MAXIMAL IDEALS IN MODULE CATEGORIES AND APPLICATIONS

MANUEL CORTÉS-IZURDIAGA AND ALBERTO FACCHINI

ABSTRACT. We study the existence of maximal ideals in preadditive categories defining an order \leq between objects, in such a way that if there do not exist maximal objects with respect to \leq , then there is no maximal ideal in the category. In our study, it is sometimes sufficient to restrict our attention to suitable subcategories. We give an example of a category \mathbf{C}_F of modules over a right noetherian ring R in which there is a unique maximal ideal. The category \mathbf{C}_F is related to an indecomposable injective module F, and the objects of \mathbf{C}_F are the R-modules of finite F-rank.

INTRODUCTION

This paper is related to the study of ideals in preadditive categories. Recall that an *ideal* in a preadditive category \mathbf{C} is an additive subfunctor \mathcal{I} of the additive bifunctor $\text{Hom}_{\mathbf{C}} \colon \mathbf{C}^{op} \times \mathbf{C} \to \mathbf{Ab}$, where \mathbf{Ab} is the category of abelian groups.

Let us mention two motivations for our study. The first is related to extensions of the classical Krull-Schmidt theorem to additive categories. In [8], the second author proved that the class of all uniserial right modules over a ring R does not satisfy the Krull-Schmidt theorem, thus answering a question posed by Warfield in 1975, but that nevertheless a weak version of the Krull-Schmidt theorem for uniserial modules holds [8, Theorem 1.9]. This weak version of the Krull-Schmidt theorem was extended as follows, in [6, Theorem 6.4], to any additive category \mathbf{A} with a pair of ideals \mathcal{I} and \mathcal{J} satisfying suitable conditions: if U_1, \ldots, U_n and V_1, \ldots, V_n are objects in \mathbf{A} with local endomorphism rings in the quotient categories \mathbf{A}/\mathcal{I} and \mathbf{A}/\mathcal{J} , then $U_1 \oplus \cdots \oplus U_n \cong V_1 \oplus \cdots V_m$ if and only if n = m and there exist two permutations σ and τ of $\{1, \ldots, n\}$ such that U_i and $V_{\sigma(i)}$ are isomorphic in \mathbf{A}/\mathcal{I} , and U_i and $V_{\tau(i)}$ are isomorphic in \mathbf{A}/\mathcal{J} , for every $i = 1, \ldots, n$.

Our second motivation is related to the problem of approximating objects by morphisms belonging to some ideal. This idea first appeared in [12], where the author introduced phantom maps in module categories, considered the ideal consisting of all such maps and proved that each module M has a phantom cover (that is, a phantom map $\varphi \colon P \to M$ such that every phantom map $\psi \colon Q \to M$ factors through φ , and minimal with respect to this property). This particular situation was extended in [11], where it was characterized when an ideal \mathcal{I} in an exact category provides approximations in this sense. Notice that this theory contains, as a particular case, the classical one about precovers and covers by objects, see [4].

The first author is partially supported by projects MTM2014-54439 and MTM2016-77445-P from MEC and by research group FQM211 from Junta de Andalucía.

The second author is partially supported by Dipartimento di Matematica, Università di Padova (Progetto SID 2016 BIRD163492/16 "Categorical homological methods in the study of algebraic structures" and progetto DOR1690814 "Anelli e categorie di moduli").

As in the case of ideals of rings, one can consider minimal and maximal ideals in a preadditive category **C**. In [5, Theorem 3.1], it is proved that the minimal ideals in a module category are in one-to-one correspondence with the simple modules. Hence we have a complete description of the minimal ideals of the category. A similar description of maximal ideals is not known (the best description of maximal ideals is Prihoda's result [9, Lemma 2.1]). One of the main results of our paper is now that there do not exist maximal ideals in module categories Mod-R (actually, in Grothendieck categories). The idea of the proof is to define a order \leq in the class of objects and relate the existence of maximal ideals with the existence of non-zero maximal objects with respect to this order. More precisely, we prove (Theorem 3.1) that if for each object A in the category there exists an object B such that $A \prec B$, then there do not exist maximal ideals. Since a Grothendieck category has this property (Proposition 2.4), we conclude that there are no maximal ideals in Grothendieck categories.

If **C** is a preadditive category, we can consider the full subcategory $\mathbf{M}(\mathbf{C})$ of **C** consisting of all objects C of **C** for which there do not exist objects B in **C** with $C \prec B$. Then the maximal ideals of $\mathbf{M}(\mathbf{C})$ determine those of **C** (Proposition 3.9). Using these ideas, the last part of the paper is devoted to describing the maximal ideals in a full subcategory \mathbf{C}_F constructed starting from an indecomposable injective module F over a right noetherian ring.

All rings in this paper are associative with unit and not necessarily commutative. If R is such a ring, module will mean right R-module and we will denote by Mod-R the category whose objects are all right R-modules.

1. PRELIMINARIES

By a preadditive category, we mean a category together with an abelian group structure on each of its hom-sets such that composition is bilinear. An additive category is a preadditive category with finite products. Let **C** be a preadditive category and A an object of **C**. We will denote by $\operatorname{add}(A)$ the class of the objects X of **C** for which there exist an integer n > 0 and morphisms $f_1, \ldots, f_n \in \operatorname{Hom}_{\mathbf{C}}(A, X)$ and $g_1, \ldots, g_n \in \operatorname{Hom}_{\mathbf{C}}(X, A)$ such that $1_X = \sum_{i=1}^n f_i g_i$. If **C** is additive and idempotents split in **C**, then $X \in \operatorname{add}(A)$ if and only if X is isomorphic to a direct summand of A^n for some integer $n \ge 0$. If, moreover, **C** has arbitrary direct sums, we will denote by $\operatorname{Add}(A)$ the class of all objects that are isomorphic to direct summands of arbitrary direct sums of copies of A.

An *ideal* in **C** is an additive subfunctor \mathcal{I} of the additive bifunctor $\operatorname{Hom}_{\mathbf{C}}: \mathbf{C}^{op} \times \mathbf{C} \to \mathbf{Ab}$, where \mathbf{Ab} is the category of abelian groups. Thus \mathcal{I} associates to every pair A and B of objects in **C** a subgroup $\mathcal{I}(A, B)$ of $\operatorname{Hom}_{\mathbf{C}}(A, B)$ so that if $f: X \to A$ and $g: B \to Y$ are morphisms in **C** and $i \in \mathcal{I}(A, B)$, then $gif \in \mathcal{I}(X, Y)$. An ideal in **C** is *maximal* if it is proper, that is, it is not equal to $\operatorname{Hom}_{\mathbf{C}}$, and is not properly contained in any other proper ideal. For instance, it is easy to see that the zero ideal is a maximal ideal in the full subcategory of Mod-K whose objects are all finite-dimensional vector spaces over a field K.

