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MAXIMAL IDEALS IN MODULE CATEGORIES AND

APPLICATIONS

MANUEL CORTÉS-IZURDIAGA AND ALBERTO FACCHINI

Abstract. We study the existence of maximal ideals in preadditive categories
defining an order � between objects, in such a way that if there do not exist
maximal objects with respect to �, then there is no maximal ideal in the

category. In our study, it is sometimes sufficient to restrict our attention to
suitable subcategories. We give an example of a category CF of modules over a
right noetherian ring R in which there is a unique maximal ideal. The category
CF is related to an indecomposable injective module F , and the objects of CF

are the R-modules of finite F -rank.

INTRODUCTION

This paper is related to the study of ideals in preadditive categories. Recall that
an ideal in a preadditive category C is an additive subfunctor I of the additive
bifunctor HomC : Cop ×C → Ab, where Ab is the category of abelian groups.

Let us mention two motivations for our study. The first is related to extensions of
the classical Krull-Schmidt theorem to additive categories. In [8], the second author
proved that the class of all uniserial right modules over a ring R does not satisfy
the Krull-Schmidt theorem, thus answering a question posed by Warfield in 1975,
but that nevertheless a weak version of the Krull-Schmidt theorem for uniserial
modules holds [8, Theorem 1.9]. This weak version of the Krull-Schmidt theorem
was extended as follows, in [6, Theorem 6.4], to any additive category A with a
pair of ideals I and J satisfying suitable conditions: if U1, . . . , Un and V1, . . . , Vn
are objects in A with local endomorphism rings in the quotient categories A/I and
A/J , then U1 ⊕ · · · ⊕ Un

∼= V1 ⊕ · · ·Vm if and only if n = m and there exist two
permutations σ and τ of {1, . . . , n} such that Ui and Vσ(i) are isomorphic in A/I,
and Ui and Vτ(i) are isomorphic in A/J , for every i = 1, . . . , n.

Our second motivation is related to the problem of approximating objects by
morphisms belonging to some ideal. This idea first appeared in [12], where the
author introduced phantom maps in module categories, considered the ideal con-
sisting of all such maps and proved that each module M has a phantom cover (that
is, a phantom map ϕ : P → M such that every phantom map ψ : Q → M factors
through ϕ, and minimal with respect to this property). This particular situation
was extended in [11], where it was characterized when an ideal I in an exact cate-
gory provides approximations in this sense. Notice that this theory contains, as a
particular case, the classical one about precovers and covers by objects, see [4].
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As in the case of ideals of rings, one can consider minimal and maximal ideals in
a preadditive category C. In [5, Theorem 3.1], it is proved that the minimal ideals
in a module category are in one-to-one correspondence with the simple modules.
Hence we have a complete description of the minimal ideals of the category. A
similar description of maximal ideals is not known (the best description of maximal
ideals is Prihoda’s result [9, Lemma 2.1]). One of the main results of our paper is
now that there do not exist maximal ideals in module categories Mod-R (actually,
in Grothendieck categories). The idea of the proof is to define a order � in the class
of objects and relate the existence of maximal ideals with the existence of non-zero
maximal objects with respect to this order. More precisely, we prove (Theorem
3.1) that if for each object A in the category there exists an object B such that
A ≺ B, then there do not exist maximal ideals. Since a Grothendieck category has
this property (Proposition 2.4), we conclude that there are no maximal ideals in
Grothendieck categories.

If C is a preadditive category, we can consider the full subcategory M(C) of C
consisting of all objects C of C for which there do not exist objects B in C with C ≺
B. Then the maximal ideals ofM(C) determine those ofC (Proposition 3.9). Using
these ideas, the last part of the paper is devoted to describing the maximal ideals
in a full subcategory CF constructed starting from an indecomposable injective
module F over a right noetherian ring.

All rings in this paper are associative with unit and not necessarily commutative.
If R is such a ring, module will mean right R-module and we will denote by Mod-R
the category whose objects are all right R-modules.

1. PRELIMINARIES

By a preadditive category, we mean a category together with an abelian group
structure on each of its hom-sets such that composition is bilinear. An additive
category is a preadditive category with finite products. Let C be a preadditive
category and A an object of C. We will denote by add(A) the class of the objects X
ofC for which there exist an integer n > 0 and morphisms f1, . . . , fn ∈ HomC(A,X)
and g1, . . . , gn ∈ HomC(X,A) such that 1X =

∑n
i=1 figi. If C is additive and

idempotents split in C, then X ∈ add(A) if and only if X is isomorphic to a direct
summand of An for some integer n ≥ 0. If, moreover, C has arbitrary direct sums,
we will denote by Add(A) the class of all objects that are isomorphic to direct
summmands of arbitrary direct sums of copies of A.

