front face of the triangular
prism (which we visualize as protruding from the page with the dashed lines behind
the prism). Let the 2-cell A⊗B occupy the left cell on the back face. Let the 2-cell k
occupy the rightmost cell on the back face, and let κ occupy the rightmost cell on the
lower front face. Observe that the cells on the upper front face commute strictly. Since
U = Lanj UI , we have a canonical V -natural transformation θU : UI ⇒ U ◦ j, namely
the component at UI of the unit of the left Kan extension adjunction Lanj a (−) ◦ j :
V -CAT(V ,V )→ V -CAT(J ,V ), and since j is fully faithful, θU is an invertible 2-cell
that occupies the rightmost face of the prism. We therefore also have an invertible
2-cell θU ⊗ θU that occupies the triangular cell within the interior of the prism, and
similarly we also have an invertible 2-cell θT ⊗ θS that occupies the leftmost face.

Since the 2-cells on the left and right faces of the prism (10.5.iii) are invertible,
we can reason that it now suffices to show that the surface of the prism (10.5.iii)
‘commutes’ (in the sense that the 2-cell that results from pasting its lower front, upper
front, and left faces is equal to the 2-cell obtained by pasting its back and right faces)
and that the analogous prism with k̃, κ̃ in place of k, κ commutes as well. We prove
the first of these claims; the second is then established similarly. To this end, first
observe that the 3-dimensional cell constituting the left half of the prism commutes in
the given sense, since by definition α and β are the images of A and B under the left
adjoint Lanj : V -CAT(J ,V ) → V -CAT(V ,V ). We claim that the rightmost half of
the prism also commutes. To show this, we must prove that for each pair of objects
J,K of J the diagram

UIJ ⊗UIK

kJK

��

θU
J ⊗θ

U
K // UJ ⊗ UK

κJK

��
UI(J ⊗K)

θU
J⊗K

// U(J ⊗K)

(10.5.iv)

commutes. To this end, note that since U = m(U ) was obtained from U via the
equivalence ThJ ' MndJ (V ), we have an isomorphism ηU : U

∼−→ t(m(U )) = J op
U ,

recalling that J op
U denotes the Kleisli J -theory (10.3). Since ηU is a morphism of
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J -theories, it follows by 3.10, 3.20, 9.3 that the leftmost square in

U (J, I)⊗U (K, I)

kJK

��

ηU
JI⊗η

U
KI //J op

U (J, I)⊗J op
U (K, I)

kJK

��

∼ // UJ ⊗ UK

κJK

��
U (J ⊗K, I)

ηU
J⊗K,I

//J op
U (J ⊗K, I) ∼

// U(J ⊗K)

(10.5.v)
commutes. The horizontal arrows in the rightmost square are obtained from the
canonical isomorphisms J op

U (L, I) = V (I, UL) ∼= UL for objects L of J , and by
the definition of the equivalence ThJ ' MndJ (V ) in [20, 11.8, 11.6] we have that

ηU
LI : U (L, I)→J op

U (L, I) is the composite U (L, I) θU
L

// UL
∼ //J op

U (L, I)

whose second factor is this canonical isomorphism. Hence the periphery of (10.5.v)
is the square (10.5.iv), which therefore commutes as soon as we can show that the
rightmost square in (10.5.v) commutes. But this follows from [18, 6.2.5], wherein it
is proved by elementary means that the analogous square with V op

U in place of J op
U

commutes for any pair of objects of V in place of J,K, and for any V -monad U on
V .

Corollary 10.6. A J -ary monad T is commutative if and only if its corresponding
J -theory is commutative.

Remark 10.7. When applying 10.5 and 10.6 it is important to know that the notion
of commutation of cospans ofJ -theories (resp. V -monads) is invariant under isomor-
phism of cospans (considered as diagrams of shape · → · ← ·). This is readily verified
using 5.15 and a similar proposition for V -monads [13, 4.3].

Definition 10.8. Let α : T→ U be a morphism of V -monads on V .

1. If T and U are J -ary V -monads, then we define the J -ary commutant of
α (or of T with respect to α) to be the J -ary V -monad T⊥α,j associated to the

commutant (t(T))⊥t(α) of the morphism ofJ -theories t(α) : t(T)→ t(U) associated
to α, provided that the latter commutant exists.

2. We define the (absolute) commutant T⊥α of T with respect to α to be the V -ary
commutant of T with respect to α, provided that the latter commutant exists.

Remark 10.9. By 7.2, if V has intersections of (obJ )-indexed families of strong
subobjects, then the J -ary commutant always exists. In particular, if V is complete
and well-powered with respect to strong subobjects, then the absolute commutant
exists for any morphism of V -monads on V .