Given an object A in C and any two-sided ideal I of $\operatorname{End}_{\mathbf{C}}(A)$, we will denote by \mathcal{A}_I the ideal of the category C defined, for each pair of objects $X, Y \in \mathbf{C}$, by

$$\mathcal{A}_{I}(X,Y) = \{ f \in \operatorname{Hom}_{\mathbf{C}}(X,Y) : \beta f \alpha \in I \text{ for} \\ \text{all } \alpha \in \operatorname{Hom}_{\mathbf{C}}(A,X) \text{ and } \beta \in \operatorname{Hom}_{\mathbf{C}}(Y,A) \}.$$

This ideal is called the *ideal associated to I* ([7, Section 2] and [10, Section 3]). The ideal \mathcal{A}_I contains any ideal \mathcal{I} in **C** satisfying $\mathcal{I}(A, A) \subseteq I$. As proved in [9, Lemma 2.4], there is a strong relation between ideals associated to maximal ideals of the endomorphism ring of an object, and maximal ideals in the preadditive category. For instance, the same argument as [9, Proposition 2.5] gives:

Example 1.1. Let **C** be an additive category in which idempotent splits and *C* any object of **C**. Then the maximal ideals in the category $\operatorname{add}(C)$ are the ideals associated to maximal ideals of $\operatorname{End}_{\mathbf{C}}(C)$.

The following easy lemma will be useful to compute ideals in the endomorphism ring of a finite direct sum of objects.

Lemma 1.2. Let **C** be an additive category, A an object of **C** and I an ideal in End_{**C**}(A). Given any finite family B_1, \ldots, B_n of objects of **C**, denote by ι_l and π_l the inclusion and the projection corresponding to the *l*-th component of $B = \bigoplus_{i=1}^n B_i$ for each $l = 1, \ldots, n$. Then

 $\mathcal{A}_{I}(B,B) = \{ f \in \operatorname{End}_{\mathbf{C}}(B) : \pi_{m} f \iota_{l} \in \mathcal{A}_{I}(B_{l}, B_{m}) \text{ for every } l, m = 1, 2, \dots, n \}.$

Note that, as a consequence of this result, if M_1 and M_2 are objects in an additive category **C** and *I* is an ideal in the endomorphism ring of an object *A* of **C**, then $\mathcal{A}_I(M_1 \oplus M_2, M_1 \oplus M_2) = \operatorname{End}_R(M_1 \oplus M_2)$ if and only if $\mathcal{A}_I(M_i, M_i) = \operatorname{End}_R(M_i)$ for i = 1, 2.

2. The strict order \prec and its corresponding partial order \preceq .

The existence of maximal ideals in preadditive categories is related to an order \leq between objects. In this section, we define the partial order \leq and give a number of examples.

Definition 2.1. Let **C** be a preadditive category and A, B objects of **C**. Set $A \prec B$ if there exists an infinite subset $E \subseteq \text{Hom}_{\mathbf{C}}(B, A) \times \text{Hom}_{\mathbf{C}}(A, B)$ with the following properties:

(1) $fg = 1_A$ for every $(f,g) \in E$. (2) For each $\varphi \in \operatorname{Hom}_{\mathbf{C}}(A,B)$, $|\{(f,g) \in E : f\varphi \neq 0\}| < |E|$.

We shall write $A \preceq B$ if either $A \prec B$ or A = B.

Here we are using the well known one-to-one correspondence between strict orders and partial orders. For any partial order \leq , the corresponding strict order < is defined by A < B if $A \leq B$ and $A \neq B$.

Let **C** be a preadditive category, **A** a subcategory of **C** and *A* and *B* objects of **A**. Notice that it can occur that $A \prec B$ in **C** but not in **A**. However, if **A** is full, $A \prec B$ in **C** if and only if $A \prec B$ in **A**.

Example 2.2. Let **C** be any preadditive category and $A, B \in \mathbf{C}$ objects. If both $\operatorname{Hom}_{\mathbf{C}}(A, B)$ and $\operatorname{Hom}_{\mathbf{C}}(B, A)$ are finite, then $A \not\prec B$. In particular, if **C** has a zero object 0, then $0 \not\prec B$ and $B \not\prec 0$ for every object B.

Let us see some properties of the order \leq .

Lemma 2.3. Let \mathbf{C} be a preadditive category and A, B and C objects of \mathbf{C} .

- (1) If $A \prec B$ and B is a retract of C, then $A \prec C$.
- (2) If $B \in \operatorname{add}(A)$, then $A \not\prec B$.

Proof. (1) Denote by $\iota_B : B \to C$ and $\pi_B : C \to B$ the morphisms satisfying $\pi_B \iota_B = 1_B$. Since $A \prec B$, there exists a set $E \subseteq \operatorname{Hom}_{\mathbf{C}}(B, A) \times \operatorname{Hom}_{\mathbf{C}}(A, B)$ satisfying the conditions of Definition 2.1. Then $E' = \{(f\pi_B, \iota_B g) : (f, g) \in E\}$ is a subset of $\operatorname{Hom}_{\mathbf{C}}(B \oplus C, A) \times \operatorname{Hom}_{\mathbf{C}}(A, B \oplus C)$ that has cardinality equal to |E| and that trivially verifies the conditions of Definition 2.1. Thus $A \prec C$.

(2) Let n > 0 be an integer and

 $f_1, \ldots, f_n \in \operatorname{Hom}_{\mathbf{C}}(A, B), \quad g_1, \ldots, g_n \in \operatorname{Hom}_{\mathbf{C}}(B, A)$

be such that $\sum_{i=1}^{n} f_i g_i = 1_B$. Suppose, in order to get a contradiction, that $A \prec B$. Let $E \subseteq \operatorname{Hom}_{\mathbf{C}}(B, A) \times \operatorname{Hom}_{\mathbf{C}}(A, B)$ be the set satisfying the conditions of Definition 2.1. By Definition 2.1(2), the set

$$E_k := \{ (f, g) \in E : ff_k \neq 0 \}$$

has cardinality smaller than |E| for each k = 1, ..., n. But, for each morphism $\varphi: B \to A, \varphi \neq 0$ if and only if $\varphi f_k \neq 0$ for some k = 1, ..., n. This implies that $E = \bigcup_{k=1}^{n} E_k$ as $f \neq 0$ for each $(f, g) \in E$. Since E is infinite, we conclude that at least one of the sets E_k has the same cardinality as E, which is a contradiction. \Box

Let **C** be a preadditive category. The main consequence of the preceeding result is that the relation \prec is a strict order, since it is irreflexive by (2) and transitive by (1). As we have already said, we denote by \preceq the partial order associated to the strict order \prec .

Now we will consider a relation between large direct sums of copies of a non-zero object in a Grothendieck category and the strict order \prec of Definition 2.1. Let **G** be a Grothendieck category, A an object of **G** and κ an infinite regular cardinal. Recall that A is said to be $< \kappa$ -generated [1, Definition 1.67] if $\operatorname{Hom}_{\mathbf{G}}(A, -)$ commutes with κ -directed colimits with all morphisms in the direct system being monomorphisms (a κ -directed colimit is the colimit of a κ -system in **G**, $(A_i, f_{ij})_I$, the latter meaning that each subset of I of cardinality smaller than κ has an upper bound [1, Definition 1.13]).

Proposition 2.4. Let **G** be a Grothendieck category and κ an infinite regular cardinal.

- (1) Let A be a non-zero $< \kappa$ -generated object of **G**. Then $A \prec A^{(\kappa)}$.
- (2) For each non-zero object A of G, there exists an object B of G such that $A \prec B$.