An ideal in C is an additive subfunctor I of the additive bifunctor HomC : Cop×
C → Ab, where Ab is the category of abelian groups. Thus I associates to
every pair A and B of objects in C a subgroup I(A,B) of HomC(A,B) so that if
f : X → A and g : B → Y are morphisms in C and i ∈ I(A,B), then gif ∈ I(X,Y ).
An ideal in C is maximal if it is proper, that is, it is not equal to HomC, and is not
properly contained in any other proper ideal. For instance, it is easy to see that
the zero ideal is a maximal ideal in the full subcategory of Mod-K whose objects
are all finite-dimensional vector spaces over a field K.

Given an object A in C and any two-sided ideal I of EndC(A), we will denote
by AI the ideal of the category C defined, for each pair of objects X,Y ∈ C, by

AI(X,Y ) = {f ∈ HomC(X,Y ) : βfα ∈ I for
all α ∈ HomC(A,X) and β ∈ HomC(Y,A)}.
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This ideal is called the ideal associated to I ([7, Section 2] and [10, Section 3]). The
ideal AI contains any ideal I in C satisfying I(A,A) ⊆ I. As proved in [9, Lemma
2.4], there is a strong relation between ideals associated to maximal ideals of the
endomorphism ring of an object, and maximal ideals in the preadditive category.
For instance, the same argument as [9, Proposition 2.5] gives:

Example 1.1. Let C be an additive category in which idempotent splits and C
any object of C. Then the maximal ideals in the category add(C) are the ideals
associated to maximal ideals of EndC(C).

The following easy lemma will be useful to compute ideals in the endomorphism
ring of a finite direct sum of objects.

Lemma 1.2. Let C be an additive category, A an object of C and I an ideal in
EndC(A). Given any finite family B1, . . . , Bn of objects of C, denote by ιl and πl the
inclusion and the projection corresponding to the l-th component of B =

⊕n
i=1Bi

for each l = 1, . . . , n. Then

AI(B,B) = { f ∈ EndC(B) : πmfιl ∈ AI(Bl, Bm) for every l,m = 1, 2, . . . , n }.

Note that, as a consequence of this result, ifM1 andM2 are objects in an additive
category C and I is an ideal in the endomorphism ring of an object A of C, then
AI(M1 ⊕M2,M1 ⊕M2) = EndR(M1 ⊕M2) if and only if AI(Mi,Mi) = EndR(Mi)
for i = 1, 2.

2. The strict order ≺ and its corresponding partial order �.

The existence of maximal ideals in preadditive categories is related to an order �
between objects. In this section, we define the partial order � and give a number
of examples.

Definition 2.1. Let C be a preadditive category and A, B objects of C. Set A ≺ B
if there exists an infinite subset E ⊆ HomC(B,A)×HomC(A,B) with the following
properties:

(1) fg = 1A for every (f, g) ∈ E.
(2) For each ϕ ∈ HomC(A,B), |{(f, g) ∈ E : fϕ 6= 0}| < |E|.

We shall write A � B if either A ≺ B or A = B.

Here we are using the well known one-to-one correspondence between strict or-
ders and partial orders. For any partial order ≤, the corresponding strict order <
is defined by A < B if A ≤ B and A 6= B.

Let C be a preadditive category, A a subcategory of C and A and B objects of
A. Notice that it can occur that A ≺ B in C but not in A. However, if A is full,
A ≺ B in C if and only if A ≺ B in A.

Example 2.2. Let C be any preadditive category and A,B ∈ C objects. If both
HomC(A,B) and HomC(B,A) are finite, then A 6≺ B. In particular, if C has a
zero object 0, then 0 6≺ B and B 6≺ 0 for every object B.

Let us see some properties of the order �.

Lemma 2.3. Let C be a preadditive category and A, B and C objects of C.
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(1) If A ≺ B and B is a retract of C, then A ≺ C.
(2) If B ∈ add(A), then A 6≺ B.

Proof. (1) Denote by ιB : B → C and πB : C → B the morphisms satisfying πBιB =
1B. Since A ≺ B, there exists a set E ⊆ HomC(B,A) × HomC(A,B) satisfying
the conditions of Definition 2.1. Then E′ = {(fπB, ιBg) : (f, g) ∈ E} is a subset
of HomC(B ⊕C,A)×HomC(A,B ⊕C) that has cardinality equal to |E| and that
trivially verifies the conditions of Definition 2.1. Thus A ≺ C.

(2) Let n > 0 be an integer and

f1, . . . , fn ∈ HomC(A,B), g1, . . . , gn ∈ HomC(B,A)

be such that
∑n

i=1 figi = 1B. Suppose, in order to get a contradiction, that A ≺
B. Let E ⊆ HomC (B,A) × HomC (A,B) be the set satisfying the conditions of
Definition 2.1. By Definition 2.1(2), the set

Ek := {(f, g) ∈ E : ffk 6= 0}

has cardinality smaller than |E| for each k = 1, . . . , n. But, for each morphism
ϕ : B → A, ϕ 6= 0 if and only if ϕfk 6= 0 for some k = 1, . . . , n. This implies that
E =

⋃n
k=1 Ek as f 6= 0 for each (f, g) ∈ E. Since E is infinite, we conclude that at

least one of the sets Ek has the same cardinality as E, which is a contradiction. �

Let C be a preadditive category. The main consequence of the preceeding result
is that the relation ≺ is a strict order, since it is irreflexive by (2) and transitive by
(1). As we have already said, we denote by � the partial order associated to the
strict order ≺.