Remark 10.10. Since we have an equivalence ThJ ' MndJ (V ) and the notions of
commutation in these two categories agree (10.5), several of our results and definitions
concerning commutants and commutation for J -theories can be transposed to the
setting ofJ -ary monads, and withJ = V they apply also to the absolute commutant
for arbitrary V -monads on V . In particular, we deduce by 7.8 and 10.5 that theJ -ary
commutant is characterized by a universal property when it exists:
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Theorem 10.11. Let α : T → U and β : S → U be morphisms of J -ary monads on
V , and suppose that the J -ary commutant of α exists. Then α and β commute if and
only if β factors through the J -ary commutant T⊥α,j → U of α.

Remark 10.12. The factorization of β through the J -ary commutant in 10.11 is
unique if it exists, as T⊥α,j → U is a monomorphism in MndJ (V ) ' ThJ since its

corresponding morphism of J -theories T ⊥ ↪→ U is a subtheory inclusion. But
beware—we have no reason to expect in general that the J -ary commutant T⊥α,j
would be a submonad of U, as the morphism T⊥α,j → U is obtained from the in-

clusion T ⊥I ↪→ UI (in the notation of 10.3.i) by applying the left Kan extension
functor Lanj : V -CAT(J ,V ) → V -CAT(V ,V ), which need not preserve monomor-
phisms in general. Indeed, consider the case V = Ab, j : J = {Z} ↪→ Ab, where
V -CAT(J ,V ) ∼= Ab and Lanj sends an abelian group M to the additive endofunctor
M ⊗ (−) on Ab.

Hence we have no reason to expect that the J -ary commutant of a morphism of
J -ary monads would in general coincide with its absolute commutant, whose canonical
morphism T⊥ ↪→ U is always a submonad inclusion, its components being simply the
components T⊥V = (V op

T )⊥(V, I) ↪→ V op
U (V, I) ∼= UV of the corresponding inclusion

of V -theories (V op
T )⊥ ↪→ V op

U .
However, there is one important special case in which the J -ary commutant co-

incides with the absolute commutant, as follows. Take V = Set and j : J =
FinCard ↪→ Set, so that J -theories are now the classical Lawvere theories and J -
ary monads are the familiar finitary monads on Set. Here the left Kan extension
functor Lanj : CAT(FinCard,Set) → CAT(Set, Set) does preserve monomorphisms,
since the left Kan extension Lanj P of a functor P : FinCard→ Set is given pointwise
as a filtered colimit, and pullbacks commute with filtered colimits in Set. Moreover,
further special properties of Set allow us to prove the following result, wherein we call
the J -ary commutant for J = FinCard the finitary commutant :

Theorem 10.13. Let α : T→ U be a morphism of finitary monads on Set. Then the
finitary commutant of α is the same as the absolute commutant T⊥ of α. In particular,
the absolute commutant of α is a finitary monad.

Proof. T and U are isomorphic to the finitary monads associated to Lawvere theories
T and U , so w.l.o.g. T = m(T ), U = m(U ), and α is induced by a morphism of
Lawvere theories A : T → U . The finitary commutant T⊥j of α is the finitary monad

associated to the commutant T ⊥ of A, and the associated morphism ϕ : T⊥j → U
is induced by the inclusion of Lawvere theories T ⊥ ↪→ U . ϕ commutes with α and
so factors through the absolute commutant T⊥ ↪→ U of α via a unique morphism
ϕ′ : T⊥j → T⊥, and it suffices to show that the component ϕ′X : T⊥j X → T⊥X is

bijective for each set X. But by the preceding remarks ϕX : T⊥j X → UX is injective,
so ϕ′X is injective and it suffices to show that ϕ′X is surjective.

For each finite cardinal n, we shall write Sn to denote n when considered as an object
of the Lawvere theory U , so that Sn is an n-th power of S = S1 in U , and we shall use
the same notation for the subtheory T ⊥ ↪→ U . Thus we write S(−) : FinCardop → U
and S(−) : FinCardop → T ⊥ for the unique morphisms of Lawvere theories. The

38



endofunctors U, T⊥j are then the left Kan extensions along j : FinCard ↪→ Set of

U (S(−), S),T ⊥(S(−), S) : FinCard→ Set, respectively. Hence the sets UX and T⊥j X
are the filtered colimits

UX = lim−→
x : n→X

U (Sn, S) T⊥j X = lim−→
x : n→X

T ⊥(Sn, S) ,

taken over the comma category FinCard/X = (j ↓ X). The elements of UX are there-
fore equivalence classes [µ, n, x] of triples consisting of a finite cardinal n, a function
x : n → X, and an abstract operation µ : Sn → S in U , where [µ, n, x] = [ν,m, y] iff
there exist a finite cardinal k and maps z : k → X, f : n → k, g : m → k in Set such
that z · f = x : n → X, z · g = y : m → X, and µ · Sf = ν · Sg : Sk → S. Since
the canonical map T⊥j X → UX is injective, we can identify T⊥j X with the subset
of UX consisting of the elements that can be represented in the form [µ, n, x] with
µ ∈ T ⊥(Sn, S) ⊆ U (Sn, S).