Proof. (1) Denote by $\iota_{\alpha} \colon A \to A^{(\kappa)}$ and $\pi_{\alpha} \colon A^{(\alpha)} \to A$ the injection and the projection corresponding to the α -component of $A^{(\kappa)}$ for each $\alpha < \kappa$. Consider the subset $\{(\pi_{\alpha}, \iota_{\alpha}) : \alpha < \kappa\}$ of $\operatorname{Hom}_{\mathbf{G}}(A^{(\kappa)}, A) \times \operatorname{Hom}_{\mathbf{G}}(A, A^{(\kappa)})$. Then E satisfies (1) of Definition 2.1 since $\pi_{\alpha}\iota_{\alpha} = 1_A$ for each $\alpha < \kappa$.

In order to prove condition (2) of Definition 2.1, note that $A^{(\kappa)}$ is the colimit of the κ -direct system $(A^{(\alpha)}, \iota_{\alpha\beta})_{\kappa}$, where $\iota_{\alpha\beta} \colon A^{(\alpha)} \to A^{(\beta)}$ is the inclusion for each $\alpha < \beta$ in κ . The colimit maps are the inclusions $\iota_{\alpha} \colon A^{(\alpha)} \to A^{(\kappa)}$ for each $\alpha < \kappa$. Let $\varphi \colon A \to A^{(\kappa)}$ be any morphism. Since A is $< \kappa$ -generated and the morphism $\iota_{\alpha\beta}$ is monic for every $\alpha < \beta$ in κ , there exists $\alpha_0 < \kappa$ and $\overline{\varphi} \colon A \to A^{(\alpha_0)}$ such that

4

 $\varphi = \iota_{\alpha_0} \overline{\varphi}$. In particular, we get that

$$|\{(\pi_{\alpha}, \iota_{\alpha}) \colon \pi_{\alpha} \varphi \neq 0\}| \le |\alpha_0| < \kappa = |E|.$$

(2) Notice that, for each object A in **G**, there exists an infinite regular cardinal κ such that A is $< \kappa$ -generated [14, Lemma A.1].

Using these results, we can characterize when $V \prec W$ for vector spaces V and W.

Corollary 2.5. Let V and W be two vector spaces over a field K. Then $V \prec W$ if and only if W is infinite dimensional and $0 \neq \dim(V) < \dim(W)$.

Proof. Suppose $V \prec W$. First of all, note that $\dim(V) < \dim(W)$ since, otherwise, there would exist an epimorphism $\varphi \colon V \to W$. This would imply that, for any subset E of $\operatorname{Hom}_K(W, V) \times \operatorname{Hom}_K(V, W)$, $\{(f, g) \in E : f\varphi \neq 0\} = E$. That is, $V \not\prec W$. Furthermore, W has to be infinite dimensional, since finite dimensional vector spaces belong to $\operatorname{add}(V)$ and, by Lemma 2.3, for any vector space W in $\operatorname{add}(V)$, we have that $V \not\prec W$.

Conversely, suppose that W is infinite dimensional and that $0 \neq \dim(V) < \dim(W)$. Set dim $W = \kappa$ and dim $V = \lambda$ and take an infinite regular cardinal μ with $\lambda < \mu \leq \kappa$ (if κ is regular, take $\mu = \kappa$; otherwise, set $\mu = \lambda^+$, the successor cardinal of λ). By Proposition 2.4 and Lemma 2.3, $V \prec V^{(\mu)} \prec V^{(\mu)} \oplus V^{(\kappa)}$. Since $\lambda < \mu \leq \kappa$, dim $(V^{(\mu)} \oplus V^{(\kappa)}) = \kappa$ and $V^{(\mu)} \oplus V^{(\kappa)} \cong W$. Consequently, $V \prec W$.

Let R be a ring and A and B right R-modules. If $A \prec B$ and E is the set of Definition 2.1, then, for each $(f,g) \in E$, Im g is a direct summand of B isomorphic to A. That is, B contains many direct summands isomorphic to A. In view of the preceding result, a natural question arises: is B isomorphic to a direct sum of copies of A? The following example shows that the answer to this question is negative in general.

Example 2.6. Let κ be an infinite regular cardinal and consider the abelian group $M = \mathbb{Z}^{(\kappa)} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}}$. Then $\mathbb{Z} \prec M$ by Proposition 2.4 and Lemma 2.3, while M is not isomorphic to a direct sum of copies of \mathbb{Z} since it is not free.

3. MAXIMAL IDEALS

In this section, using the order \leq , we prove that there do not exist maximal ideals in Grothendieck categories. We will prove a more general result: if **C** is a preadditive category such that there is no non-zero maximal object with respect to \leq , then **C** does not have maximal ideals. The proof is based on the following theorem:

Theorem 3.1. Let \mathbf{C} be a preadditive category, A and B objects of \mathbf{C} such that $A \prec B$, and I a proper ideal of $\operatorname{End}_{\mathbf{C}}(A)$. Then $\mathcal{A}_I(B,B)$ is a proper ideal of $\operatorname{End}_{\mathbf{C}}(B)$ which is not maximal.

Proof. Since $A \prec B$, there exists $E \subseteq \operatorname{Hom}_{\mathbf{C}}(B, A) \times \operatorname{Hom}_{\mathbf{C}}(A, B)$ satisfying the conditions of Definition 2.1. Let J be the ideal of $\operatorname{End}_{\mathbf{C}}(B)$ generated by the set of all the endomorphisms of B that factors through A. We claim that $J + \mathcal{A}_I(B, B)$ is a proper ideal of $\operatorname{End}_{\mathbf{C}}(B)$ strictly containing $\mathcal{A}_I(B, B)$.

First of all, note that $\mathcal{A}_I(B, B)$ is not equal to $J + \mathcal{A}_I(B, B)$. In fact, for each $(f,g) \in E$, gf is an element of J not belonging to $\mathcal{A}_I(B, B)$, since $fgfg = 1_A \notin I$ because I is proper.

Now we will prove that $J + \mathcal{A}_I(B, B)$ is a proper ideal. Fix any element $\psi \in J + \mathcal{A}_I(B, B)$. Let $\varphi \in J$ and $\varphi' \in \mathcal{A}_I(B, B)$ be such that $\psi = \varphi + \varphi'$. Since $\varphi \in J$, $\varphi = \sum_{i=1}^n f_i g_i$ for morphisms $f_1, \ldots, f_n \in \operatorname{Hom}_{\mathbf{C}}(A, B)$ and $g_1, \ldots, g_n \in \operatorname{Hom}_{\mathbf{C}}(B, A)$. The set $\{(f,g) \in E : f \psi g \notin I\}$ is contained in the set $\{(f,g) \in E : f \varphi \neq 0\}$, which is contained in

$$\bigcup_{i=1}^{n} \{ (f,g) \in E : ff_i \neq 0 \}.$$

Since $A \prec B$ and E is infinite, this set has cardinality smaller than |E|. The conclusion is that, for each $\psi \in J + \mathcal{A}_I(B, B)$, the set $\{(f,g) \in E : f \psi g \notin I\}$ has cardinality smaller than |E|. But this implies that 1_B does not belong to $J + \mathcal{A}_I(B, B)$, as $\{(f,g) \in E : f 1_B g \notin I\} = E$. Consequently, $J + \mathcal{A}_I(B, B)$ is a proper ideal.