Now we will consider a relation between large direct sums of copies of a non-zero
object in a Grothendieck category and the strict order ≺ of Definition 2.1. Let G be
a Grothendieck category, A an object ofG and κ an infinite regular cardinal. Recall
that A is said to be < κ-generated [1, Definition 1.67] if HomG(A,−) commutes with
κ-directed colimits with all morphisms in the direct system being monomorphisms
(a κ-directed colimit is the colimit of a κ-system in G, (Ai, fij)I , the latter meaning
that each subset of I of cardinality smaller than κ has an upper bound [1, Definition
1.13]).

Proposition 2.4. Let G be a Grothendieck category and κ an infinite regular
cardinal.

(1) Let A be a non-zero < κ-generated object of G. Then A ≺ A(κ).
(2) For each non-zero object A of G, there exists an object B of G such that

A ≺ B.

Proof. (1) Denote by ια : A → A(κ) and πα : A
(α) → A the injection and the

projection corresponding to the α-component of A(κ) for each α < κ. Consider the
subset {(πα, ια) : α < κ} of HomG

(

A(κ), A
)

× HomG

(

A,A(κ)
)

. Then E satisfies
(1) of Definition 2.1 since παια = 1A for each α < κ.

In order to prove condition (2) of Definition 2.1, note that A(κ) is the colimit of
the κ-direct system (A(α), ιαβ)κ, where ιαβ : A

(α) → A(β) is the inclusion for each

α < β in κ. The colimit maps are the inclusions ια : A
(α) → A(κ) for each α < κ.

Let ϕ : A → A(κ) be any morphism. Since A is < κ-generated and the morphism
ιαβ is monic for every α < β in κ, there exists α0 < κ and ϕ : A→ A(α0) such that
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ϕ = ια0
ϕ. In particular, we get that

|{(πα, ια) : παϕ 6= 0}| ≤ |α0| < κ = |E|.

(2) Notice that, for each object A in G, there exists an infinite regular cardinal
κ such that A is < κ-generated [14, Lemma A.1]. �

Using these results, we can characterize when V ≺ W for vector spaces V and
W .

Corollary 2.5. Let V and W be two vector spaces over a field K. Then V ≺ W
if and only if W is infinite dimensional and 0 6= dim(V ) < dim(W ).

Proof. Suppose V ≺W . First of all, note that dim(V ) < dim(W ) since, otherwise,
there would exist an epimorphism ϕ : V → W . This would imply that, for any
subset E of HomK(W,V ) × HomK(V,W ), {(f, g) ∈ E : fϕ 6= 0} = E. That is,
V 6≺ W . Furthermore, W has to be infinite dimensional, since finite dimensional
vector spaces belong to add(V ) and, by Lemma 2.3, for any vector space W in
add(V ), we have that V 6≺W .

Conversely, suppose that W is infinite dimensional and that 0 6= dim(V ) <
dim(W ). Set dim W = κ and dim V = λ and take an infinite regular cardinal µ
with λ < µ ≤ κ (if κ is regular, take µ = κ; otherwise, set µ = λ+, the successor
cardinal of λ). By Proposition 2.4 and Lemma 2.3, V ≺ V (µ) ≺ V (µ) ⊕ V (κ).
Since λ < µ ≤ κ, dim

(

V (µ) ⊕ V (κ)
)

= κ and V (µ) ⊕ V (κ) ∼= W . Consequently,
V ≺W . �

Let R be a ring and A and B right R-modules. If A ≺ B and E is the set of
Definition 2.1, then, for each (f, g) ∈ E, Im g is a direct summand of B isomorphic
to A. That is, B contains many direct summands isomorphic to A. In view of the
preceding result, a natural question arises: is B isomorphic to a direct sum of copies
of A? The following example shows that the answer to this question is negative in
general.

Example 2.6. Let κ be an infinite regular cardinal and consider the abelian group
M = Z

(κ) ⊕ Z

2Z . Then Z ≺ M by Proposition 2.4 and Lemma 2.3, while M is not
isomorphic to a direct sum of copies of Z since it is not free.

3. MAXIMAL IDEALS

In this section, using the order �, we prove that there do not exist maximal
ideals in Grothendieck categories. We will prove a more general result: if C is a
preadditive category such that there is no non-zero maximal object with respect
to �, then C does not have maximal ideals. The proof is based on the following
theorem:

Theorem 3.1. Let C be a preadditive category, A and B objects of C such that
A ≺ B, and I a proper ideal of EndC(A). Then AI(B,B) is a proper ideal of
EndC(B) which is not maximal.