Every element of UX can be represented as [µ, n, x] with x : n→ X injective, since
given arbitrary x : n → X and µ : Sn → S in U we can factor x as a surjection
f : n→ n′ followed by an injection x′ : n′ → X, and then [µ, n, x] = [µ · Sf , n′, x′].

Related to this, we shall require the following:

Claim. Suppose that [µ, n, x] = [ν, n, x] in UX with x : n→ X injective. Then µ = ν.

To prove this, note that the hypothesis entails that there exist f, g : n→ k in FinCard
and z : k → X in Set with z · f = x = z · g and µ ·Sf = ν ·Sg. Forming the coequalizer
q : k → ` of f, g in FinCard, which is also a coequalizer in Set, there is an induced
z′ : ` → X with z′ · q = z, and then letting h = q · f = q · g : n → ` we have that
z′ · h = x : n→ X and µ · Sh = ν · Sh : S` → S. In order to show that µ = ν it suffices
to show that C(µ) = C(ν) : |C |n → |C | for any normal U -algebra C : U → Set. But
we know that C(µ) · |C |h = C(ν) · |C |h : |C |` → |C |, where |C |h : |C |` → |C |n is the
map induced by h, and h is injective since x = h · z′ is injective. It follows that |C |h

is surjective if |C | 6= ∅, so that then C(µ) = C(ν) as needed, but on the other hand
if |C | = ∅ then C(µ), C(ν) : ∅n → ∅ and so ∅n = ∅ (equivalently n 6= 0) and again
C(µ) = C(ν).

Now let ω be an element of the subset T⊥X ↪→ UX. Then ω is of the form
ω = [µ, n, x] with x injective, and it suffices to show that the element µ ∈ U (Sn, S)
lies in T ⊥(Sn, S), for then ω lies in the subset T⊥j X ↪→ UX. Letting ν ∈ U (Sm, S)
lie in the image of A : T → U , we must show that µ commutes with ν. But we know
that ω = [µ, n, x] commutes with every element σ ∈ UY of the form σ = [ν,m, y] for
any set Y and any map y : m→ Y , i.e. the maps κUXY , κ̃

U
XY : UX × UY → U(X × Y )

yield the same value on the pair (ω, σ). But κUXY sends (ω, σ) to the equivalence class
[µ ∗ ν, n×m,x× y] ∈ U(X ×Y ) of the first Kronecker product µ ∗ ν ∈ U (Sn×m, S) for
the map x× y : n×m→ X × Y , and analogously for κ̃UX×Y and the second Kronecker
product µ ∗̃ ν, so [µ ∗ ν, n × m,x × y] = [µ ∗̃ ν, n × m,x × y]. In particular, we can
take Y = m and y = 1 : m → m, whence [µ ∗ ν, n ×m,x × 1] = [µ ∗̃ ν, n ×m,x × 1]
as elements of U(X ×m). But x × 1 : n ×m → X ×m is injective since x is so, and
therefore µ ∗ ν = µ ∗̃ ν by the preceding Claim, so µ commutes with ν.

10.14. Let T be a J -theory for the given eleutheric system of arities J ↪→ V , and
assume that V has equalizers. It is shown in [20, 11.14] that the V -category T -Alg of
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T -algebras in V always exists and is equivalent to the V -category V T of T-algebras
for the associated J -ary V -monad T = m(T ). Further, the full sub-V -category
T -Alg! ↪→ T -Alg consisting of normal T -algebras is isomorphic to V T [20, 11.14].

Theorem 10.15. Let A : T → V be a T -algebra for a J -theory T . Then the
commutant T ⊥A ↪→ V A of A exists, recalling that V A is the full J -theory of A in V
(3.16).

Proof. By the preceding remark, T -Alg exists, and T ⊥A is equivalently defined as the
full J -theory of A in T -Alg (7.10).

Definition 10.16. Let V be a symmetric monoidal closed category with equalizers,
let T be a V -monad on V , and let A be a T-algebra. Write T for the V -theory
corresponding to T. The (absolute) commutant of A (or of T with respect to A)
is defined as the V -monad T⊥A corresponding to the commutant T ⊥A of the (normal)
T -algebra T → V corresponding to A. Note that this commutant necessarily exists,
by 10.15.

Here the notion of commutant intersects with the notion of codensity monad [11]:

Proposition 10.17. The absolute commutant T⊥A of a V -monad T with respect to

a T-algebra A is the codensity V -monad (see [5, II]) of the T -algebra ‹A : T → V
corresponding to A, where we denote by T the V -theory corresponding to T.

Proof. By [5, II.3], the V -algebraic structure Str(‹A) of ‹A (7.13) is the Kleisli V -theory
V op

S of the codensity V -monad S for ‹A, and in particular, S exists since Str(‹A) does. In

other words, Str(‹A) is the V -theory t(S) = V op
S corresponding to S. But as we noted

in 7.13, Str(‹A) = T ⊥A in this case, and the V -monad associated to this V -theory is
therefore T⊥A = m(T ⊥A ) = m(t(S)) ∼= S.
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