This theorem has a number of consequences.

Corollary 3.2. Let C be a preadditive category such that there do not exist nonzero maximal objects with respect to \leq . Then C does not have maximal ideals.

Proof. Let \mathcal{I} be any proper ideal in \mathbb{C} . Then there exists an object A such that $\mathcal{I}(A, A) \neq \operatorname{End}_{\mathbb{C}}(A)$. Set $I = \mathcal{I}(A, A)$. Let B be an object such that $A \prec B$. Then $\mathcal{I}(B, B) \subseteq \mathcal{A}_I(B, B)$ which, as a consequence of the previous result, is properly contained in a proper ideal of $\operatorname{End}_{\mathbb{C}}(B)$. This means that $\mathcal{I}(B, B)$ is not a maximal ideal of $\operatorname{End}_{\mathbb{C}}(B)$, and \mathcal{I} is not a maximal ideal in \mathbb{C} by [9, Lemma 2.4]. \Box

Combining this result with Proposition 2.4, we obtain that maximal ideals do not exist in any Grothendieck category (in particular, in any module category).

Corollary 3.3. Let \mathbf{G} be a Grothendieck category. Then there do not exist maximal ideals in \mathbf{G} .

Another remarkable consequence of Theorem 3.1 is the following.

Corollary 3.4. Let **C** be a preadditive category, \mathcal{M} a maximal ideal of **C** and A an object of **C**. If $\mathcal{M}(A, A) \neq \operatorname{End}_R(A)$, then A is maximal with respect to \leq .

Proof. Set $I = \mathcal{M}(A, A)$. Suppose that there exists an object B such that $A \prec B$. Then $\mathcal{M}(B, B) = \mathcal{A}_I(B, B)$ by [9, Lemma 2.4]. But, by Theorem 3.1, $\mathcal{A}_I(B, B)$ is a proper ideal that is not maximal. This contradicts the maximality of \mathcal{M} .

Remark 3.5. Notice that, equivalently, if A is an object of a preadditive category C and there exists an object B with $A \prec B$, then $\mathcal{M}(A, A) = \operatorname{End}_{\mathbf{C}}(A)$ for every maximal ideal \mathcal{M} in C.

As a consequence of Corollary 3.2, if a preadditive category **C** has maximal ideals, then there exist maximal objects with respect to the partial order \preceq . However, not all objects have to be maximal. That is, there can exist objects A for which there are objects B with $A \prec B$. For example, let κ a cardinal and κ^+ be its successor cardinal. Let K be a field and **C** the full subcategory of Mod-K whose objects are all vector spaces of dimension smaller than κ^+ . As is proved in [9, Example 4.1], **C** has one maximal ideal. However, for each vector space M of dimension smaller than κ , there exists spaces V with $M \prec V$ by Proposition 2.5.

Despite this observation, we are going to see that, in order to determine if a preadditive category has maximal ideals, we can restrict our attention to a full subcategory in which each object is maximal with respect to \leq .

Definition 3.6. Let C be a preadditive category.

We will denote by M(C) the full subcategory of C consisiting of all maximal objects with respec to ≤, that is,

 $\{C \in \mathbf{C}: \text{ there does not exist } A \in \mathbf{C} \text{ with } C \prec A \}$

(2) We will denote by $\mathbf{S}(\mathbf{C})$ the full subcategory of \mathbf{C} whose class of objects is

 $\{C \in \mathbf{C} : there \ exists \ A \in \mathbf{M}(\mathbf{C}) \ with \ C \prec A\}$

Let \mathbf{C} be a preadditive category and \mathbf{D} a full subcategory of \mathbf{C} . We now define how to restrict an ideal of \mathbf{C} to \mathbf{D} and, conversely, how to extend a maximal ideal of \mathbf{D} to \mathbf{C} .

Definition 3.7. Let C be a preadditive category and D a full subcategory of C.

(1) Given \mathcal{I} an ideal of \mathbf{C} , define its restriction \mathcal{I}^{r} to \mathbf{D} by

$$\mathcal{I}^{\mathrm{r}}(D, D') = \mathcal{I}(D, D')$$

for every $D, D' \in \mathbf{D}$.

(2) Given any maximal ideal \mathcal{M} of \mathbf{D} , there exists an object $D \in \mathbf{D}$ such that $\mathcal{M}(D,D) \neq \operatorname{End}_{\mathbf{D}}(D)$. Define the extension \mathcal{M}^{e} of \mathcal{M} to \mathbf{C} to be the ideal of \mathbf{C} associated to $\mathcal{M}(D,D)$.

Lemma 3.8. Let C be a preadditive category, D a full subcategory of C and \mathcal{M} a maximal ideal in D.

- (1) Let D and D' be objects of D such that I := M(D, D) and I' := M(D', D') are maximal ideals of End_C(D) and End_C(D') respectively. Then the ideals A_I and A_{I'} coincide in C. In particular, the definition of M^e does not depend on the choice of the object D with M(D, D) ≠ End_D(D).
 (2) For any chiester D D' of D M^e(D D') = M(D D').
- (2) For any objects D, D' of $\mathbf{D}, \mathcal{M}^{e}(D, D') = \mathcal{M}(D, D')$.

Proof. (1) By [9, Lemma 2.4], $\mathcal{M} = \mathcal{A}_I$ in **D**. Then $\mathcal{A}_I(D', D') \subseteq I'$, which implies that \mathcal{A}_I is contained in $\mathcal{A}_{I'}$ (in **C**). Using the same argument, $\mathcal{M} = \mathcal{A}_{I'}$ in **D** and, consequently, $\mathcal{A}_{I'}(D, D) \subseteq I$. Thus $\mathcal{A}_{I'}$ is contained in \mathcal{A}_I (in **C**).

(2) By [9, Lemma 2.4].

Now we can establish, for any preadditive category C, the relation between the maximal ideals of C and those of M(C).

Theorem 3.9. Let C be a preadditive category. Then the assignments $\mathcal{M} \mapsto \mathcal{M}^{\mathrm{r}}$ and $\mathcal{M} \mapsto \mathcal{M}^{\mathrm{e}}$ define bijective correspondences between the following classes of ideals:

- (1) Maximal ideals of \mathbf{C} .
- (2) Maximal ideals \mathcal{M} of $\mathbf{M}(\mathbf{C})$ satisfying $\mathcal{M}^{\mathbf{e}}(C, C) = \operatorname{End}_{\mathbf{C}}(C)$ for each object C not belonging to $\mathbf{M}(\mathbf{C}) \cup \mathbf{S}(\mathbf{C})$, that is, for each object C with no maximal N with $C \leq N$.