Proof. Since A ≺ B, there exists E ⊆ HomC(B,A) × HomC(A,B) satisfying the
conditions of Definition 2.1. Let J be the ideal of EndC(B) generated by the set of
all the endomorphisms of B that factors through A. We claim that J +AI(B,B)
is a proper ideal of EndC(B) strictly containing AI(B,B).
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First of all, note that AI(B,B) is not equal to J + AI(B,B). In fact, for each
(f, g) ∈ E, gf is an element of J not belonging to AI(B,B), since fgfg = 1A /∈ I
because I is proper.

Now we will prove that J +AI(B,B) is a proper ideal. Fix any element ψ ∈ J+
AI(B,B). Let ϕ ∈ J and ϕ′ ∈ AI(B,B) be such that ψ = ϕ+ϕ′. Since ϕ ∈ J , ϕ =
∑n

i=1 figi for morphisms f1, . . . , fn ∈ HomC(A,B) and g1, . . . , gn ∈ HomC(B,A).
The set {(f, g) ∈ E : fψg /∈ I} is contained in the set {(f, g) ∈ E : fϕ 6= 0}, which
is contained in

n
⋃

i=1

{(f, g) ∈ E : ffi 6= 0}.

Since A ≺ B and E is infinite, this set has cardinality smaller than |E|. The
conclusion is that, for each ψ ∈ J + AI(B,B), the set {(f, g) ∈ E : fψg /∈ I}
has cardinality smaller than |E|. But this implies that 1B does not belong to
J + AI(B,B), as {(f, g) ∈ E : f1Bg /∈ I} = E. Consequently, J + AI(B,B) is a
proper ideal. �

This theorem has a number of consequences.

Corollary 3.2. Let C be a preadditive category such that there do not exist non-
zero maximal objects with respect to �. Then C does not have maximal ideals.

Proof. Let I be any proper ideal in C. Then there exists an object A such that
I(A,A) 6= EndC(A). Set I = I(A,A). Let B be an object such that A ≺ B. Then
I(B,B) ⊆ AI(B,B) which, as a consequence of the previous result, is properly
contained in a proper ideal of EndC(B). This means that I(B,B) is not a maximal
ideal of EndC(B), and I is not a maximal ideal in C by [9, Lemma 2.4]. �

Combining this result with Proposition 2.4, we obtain that maximal ideals do
not exist in any Grothendieck category (in particular, in any module category).

Corollary 3.3. Let G be a Grothendieck category. Then there do not exist maximal
ideals in G.

Another remarkable consequence of Theorem 3.1 is the following.

Corollary 3.4. Let C be a preadditive category, M a maximal ideal of C and A
an object of C. If M(A,A) 6= EndR(A), then A is maximal with respect to �.

Proof. Set I = M(A,A). Suppose that there exists an object B such that A ≺ B.
Then M(B,B) = AI(B,B) by [9, Lemma 2.4]. But, by Theorem 3.1, AI(B,B) is
a proper ideal that is not maximal. This contradicts the maximality of M. �

Remark 3.5. Notice that, equivalently, if A is an object of a preadditive category
C and there exists an object B with A ≺ B, then M(A,A) = EndC(A) for every
maximal ideal M in C.

As a consequence of Corollary 3.2, if a preadditive categoryC has maximal ideals,
then there exist maximal objects with respect to the partial order �. However, not
all objects have to be maximal. That is, there can exist objects A for which there
are objects B with A ≺ B. For example, let κ a cardinal and κ+ be its successor
cardinal. Let K be a field and C the full subcategory of Mod-K whose objects are
all vector spaces of dimension smaller than κ+. As is proved in [9, Example 4.1],
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C has one maximal ideal. However, for each vector space M of dimension smaller
than κ, there exists spaces V with M ≺ V by Proposition 2.5.

Despite this observation, we are going to see that, in order to determine if a
preadditive category has maximal ideals, we can restrict our attention to a full
subcategory in which each object is maximal with respect to �.

Definition 3.6. Let C be a preadditive category.

(1) We will denote by M(C) the full subcategory of C consisiting of all maximal
objects with respec to �, that is,

{C ∈ C : there does not exist A ∈ C with C ≺ A }

(2) We will denote by S(C) the full subcategory of C whose class of objects is

{C ∈ C : there exists A ∈ M(C) with C ≺ A}

Let C be a preadditive category and D a full subcategory of C. We now define
how to restrict an ideal of C to D and, conversely, how to extend a maximal ideal
of D to C.

Definition 3.7. Let C be a preadditive category and D a full subcategory of C.

(1) Given I an ideal of C, define its restriction Ir to D by

Ir(D,D′) = I(D,D′)

for every D,D′ ∈ D.
(2) Given any maximal ideal M of D, there exists an object D ∈ D such that

M(D,D) 6= EndD(D). Define the extension Me of M to C to be the ideal
of C associated to M(D,D).

Lemma 3.8. Let C be a preadditive category, D a full subcategory of C and M a
maximal ideal in D.

(1) Let D and D′ be objects of D such that I := M(D,D) and I ′ := M(D′, D′)
are maximal ideals of EndC(D) and EndC(D

′) respectively. Then the ideals
AI and AI′ coincide in C. In particular, the definition of Me does not
depend on the choice of the object D with M(D,D) 6= EndD(D).

(2) For any objects D,D′ of D, Me(D,D′) = M(D,D′).

Proof. (1) By [9, Lemma 2.4], M = AI in D. Then AI(D
′, D′) ⊆ I ′, which implies

that AI is contained in AI′ (in C). Using the same argument, M = AI′ in D and,
consequently, AI′(D,D) ⊆ I. Thus AI′ is contained in AI (in C).

(2) By [9, Lemma 2.4]. �

Now we can establish, for any preadditive category C, the relation between the
maximal ideals of C and those of M(C).

Theorem 3.9. Let C be a preadditive category. Then the assignments M 7→ Mr

and M 7→ Me define bijective correspondences between the following classes of
ideals:

(1) Maximal ideals of C.
(2) Maximal ideals M of M(C) satisfying Me(C,C) = EndC(C) for each ob-

ject C not belonging to M(C) ∪ S(C), that is, for each object C with no
maximal N with C � N .
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Proof. Let M be a maximal ideal of C. We will now prove that Mr is a maximal
ideal of M(C) satisfying Mr e(C,C) = EndC(C) for each object C not belonging
to M(C) ∪ S(C). Since M is proper, there exists an object C0 of C such that
M(C0, C0) 6= EndC(C0). By Theorem 3.1, C0 must belong to M(C). This means
that Mr is a proper ideal in M(C), which is trivially maximal, as M is maximal
in C. Moreover, note that Mr e is the ideal of C associated to M(C0, C0), which
is equal to M by [9, Lemma 2.4]. Then, again by Theorem 3.1, Mr e(C,C) =
M(C,C) = EndC(C) for every object C not belonging to M(C).

Conversely, let M be a maximal ideal of M(C) satisfying Me(C,C) = EndC(C)
for each object C not belonging to M(C) ∪ S(C). We claim that Me(C,C) =
EndC(C) for each object C belonging to S(C). To prove the claim, let C be an
object of S(C) and suppose that D ∈ M(C) satisfies C ≺ D. If Me(C,C) 6=
EndC(C), then Me(D,D) is a proper ideal of EndC(D), which is not maximal by
Theorem 3.1. By Lemma 3.8, Me(D,D) = M(D,D) and, consequently, M(D,D)
is a proper ideal of EndM(C)(D) that is not maximal. Since M is maximal in
M(C), this contadicts [9, Lemma 2.4]. The contradiction proves the claim.

Now let N be an ideal of C properly containing Me. We will prove that N =
HomC. Since N (C,C) = EndC(C) for each object C not belonging to M(C), it
follows that N r properly contains Me r. But Me r = M by Lemma 3.8 and, since
M is maximal in M(C), we get that N r = HomM(C). This fact with the previous
claim gives that N = HomC.

Finally, it is easy to see that the two assignments are mutually inverse. �

Remark 3.10. Let C be a preadditive category, A and C objects of C and I an
ideal of EndC(C). Then, AI(A,A) = EndC(A) if and only if each endomorphism
of C factoring through A belongs to I. Consequently, if M is a maximal ideal in
M(C) and C is an object with no maximal N satisfying C � N , then the following
conditions are equivalent:

(1) Me(C,C) = EndC(C).
(2) There exists an object A ∈ M(C) with M(A,A) 6= EndC(A) such that

each endomorphism of A factoring through C belongs to M(A,A).
(3) For each object A ∈ M(C) with M(A,A) 6= EndC(A), every endomor-

phism of A factoring through C belongs to M(A,A).

Proposition 3.9 says that, in order to compute the maximal ideals in a category
C, we can (1) determine the subcategories M(C) and S(C), and (2) find the
maximal ideals M of M(C) such that Me(C,C) = EndC(C) for each object C
with no maximal N satisfying C � N . We will use this procedure in the following
example.

Example 3.11. Let R be a simple non-artinian ring with Soc(RR) non-projective
as a right R-module. Then there exists a non projective simple right module S
contained in R. Consider the full subcategory C = add(RR) ∪ Add(S) of Mod-R.
Then M(C) = add(RR) and S(C) = ∅. Since R is simple, Example 1.1 says that
the unique maximal ideal of M(C) is the ideal A0 associated to the zero ideal of
R. However, A0(S, S) 6= EndR(S) since, if we take f : RR → S an epimorphism
and we denote by g : S → RR the inclusion, we have that g1Sf 6= 0, which means
that 1S /∈ A0(S, S). Then, by Theorem 3.9, C does not have maximal ideals.