Proof. Let \mathcal{M} be a maximal ideal of \mathbf{C} . We will now prove that \mathcal{M}^{r} is a maximal ideal of $\mathbf{M}(\mathbf{C})$ satisfying $\mathcal{M}^{\mathrm{re}}(C, C) = \mathrm{End}_{\mathbf{C}}(C)$ for each object C not belonging to $\mathbf{M}(\mathbf{C}) \cup \mathbf{S}(\mathbf{C})$. Since \mathcal{M} is proper, there exists an object C_0 of \mathbf{C} such that $\mathcal{M}(C_0, C_0) \neq \mathrm{End}_{\mathbf{C}}(C_0)$. By Theorem 3.1, C_0 must belong to $\mathbf{M}(\mathbf{C})$. This means that \mathcal{M}^{r} is a proper ideal in $\mathbf{M}(\mathbf{C})$, which is trivially maximal, as \mathcal{M} is maximal in \mathbf{C} . Moreover, note that $\mathcal{M}^{\mathrm{re}}$ is the ideal of \mathbf{C} associated to $\mathcal{M}(C_0, C_0)$, which is equal to \mathcal{M} by [9, Lemma 2.4]. Then, again by Theorem 3.1, $\mathcal{M}^{\mathrm{re}}(C, C) =$ $\mathcal{M}(C, C) = \mathrm{End}_{\mathbf{C}}(C)$ for every object C not belonging to $\mathbf{M}(\mathbf{C})$.

Conversely, let \mathcal{M} be a maximal ideal of $\mathbf{M}(\mathbf{C})$ satisfying $\mathcal{M}^{\mathrm{e}}(C, C) = \mathrm{End}_{\mathbf{C}}(C)$ for each object C not belonging to $\mathbf{M}(\mathbf{C}) \cup \mathbf{S}(\mathbf{C})$. We claim that $\mathcal{M}^{\mathrm{e}}(C, C) =$ $\mathrm{End}_{\mathbf{C}}(C)$ for each object C belonging to $\mathbf{S}(\mathbf{C})$. To prove the claim, let C be an object of $\mathbf{S}(\mathbf{C})$ and suppose that $D \in \mathbf{M}(\mathbf{C})$ satisfies $C \prec D$. If $\mathcal{M}^{\mathrm{e}}(C, C) \neq$ $\mathrm{End}_{\mathbf{C}}(C)$, then $\mathcal{M}^{\mathrm{e}}(D, D)$ is a proper ideal of $\mathrm{End}_{\mathbf{C}}(D)$, which is not maximal by Theorem 3.1. By Lemma 3.8, $\mathcal{M}^{\mathrm{e}}(D, D) = \mathcal{M}(D, D)$ and, consequently, $\mathcal{M}(D, D)$ is a proper ideal of $\mathrm{End}_{\mathbf{M}(\mathbf{C})}(D)$ that is not maximal. Since \mathcal{M} is maximal in $\mathbf{M}(\mathbf{C})$, this contadicts [9, Lemma 2.4]. The contradiction proves the claim.

Now let \mathcal{N} be an ideal of \mathbf{C} properly containing \mathcal{M}^{e} . We will prove that $\mathcal{N} = \text{Hom}_{\mathbf{C}}$. Since $\mathcal{N}(C, C) = \text{End}_{\mathbf{C}}(C)$ for each object C not belonging to $\mathbf{M}(\mathbf{C})$, it follows that \mathcal{N}^{r} properly contains \mathcal{M}^{er} . But $\mathcal{M}^{er} = \mathcal{M}$ by Lemma 3.8 and, since \mathcal{M} is maximal in $\mathbf{M}(\mathbf{C})$, we get that $\mathcal{N}^{r} = \text{Hom}_{\mathbf{M}(\mathbf{C})}$. This fact with the previous claim gives that $\mathcal{N} = \text{Hom}_{\mathbf{C}}$.

Finally, it is easy to see that the two assignments are mutually inverse. \Box

Remark 3.10. Let **C** be a preadditive category, A and C objects of **C** and I an ideal of $\operatorname{End}_{\mathbf{C}}(C)$. Then, $\mathcal{A}_I(A, A) = \operatorname{End}_{\mathbf{C}}(A)$ if and only if each endomorphism of C factoring through A belongs to I. Consequently, if \mathcal{M} is a maximal ideal in $\mathbf{M}(\mathbf{C})$ and C is an object with no maximal N satisfying $C \leq N$, then the following conditions are equivalent:

- (1) $\mathcal{M}^{\mathbf{e}}(C,C) = \operatorname{End}_{\mathbf{C}}(C).$
- (2) There exists an object $A \in \mathbf{M}(\mathbf{C})$ with $\mathcal{M}(A, A) \neq \operatorname{End}_{\mathbf{C}}(A)$ such that each endomorphism of A factoring through C belongs to $\mathcal{M}(A, A)$.
- (3) For each object $A \in \mathbf{M}(\mathbf{C})$ with $\mathcal{M}(A, A) \neq \operatorname{End}_{\mathbf{C}}(A)$, every endomorphism of A factoring through C belongs to $\mathcal{M}(A, A)$.

Proposition 3.9 says that, in order to compute the maximal ideals in a category \mathbf{C} , we can (1) determine the subcategories $\mathbf{M}(\mathbf{C})$ and $\mathbf{S}(\mathbf{C})$, and (2) find the maximal ideals \mathcal{M} of $\mathbf{M}(\mathbf{C})$ such that $\mathcal{M}^{\mathrm{e}}(C,C) = \mathrm{End}_{\mathbf{C}}(C)$ for each object C with no maximal N satisfying $C \leq N$. We will use this procedure in the following example.

Example 3.11. Let R be a simple non-artinian ring with $\operatorname{Soc}(R_R)$ non-projective as a right R-module. Then there exists a non projective simple right module Scontained in R. Consider the full subcategory $\mathbf{C} = \operatorname{add}(R_R) \cup \operatorname{Add}(S)$ of Mod-R. Then $\mathbf{M}(\mathbf{C}) = \operatorname{add}(R_R)$ and $\mathbf{S}(\mathbf{C}) = \emptyset$. Since R is simple, Example 1.1 says that the unique maximal ideal of $\mathbf{M}(\mathbf{C})$ is the ideal \mathcal{A}_0 associated to the zero ideal of R. However, $\mathcal{A}_0(S, S) \neq \operatorname{End}_R(S)$ since, if we take $f : R_R \to S$ an epimorphism and we denote by $g: S \to R_R$ the inclusion, we have that $g1_S f \neq 0$, which means that $1_S \notin \mathcal{A}_0(S, S)$. Then, by Theorem 3.9, \mathbf{C} does not have maximal ideals.

Remark 3.12. Let \mathbf{C} be a preadditive category. As the preceding example shows, there does not exist a bijective correspondence between maximal ideals in \mathbf{C} and maximal ideals in $\mathbf{M}(\mathbf{C})$. This is due to the fact that there can exist maximal ideals

 \mathcal{M} of $\mathbf{M}(\mathbf{C})$ such that $\mathcal{M}^{\mathbf{e}}(C, C) \neq \operatorname{End}_{\mathbf{C}}(C)$ for some object C with no maximal N satisfying $C \leq N$. More precisely, the map $(-)^{\mathbf{r}}$ from the class of maximal ideals of \mathbf{C} to the class of maximal ideals of $\mathbf{M}(\mathbf{C})$ is injective, and its image consists of those maximal ideals \mathcal{M} of $\mathbf{M}(\mathbf{C})$ for which $\mathcal{M}^{\mathbf{r}}(C, C) = \operatorname{End}_{\mathbf{C}}(C)$ for each object C with no maximal object M with $C \leq M$. The map $(-)^{\mathbf{r}}$ is not, in general, surjective.