Remark 3.12. Let C be a preadditive category. As the preceding example shows,
there does not exist a bijective correspondence between maximal ideals in C and
maximal ideals in M(C). This is due to the fact that there can exist maximal ideals
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M of M(C) such that Me(C,C) 6= EndC(C) for some object C with no maximal
N satisfying C � N . More precisely, the map (−)r from the class of maximal ideals
of C to the class of maximal ideals of M(C) is injective, and its image consists of
those maximal ideals M of M(C) for which Mr(C,C) = EndC(C) for each object
C with no maximal object M with C � M . The map (−)r is not, in general,
surjective .

4. MAXIMAL IDEALS INDUCED BY AN INDECOMPOSABLE

INJECTIVE MODULE

We conclude the paper computing the maximal ideals of a certain subcategory
of a module category. The main idea in this computation is to apply the results
of the previous sections to describe the ideal associated to a maximal ideal in the
endomorphism ring of an indecomposable injective module.

Let R be a ring that we fix through the rest of the section and let F be an
injective R-module. Recall that F is indecomposable if and only if F has a local
endomorphism ring [2, Theorem 25.4].

Lemma 4.1. Let F be an indecomposable injective module, and let I be the maximal
ideal of EndR(F ). The following conditions are equivalent for modules A, B and
f ∈ HomR(A,B):

(1) f /∈ AI(A,B).
(2) There exists α : F → A and β : B → F such that βfα = 1F .
(3) There exists a submodule C of A such that C ∼= F and C ∩ ker f = 0.

Proof. (1) ⇒ (2). If f /∈ AI , there exists α : F → A and β : A → F such that
βfα /∈ I. Since the endomorphisms of F not belonging to I are isomorphisms,
there exists an inverse γ ∈ EndR(F ) of βfα. Then γβfα = 1F .

(2) ⇒ (1) is trivial.

(2) ⇒ (3). Set C = α(F ), which is isomorphic to F as α is monic. Then
A = C ⊕ ker(βf). In particular, C ∩ ker f ⊆ C ∩ ker(βf) = 0.

(3) ⇒ (2). Let α : F → A be a monomorphism with image C. Since C ∩ ker f =
0, fα is a monomorphism. Since F is an injective, this implies the existence of
β : B → F with βfα = 1F , as desired. �

As a byproduct of this result we get:

Corollary 4.2. Let F be an indecomposable injective module, and let I be the
maximal ideal of EndR(F ). Then, for any pair A,B of modules, AI(A,B) 6=
HomR(A,B) if and only if both A and B contain a submodule isomorphic to F .

Proof. If AI(A,B) 6= HomR(A,B) and f : A → B does not belong to AI(A,B),
then, by the previous lemma, there exists C ≤ A with C ∼= F and C ∩ ker f = 0.
This implies that f(C) is isomorphic to F . Thus C and f(C) are submodules with
the desired property.

Conversely, assume A = A1 ⊕ A2 and B = B1 ⊕ B2 with A1
∼= B1

∼= F . Let
f : A1 → B1 be an isomorphism and let F : A→ B be the morphism f ⊕ 0. Then
F trivially satisfies (3) of the previous lemma and, consequently, F does not belong
to AI(A,B). �
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It follows that, in order to determine AI , we only have to look at the modules
A containing isomorphic copies of F . These modules have a nice description if R is
right noetherian as we will prove next. We shall use the following well known facts
about an injective module F :

(1) If K is a non-zero submodule of F , then there exists an injective submodule
G of F containingK such that the inclusionK ≤ G is an injective envelope.
In particular, if F is indecomposable, then the inclusion K ≤ F is an
injective envelope of K.

(2) F satisfies the exchange property, which means that for each module N and
each decomposition F ⊕N =

⊕

α<κAα, there exists a submodule Bα ≤ Aα

for each α < κ such that F ⊕N = F ⊕
(
⊕

α<κBα

)

.

Theorem 4.3. Suppose R right noetherian. Let F be an indecomposable injective
module. Then every module M has a decomposition M =M1 ⊕M2 where:

(1) M1
∼= F (Γ) for some set Γ.

(2) M2 does not contain submodules isomorphic to F .

Moreover, Γ is uniquely determined up to cardinality andM2 is uniquely determined
up to isomorphism.

Proof. If M does not have submodules isomorphic to F , there is nothing to prove.
So suppose that M has submodules isomorphic to F and consider the non-empty
family of submodules

S = {N ≤M : N ∼= F (Γ) for some set Γ}

Let us show that S is inductive. Take a chain S ′ = {Mλ : λ ∈ Λ } in S. We will
prove that M ′ :=

⋃

λ∈ΛMλ ∈ S. Since R is right noetherian, directed colimits of
injective modules are injective [3, Exercise 8 of Chapter I], so that M ′ is injective.
Hence, M ′ has a direct-sum decomposition, M ′ =

⊕

i∈I Fi, where the submodules
Fi of M ′ are injective and indecomposable [13, Theorem 3.48, p. 82]. Let i ∈ I
and x be a non-zero element of Fi; note that Fi is the injective envelope of xR.
Since x ∈Mλ for some λ ∈ Λ, and Mλ ∈ S, x belongs to a direct summand of Mλ

isomorphic to Fn for some n. But, as Fi is the injective envelope of xR, Fn must
contain a direct summand isomorphic to Fi. This implies that Fi

∼= F because
all indecomposable direct summands of Fn are isomorphic to F . Consequently,
M ′ ∈ S.