4. MAXIMAL IDEALS INDUCED BY AN INDECOMPOSABLE INJECTIVE MODULE

We conclude the paper computing the maximal ideals of a certain subcategory of a module category. The main idea in this computation is to apply the results of the previous sections to describe the ideal associated to a maximal ideal in the endomorphism ring of an indecomposable injective module.

Let R be a ring that we fix through the rest of the section and let F be an injective R-module. Recall that F is indecomposable if and only if F has a local endomorphism ring [2, Theorem 25.4].

Lemma 4.1. Let F be an indecomposable injective module, and let I be the maximal ideal of $\operatorname{End}_R(F)$. The following conditions are equivalent for modules A, B and $f \in \operatorname{Hom}_R(A, B)$:

- (1) $f \notin \mathcal{A}_I(A, B)$.
- (2) There exists $\alpha \colon F \to A$ and $\beta \colon B \to F$ such that $\beta f \alpha = 1_F$.
- (3) There exists a submodule C of A such that $C \cong F$ and $C \cap \ker f = 0$.

Proof. (1) \Rightarrow (2). If $f \notin A_I$, there exists $\alpha \colon F \to A$ and $\beta \colon A \to F$ such that $\beta f \alpha \notin I$. Since the endomorphisms of F not belonging to I are isomorphisms, there exists an inverse $\gamma \in \operatorname{End}_R(F)$ of $\beta f \alpha$. Then $\gamma \beta f \alpha = 1_F$.

 $(2) \Rightarrow (1)$ is trivial.

 $(2) \Rightarrow (3)$. Set $C = \alpha(F)$, which is isomorphic to F as α is monic. Then $A = C \oplus \ker(\beta f)$. In particular, $C \cap \ker f \subseteq C \cap \ker(\beta f) = 0$.

 $(3) \Rightarrow (2)$. Let $\alpha: F \to A$ be a monomorphism with image C. Since $C \cap \ker f = 0$, $f\alpha$ is a monomorphism. Since F is an injective, this implies the existence of $\beta: B \to F$ with $\beta f \alpha = 1_F$, as desired.

As a byproduct of this result we get:

Corollary 4.2. Let F be an indecomposable injective module, and let I be the maximal ideal of $\operatorname{End}_R(F)$. Then, for any pair A, B of modules, $\mathcal{A}_I(A, B) \neq \operatorname{Hom}_R(A, B)$ if and only if both A and B contain a submodule isomorphic to F.

Proof. If $\mathcal{A}_I(A, B) \neq \operatorname{Hom}_R(A, B)$ and $f: A \to B$ does not belong to $\mathcal{A}_I(A, B)$, then, by the previous lemma, there exists $C \leq A$ with $C \cong F$ and $C \cap \ker f = 0$. This implies that f(C) is isomorphic to F. Thus C and f(C) are submodules with the desired property.

Conversely, assume $A = A_1 \oplus A_2$ and $B = B_1 \oplus B_2$ with $A_1 \cong B_1 \cong F$. Let $f: A_1 \to B_1$ be an isomorphism and let $F: A \to B$ be the morphism $f \oplus 0$. Then F trivially satisfies (3) of the previous lemma and, consequently, F does not belong to $\mathcal{A}_I(A, B)$.

It follows that, in order to determine \mathcal{A}_I , we only have to look at the modules A containing isomorphic copies of F. These modules have a nice description if R is right noetherian as we will prove next. We shall use the following well known facts about an injective module F:

- (1) If K is a non-zero submodule of F, then there exists an injective submodule G of F containing K such that the inclusion $K \leq G$ is an injective envelope. In particular, if F is indecomposable, then the inclusion $K \leq F$ is an injective envelope of K.
- (2) F satisfies the exchange property, which means that for each module N and each decomposition $F \oplus N = \bigoplus_{\alpha < \kappa} A_{\alpha}$, there exists a submodule $B_{\alpha} \leq A_{\alpha}$ for each $\alpha < \kappa$ such that $F \oplus N = F \oplus (\bigoplus_{\alpha < \kappa} B_{\alpha})$.

Theorem 4.3. Suppose R right noetherian. Let F be an indecomposable injective module. Then every module M has a decomposition $M = M_1 \oplus M_2$ where:

- (1) $M_1 \cong F^{(\Gamma)}$ for some set Γ .
- (2) M_2 does not contain submodules isomorphic to F.

Moreover, Γ is uniquely determined up to cardinality and M_2 is uniquely determined up to isomorphism.

Proof. If M does not have submodules isomorphic to F, there is nothing to prove. So suppose that M has submodules isomorphic to F and consider the non-empty family of submodules

$$\mathcal{S} = \{ N \le M : N \cong F^{(\Gamma)} \text{ for some set } \Gamma \}$$

Let us show that S is inductive. Take a chain $S' = \{M_{\lambda} : \lambda \in \Lambda\}$ in S. We will prove that $M' := \bigcup_{\lambda \in \Lambda} M_{\lambda} \in S$. Since R is right noetherian, directed colimits of injective modules are injective [3, Exercise 8 of Chapter I], so that M' is injective. Hence, M' has a direct-sum decomposition, $M' = \bigoplus_{i \in I} F_i$, where the submodules F_i of M' are injective and indecomposable [13, Theorem 3.48, p. 82]. Let $i \in I$ and x be a non-zero element of F_i ; note that F_i is the injective envelope of xR. Since $x \in M_{\lambda}$ for some $\lambda \in \Lambda$, and $M_{\lambda} \in S$, x belongs to a direct summand of M_{λ} isomorphic to F^n for some n. But, as F_i is the injective envelope of xR, F^n must contain a direct summand isomorphic to F_i . This implies that $F_i \cong F$ because all indecomposable direct summands of F^n are isomorphic to F. Consequently, $M' \in S$.

The first part of the statement now follows taking a maximal element M_1 of S and a submodule M_2 of M with $M_1 \oplus M_2 = M$.

In order to prove the last part of the statement, suppose that $M = M'_1 \oplus M'_2$ is another decomposition of M satisfying (1) and (2). Write $M_1 = \bigoplus_{\beta < \kappa} G_\beta$ and $M'_1 = \bigoplus_{\alpha < \lambda} F_\alpha$ for suitable families of submodules $\{G_\beta : \beta < \kappa\}$ and $\{F_\alpha : \alpha < \lambda\}$ of M_1 and M'_1 respectively, and cardinals κ and λ , satisfying $G_\beta \cong F_\alpha \cong F$ for each $\beta < \kappa$ and $\alpha < \lambda$.

Since M_1 satisfies the exchange property, there exist submodules $H_{\alpha} \leq F_{\alpha}$ for each $\alpha < \lambda$ and $N'_2 \leq M'_2$ such that $M = M_1 \oplus \left(\bigoplus_{\alpha < \lambda} H_{\alpha}\right) \oplus N'_2$. Since F_{α} is indecomposable for each $\alpha < \lambda$, it follows that $H_{\alpha} = 0$ or $H_{\alpha} = F_{\alpha}$. But, as $\left(\bigoplus_{\alpha < \lambda} H_{\alpha}\right) \oplus N'_2 \cong M_2$ and M_2 does not contain any submodule isomorphic to F, we get that $H_{\alpha} = 0$ for each $\alpha < \lambda$. That is, $M = M_1 \oplus N'_2$. Applying the modular law, we see that $M'_2 = N'_2 \oplus (M'_2 \cap M_1)$. We claim that $M'_2 \cap M_1 = 0$. Assume the contrary, i. e., that $M_1 \cap M'_2 \neq 0$. Since $M_1 \cap M'_2$ is a direct summand of M, it is a direct summand of M_1 and, consequently, it is injective. As it is non-zero, there exists $\beta < \kappa$ such that $G_\beta \cap M_1 \cap M'_2 \neq 0$. Let x be a non-zero element in this intersection. Notice that $xR \leq G_\beta$ is an injective envelope. Since $M_1 \cap M'_2$ is injective, there exists an injective envelope C of xR contained in $M_1 \cap M'_2$. But C is isomorphic to F and M'_2 does not contain any submodule isomorphic to F, a contradiction. This proves the claim.

As a consequence, $M = M_1 \oplus M'_2$. Then $M_1 \cong M'_1$ and $M_2 \cong M'_2$. By Azumaya's Theorem [2, Theorem 12.6], $\kappa = \lambda$ and we are done.

We can use this result to define the F-rank of a module M, for any indecomposable injective module F and any module M over a right noetherian ring.

Definition 4.4. Suppose R is right noetherian. Let F be an indecomposable injective module. Given any module M and any cardinal κ , we say that M has F-rank equal to κ (written $r_F(M) = \kappa$) if $M = M_1 \oplus M_2$, where $M_1 \cong F^{(\kappa)}$ and M_2 has no direct summand isomorphic to F. We will denote by \mathbf{C}_F the full subcategory of Mod-R whose objects are all modules of finite F-rank.

Now we can compute the maximal ideals in the category \mathbf{C}_F for an indecomposable injective module F. First of all, we compute the subcategories $\mathbf{M}(\mathbf{C}_F)$ and $\mathbf{S}(\mathbf{C}_F)$.

Proposition 4.5. Suppose R is right noetherian. Let F be an indecomposable injective module. Then:

(1) $\mathbf{M}(\mathbf{C}_F) = \{ M \in \mathbf{C}_F : \mathbf{r}_F(M) > 0 \}.$ (2) $\mathbf{S}(\mathbf{C}_F) = \{ M \in \mathbf{C}_F : \mathbf{r}_F(M) = 0 \}.$

Proof. (1) Let M be a module in \mathbb{C}_F with $r_F(M) = 0$. We can find an infinite cardinal κ such that M is $< \kappa$ -generated in Mod-R. By Proposition 2.4, $M \prec M^{(\kappa)}$ in Mod-R. Since \mathbb{C}_F is a full subcategory of Mod-R and $M^{(\kappa)} \in \mathbb{C}_F$, we get that $M \prec M^{(\kappa)}$ in \mathbb{C}_F . Consequently, M does not belong to $\mathbb{M}(\mathbb{C}_F)$. This proves the inclusion $\mathbb{M}(\mathbb{C}_F) \subseteq \{M \in \mathbb{C}_F : r_F(M) > 0\}.$

In order to prove the inverse inclusion, let M be any module with $r_F(M) > 0$ and suppose, by contradiction, that $M \notin \mathbf{M}(\mathbf{C}_F)$. Then there exists $N \in \mathbf{C}_F$ such that $M \prec N$. Let $M = M_1 \oplus M_2$ and $N = N_1 \oplus N_2$ be the decompositions given by Theorem 4.3, and let E be the set of Definition 2.1. Write $M_1 = \bigoplus_{i=1}^n G_i$ and $N_1 = \bigoplus_{j=1}^m F_j$ for modules G_i and F_j isomorphic to F for each $i = 1, \ldots, n$ and $j = 1, \ldots, m$.

We claim that $f(N_1) \neq 0$ for each $(f,g) \in E$. Given $i = 1, \ldots, n, g(G_i)$ is isomorphic to F. Then $g(E_i) \cap N_1 \neq 0$ since, otherwise, $N_1 \oplus g(E_i)$ would be a direct summand of N, and N_2 would contain a submodule isomorphic to F. Now, taking $y \in g(E_i) \cap N_1$ non-zero and $x \in E_i$ with g(x) = y, we have that $f(y) = x \neq 0$. This proves the claim.

For each i = 1, ..., m, let $q_i : G_1 \to F_i$ be an isomorphism. Then q_i extends to a morphism $p_i : M \to N$. The preceeding claim says that for each $(f, g) \in E$, $fp_i \neq 0$ for some i = 1, ..., m. Consequently, if

$$E_i = \{(f,g) \in E : fp_i \neq 0\}$$

for each i = 1, ..., m, we conclude that $E \subseteq \bigcup_{i=1}^{m} E_i$. This is a contradiction, because the second set has cardinality smaller than |E| by Definition 2.1(2).

The conclusion is that there is no object $N \in \mathbf{C}_F$ with $M \prec N$, so that $M \in \mathbf{M}(\mathbf{C}_F)$.

(2) As a direct consequence of (1) we have $\mathbf{S}(\mathbf{C}_F) \subseteq \{M \in \mathbf{C}_F : \mathbf{r}_F(M) = 0\}$. In order to see the other inclusion, fix $M \in \mathbf{C}_F$ with $\mathbf{r}_F(M) = 0$. Then, as in the proof of (1), there exists an infinite cardinal κ such that $M \prec M^{(\kappa)}$ in \mathbf{C}_F . By Lemma 1.2, $M \prec F \oplus M^{(\kappa)}$. Then $M \in \mathbf{S}(\mathbf{C}_F)$ because $F \oplus M^{(\kappa)} \in \mathbf{M}(\mathbf{C}_F)$ by (1). \Box

Finally, we can determine all maximal ideals of the category \mathbf{C}_F for an indecomposable injective module F over a right noetherian ring.

Proposition 4.6. Suppose R is right noetherian. Let F be an indecomposable injective module and I be the maximal ideal of $\operatorname{End}_R(F)$. Then \mathcal{A}_I is the unique maximal ideal of \mathbb{C}_F .

Proof. By Theorem 3.9, we only have to compute the maximal ideals of $\mathbf{M}(\mathbf{C}_F)$. First, we prove that \mathcal{A}_I is a maximal ideal of $\mathbf{M}(\mathbf{C}_F)$. Given $M \in \mathbf{M}(\mathbf{C}_F)$, since $\mathcal{A}_I(M, M) \neq \operatorname{End}_R(M)$ by Corollary 4.2, we have to see, applying [9, Lemma 2.4], that

(a) $\mathcal{A}_I(M, M)$ is maximal in $\operatorname{End}_R(M)$ and,

(b) if $J_0 = \mathcal{A}_I(M, M)$, then $\mathcal{A}_I = \mathcal{A}_{J_0}$.