The first part of the statement now follows taking a maximal element M1 of S
and a submodule M2 of M with M1 ⊕M2 =M .

In order to prove the last part of the statement, suppose that M = M ′

1 ⊕M ′

2

is another decomposition of M satisfying (1) and (2). Write M1 =
⊕

β<κGβ and

M ′

1 =
⊕

α<λ Fα for suitable families of submodules {Gβ : β < κ} and {Fα : α < λ}
ofM1 andM ′

1 respectively, and cardinals κ and λ, satisfying Gβ
∼= Fα

∼= F for each
β < κ and α < λ.

Since M1 satisfies the exchange property, there exist submodules Hα ≤ Fα for
each α < λ and N ′

2 ≤ M ′

2 such that M = M1 ⊕
(
⊕

α<λHα

)

⊕ N ′

2. Since Fα is
indecomposable for each α < λ, it follows that Hα = 0 or Hα = Fα. But, as
(
⊕

α<λHα

)

⊕N ′

2
∼=M2 and M2 does not contain any submodule isomorphic to F ,

we get that Hα = 0 for each α < λ. That is, M =M1 ⊕N ′

2.
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Applying the modular law, we see that M ′

2 = N ′

2 ⊕ (M ′

2 ∩M1). We claim that
M ′

2 ∩M1 = 0. Assume the contrary, i. e., that M1 ∩M ′

2 6= 0. Since M1 ∩M ′

2

is a direct summand of M , it is a direct summand of M1 and, consequently, it is
injective. As it is non-zero, there exists β < κ such that Gβ ∩M1 ∩M

′

2 6= 0. Let
x be a non-zero element in this intersection. Notice that xR ≤ Gβ is an injective
envelope. Since M1 ∩M ′

2 is injective, there exists an injective envelope C of xR
contained in M1 ∩M ′

2. But C is isomorphic to F and M ′

2 does not contain any
submodule isomorphic to F , a contradiction. This proves the claim.

As a consequence,M =M1⊕M ′

2. ThenM1
∼=M ′

1 andM2
∼=M ′

2. By Azumaya’s
Theorem [2, Theorem 12.6], κ = λ and we are done. �

We can use this result to define the F -rank of a module M , for any indecompos-
able injective module F and any module M over a right noetherian ring.

Definition 4.4. Suppose R is right noetherian. Let F be an indecomposable injec-
tive module. Given any module M and any cardinal κ, we say that M has F -rank
equal to κ (written rF (M) = κ) if M = M1 ⊕M2, where M1

∼= F (κ) and M2 has
no direct summand isomorphic to F . We will denote by CF the full subcategory of
Mod-R whose objects are all modules of finite F -rank.

Now we can compute the maximal ideals in the category CF for an indecompos-
able injective module F . First of all, we compute the subcategories M(CF ) and
S(CF ).

Proposition 4.5. Suppose R is right noetherian. Let F be an indecomposable
injective module. Then:

(1) M(CF ) = {M ∈ CF : rF (M) > 0}.
(2) S(CF ) = {M ∈ CF : rF (M) = 0}.

Proof. (1) Let M be a module in CF with rF (M) = 0. We can find an infinite
cardinal κ such thatM is < κ-generated in Mod-R. By Proposition 2.4, M ≺M (κ)

in Mod-R. Since CF is a full subcategory of Mod-R and M (κ) ∈ CF , we get that
M ≺ M (κ) in CF . Consequently, M does not belong to M(CF ). This proves the
inclusion M(CF ) ⊆ {M ∈ CF : rF (M) > 0}.

In order to prove the inverse inclusion, let M be any module with rF (M) > 0
and suppose, by contradiction, that M /∈ M(CF ). Then there exists N ∈ CF such
that M ≺ N . Let M = M1 ⊕M2 and N = N1 ⊕ N2 be the decompositions given
by Theorem 4.3, and let E be the set of Definition 2.1. Write M1 =

⊕n
i=1Gi and

N1 =
⊕m

j=1 Fj for modules Gi and Fj isomorphic to F for each i = 1, . . . , n and
j = 1, . . . ,m.

We claim that f(N1) 6= 0 for each (f, g) ∈ E. Given i = 1, . . . , n, g(Gi) is
isomorphic to F . Then g(Ei) ∩ N1 6= 0 since, otherwise, N1 ⊕ g(Ei) would be
a direct summand of N , and N2 would contain a submodule isomorphic to F .
Now, taking y ∈ g(Ei) ∩ N1 non-zero and x ∈ Ei with g(x) = y, we have that
f(y) = x 6= 0. This proves the claim.

For each i = 1, . . . ,m, let qi : G1 → Fi be an isomorphism. Then qi extends to a
morphism pi : M → N . The preceeding claim says that for each (f, g) ∈ E, fpi 6= 0
for some i = 1, . . . ,m. Consequently, if

Ei = {(f, g) ∈ E : fpi 6= 0}
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for each i = 1, . . . ,m, we conclude that E ⊆
⋃m

i=1Ei. This is a contradiction,
because the second set has cardinality smaller than |E| by Definition 2.1(2).

The conclusion is that there is no object N ∈ CF with M ≺ N , so that M ∈
M(CF ).

(2) As a direct consequence of (1) we have S(CF ) ⊆ {M ∈ CF : rF (M) = 0}. In
order to see the other inclusion, fixM ∈ CF with rF (M) = 0. Then, as in the proof
of (1), there exists an infinite cardinal κ such that M ≺ M (κ) in CF . By Lemma
1.2, M ≺ F ⊕M (κ). Then M ∈ S(CF ) because F ⊕M (κ) ∈ M(CF ) by (1). �

Finally, we can determine all maximal ideals of the category CF for an indecom-
posable injective module F over a right noetherian ring.

Proposition 4.6. Suppose R is right noetherian. Let F be an indecomposable
injective module and I be the maximal ideal of EndR(F ). Then AI is the unique
maximal ideal of CF .

Proof. By Theorem 3.9, we only have to compute the maximal ideals of M(CF ).
First, we prove that AI is a maximal ideal of M(CF ). Given M ∈ M(CF ), since
AI(M,M) 6= EndR(M) by Corollary 4.2, we have to see, applying [9, Lemma 2.4],
that

(a) AI(M,M) is maximal in EndR(M) and,
(b) if J0 = AI(M,M), then AI = AJ0

.

Let M = M1 ⊕M2 be the decomposition of M given in Theorem 4.3. Note that,
by Lemma 1.2 and Corollary 4.2,

AI(M,M) = {f ∈ EndR(M) : π1fι1 ∈ AI(M1,M1)},

where πi : M → Mi and ιi : Mi → M are the corresponding projections and
inclusions for i = 1, 2. As M1 ∈ add(F ) and AI is a maximal ideal in this category
by Example 1.1, AI(M1,M1) is a maximal ideal in EndR(M1,M1). In order to
see that AI(M,M) is maximal, let J be an ideal of EndR(M) strictly containing
AI(M,M). Let f ∈ J not belonging to AI(M,M). Then π1fι1 does not belong
to AI(M1,M1) and, by the maximality of this ideal in EndR(M1,M1), there exist
g ∈ AI(M1,M1) and α, β ∈ EndR(M1) such that 1M1

= g + απ1fι1β. Then we
have the identity

1M1
⊕ 0 = g ⊕ 0 + (α⊕ 0)f(β ⊕ 0)

in EndR(M), with both g and (α⊕0)f(β⊕0) in J . Consequently, 1M1
⊕0 ∈ J . Now

use 0⊕ 1M2
∈ J to get that 1M = 1M1

⊕ 0 + 0⊕ 1M2
∈ J and that J = EndR(M).

Let us prove (b). Since AJ0
is the greatest of all the ideals I ′ of CF such

that I ′(M,M) ≤ J0, we conclude that AI ⊆ AJ0
. In order to prove the other

inclusion, we only have to see, by the same argument, that AJ0
(F, F ) ≤ I. Let

f ∈ AJ0
(F, F ). Fix a monomorphism α1 : F → M1, which, as Imα1 is a di-

rect summand, has an splitting β1 : M1 → F . Then note that ι1α1fβ1π1 ∈ J0,
because f ∈ AJ0

(F, F ). Then π1ι1α1fβ1ι1α1 ∈ AI(M1,M1) and, consequently,
β1π1ι1α1fβ1ι1α1 ∈ AI(F, F ) = I. Since

f = β1π1ι1α1fβ1ι1α1,

we conclude that f ∈ I.

To finish the proof, we will see that AI is the unique maximal ideal of M(CF ).
LetM be any maximal ideal ofM(CF ) andM ∈ M(CF ) be such thatM(M,M) 6=
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EndR(M). If J = M(M,M), then M = AJ by [9, Lemma 2.4]. Let M =
M1 ⊕M2 be the decomposition of M given by Theorem 4.3. By Lemma 1.2, either
M(M1,M1) orM(M2,M2) have to be proper. ButM2 ∈ S(CF ) by Proposition 4.5,
so that M(M2,M2) = EndR(M2) by Remark 3.5. Thus M(M1,M1) 6= EndR(M1)
which implies, again by Lemma 1.2, that M(F, F ) 6= EndR(F ). Since I is the
unique maximal ideal of EndR(F ) and M(E,E) is maximal, we conclude that
M(F, F ) = I. Now M = AI by [9, Lemma 2.4], which concludes the proof. �

Example 4.7. The categoryCF has maximal ideals and objectsM,N withM ≺ N
since, if M is an object in CF with F -rank 0, then each direct sum of copies of M
belongs to CF . By Proposition 2.4, there exist objects N in CF with M ≺ N .
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