Let $M = M_1 \oplus M_2$ be the decomposition of M given in Theorem 4.3. Note that, by Lemma 1.2 and Corollary 4.2,

 $\mathcal{A}_I(M, M) = \{ f \in \operatorname{End}_R(M) : \pi_1 f \iota_1 \in \mathcal{A}_I(M_1, M_1) \},\$

where $\pi_i : M \to M_i$ and $\iota_i : M_i \to M$ are the corresponding projections and inclusions for i = 1, 2. As $M_1 \in \operatorname{add}(F)$ and \mathcal{A}_I is a maximal ideal in this category by Example 1.1, $\mathcal{A}_I(M_1, M_1)$ is a maximal ideal in $\operatorname{End}_R(M_1, M_1)$. In order to see that $\mathcal{A}_I(M, M)$ is maximal, let J be an ideal of $\operatorname{End}_R(M)$ strictly containing $\mathcal{A}_I(M, M)$. Let $f \in J$ not belonging to $\mathcal{A}_I(M, M)$. Then $\pi_1 f \iota_1$ does not belong to $\mathcal{A}_I(M_1, M_1)$ and, by the maximality of this ideal in $\operatorname{End}_R(M_1, M_1)$, there exist $g \in \mathcal{A}_I(M_1, M_1)$ and $\alpha, \beta \in \operatorname{End}_R(M_1)$ such that $1_{M_1} = g + \alpha \pi_1 f \iota_1 \beta$. Then we have the identity

$$1_{M_1} \oplus 0 = g \oplus 0 + (\alpha \oplus 0)f(\beta \oplus 0)$$

in $\operatorname{End}_R(M)$, with both g and $(\alpha \oplus 0)f(\beta \oplus 0)$ in J. Consequently, $1_{M_1} \oplus 0 \in J$. Now use $0 \oplus 1_{M_2} \in J$ to get that $1_M = 1_{M_1} \oplus 0 + 0 \oplus 1_{M_2} \in J$ and that $J = \operatorname{End}_R(M)$.

Let us prove (b). Since \mathcal{A}_{J_0} is the greatest of all the ideals \mathcal{I}' of \mathbb{C}_F such that $\mathcal{I}'(M,M) \leq J_0$, we conclude that $\mathcal{A}_I \subseteq \mathcal{A}_{J_0}$. In order to prove the other inclusion, we only have to see, by the same argument, that $\mathcal{A}_{J_0}(F,F) \leq I$. Let $f \in \mathcal{A}_{J_0}(F,F)$. Fix a monomorphism $\alpha_1 \colon F \to M_1$, which, as $\operatorname{Im} \alpha_1$ is a direct summand, has an splitting $\beta_1 \colon M_1 \to F$. Then note that $\iota_1 \alpha_1 f \beta_1 \pi_1 \in J_0$, because $f \in \mathcal{A}_{J_0}(F,F)$. Then $\pi_1 \iota_1 \alpha_1 f \beta_1 \iota_1 \alpha_1 \in \mathcal{A}_I(M_1,M_1)$ and, consequently, $\beta_1 \pi_1 \iota_1 \alpha_1 f \beta_1 \iota_1 \alpha_1 \in \mathcal{A}_I(F,F) = I$. Since

$$f = \beta_1 \pi_1 \iota_1 \alpha_1 f \beta_1 \iota_1 \alpha_1,$$

we conclude that $f \in I$.

To finish the proof, we will see that \mathcal{A}_I is the unique maximal ideal of $\mathbf{M}(\mathbf{C}_F)$. Let \mathcal{M} be any maximal ideal of $\mathbf{M}(\mathbf{C}_F)$ and $M \in \mathbf{M}(\mathbf{C}_F)$ be such that $\mathcal{M}(M, M) \neq \mathcal{M}(M, M)$ End_R(M). If $J = \mathcal{M}(M, M)$, then $\mathcal{M} = \mathcal{A}_J$ by [9, Lemma 2.4]. Let $M = M_1 \oplus M_2$ be the decomposition of M given by Theorem 4.3. By Lemma 1.2, either $\mathcal{M}(M_1, M_1)$ or $\mathcal{M}(M_2, M_2)$ have to be proper. But $M_2 \in \mathbf{S}(\mathbf{C}_F)$ by Proposition 4.5, so that $\mathcal{M}(M_2, M_2) = \text{End}_R(M_2)$ by Remark 3.5. Thus $\mathcal{M}(M_1, M_1) \neq \text{End}_R(M_1)$ which implies, again by Lemma 1.2, that $\mathcal{M}(F, F) \neq \text{End}_R(F)$. Since I is the unique maximal ideal of $\text{End}_R(F)$ and $\mathcal{M}(E, E)$ is maximal, we conclude that $\mathcal{M}(F, F) = I$. Now $\mathcal{M} = \mathcal{A}_I$ by [9, Lemma 2.4], which concludes the proof. \Box

Example 4.7. The category \mathbf{C}_F has maximal ideals and objects M, N with $M \prec N$ since, if M is an object in \mathbf{C}_F with F-rank 0, then each direct sum of copies of M belongs to \mathbf{C}_F . By Proposition 2.4, there exist objects N in \mathbf{C}_F with $M \prec N$.

References

- Jirí Adámek and Jirí Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. MR1294136
- [2] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Second, Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR1245487
- [3] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum, Reprint of the 1956 original. MR1731415
- [4] Edgar E. Enochs and Overtoun M. G. Jenda, *Relative homological algebra. Volume 1*, extended, De Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. MR2857612
- [5] A. Facchini, Subdirect representations of categories of modules, Rings, modules and representations, 2009, pp. 139–151. MR2508149
- [6] A. Facchini and M. Perone, On some noteworthy pairs of ideals in Mod-R, Appl. Categ. Structures 22 (2014), no. 1, 147–167. MR3163512
- [7] A. Facchini and P. P^{*} ríhoda, Factor categories and infinite direct sums, Int. Electron. J. Algebra 5 (2009), 135–168. MR2471385
- [8] Alberto Facchini, Krull-Schmidt fails for serial modules, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4561–4575. MR1376546
- [9] Alberto Facchini and Marco Perone, Maximal ideals in preadditive categories and semilocal categories, J. Algebra Appl. 10 (2011), no. 1, 1–27. MR2784751
- [10] Alberto Facchini and Pavel P^{*} ríhoda, Endomorphism rings with finitely many maximal right ideals, Comm. Algebra 39 (2011), no. 9, 3317–3338. MR2845575
- [11] X. H. Fu, P. A. Guil Asensio, I. Herzog, and B. Torrecillas, *Ideal approximation theory*, Adv. Math. 244 (2013), 750–790. MR3077888
- [12] Ivo Herzog, The phantom cover of a module, Adv. Math. 215 (2007), no. 1, 220–249. MR2354989
- [13] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR1653294
- [14] Jan St'ovícek, Deconstructibility and the Hill lemma in Grothendieck categories, Forum Math. 25 (2013), no. 1, 193–219. MR3010854

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALMERIA, E-04071, ALMERIA, SPAIN

E-mail address: mizurdia@ual.es

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PADOVA, 35121 PADOVA, ITALY

E-mail address: facchini@math.unipd.it