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Open maps of involutive quantales∗

Pedro Resende

Abstract

By a map p : Q → X of involutive quantales is meant a homomorphism
p∗ : X → Q. Calling a map p weakly open if p∗ has a left adjoint p! which
satisfies the Frobenius reciprocity condition (i.e., p! is a homomorphism of X-
modules), we say that p is open if it is stably weakly open. We also study a
two-sided version, FR2, of the Frobenius reciprocity condition, and show that
the weakly open surjections that satisfy FR2 are open. Maps of the latter kind
arise in the study of Fell bundles on groupoids.
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1 Introduction

Quantales, in particular involutive quantales, are generalizations of locales which often
can be regarded as generalized spaces. For instance, there are several notions of point of
a quantale [10,18,20], and there are correspondences between quantales and other types

∗Work funded by FCT/Portugal through project PEst-OE/EEI/LA0009/2013 and by COST (Eu-
ropean Cooperation in Science and Technology) through COST Action MP1405 QSPACE.
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of generalized space such as Grothendieck toposes [5–7,24], C*-algebras [1,11,18,19,28],
or groupoids [21, 23]. To some extent the geometric meaning of quantales is borrowed
from such structures, and also from the functoriality of the correspondences, which in
turn depends on which notion of morphism of quantales we adopt.

No choice of morphism works for all purposes. For instance, inverse quantal
frames [23] form a bicategory which is biequivalent to that of étale groupoids [25],
and this suggests that “geometric maps” of these quantales can be defined in terms of
quantale bimodules so as to correspond to those groupoid bi-actions which in turn yield
geometric morphisms of étendues [4,14,15]. (A similar notion of morphism of groupoids
is relevant in the context of strong Morita equivalence for C*-algebras [13,16,17].) An-
other more immediate (and in general different) notion is based on homomorphisms
of involutive quantales, which correspond, for groupoids, to the algebraic morphisms
of [2, 3]. See [25]. Homomorphisms are also natural when relating C*-algebras and
quantales, since ∗-homomorphisms of C*-algebras translate functorially to involutive
homomorphisms between their quantales [18]. And another C*-algebra-related con-
text, in fact the one which motivates the present paper, is that of Fell bundles on
groupoids [12], where again quantale homomorphisms arise naturally [26].

Here we shall be concerned with general involutive homomorphisms of involutive
quantales or, rather, with their formal duals as in locale theory [8]: by a (continuous)
map of involutive quantales p : Q → X will be meant an involutive homomorphism
p∗ : X → Q, i.e., a mapping that satisfies the following conditions for all x, y ∈ X and
all families (xi) in X :

p∗(xy) = p∗(x)p∗(y)

p∗(x∗) =
(
p∗(x)

)∗

p∗
(∨

i

xi

)
=

∨

i

p∗(xi)

This is referred to as the inverse image homomorphism of p. Following the terminology
for locales in [22], if p∗ has a (necessarily involution preserving) left adjoint p! we say
that p is semiopen, and refer to p! as the direct image homomorphism of p.

The main purpose of this short paper is to examine conditions under which a
semiopen map of involutive quantales can be regarded as being open. This is not for
the sake of generalization per se, but rather because examples of open-like maps arise
from some Fell bundles on groupoids (see section 3), and it is worth understanding
their properties in particular as regards stability under pullbacks.

2 Preliminaries

This section is mostly for fixing terminology and notation.

Quantic subspaces. We shall denote by Qu the usual category of involutive quan-
tales whose arrows are the involutive homomorphisms, and by QSp the opposite cat-
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egory Quop, whose arrows are the maps. We refer to QSp as the category of quan-
tic spaces, in order to disambiguate our terminology, for instance when referring to
subobjects: whereas by an involutive subquantale is usually meant a subobject of an
involutive quantale in the algebraic sense, in this paper a quantic subspace of an in-
volutive quantale Q is defined to be an equivalence class of regular monomorphisms
m : S → Q in QSp; that is, an equivalence class of maps m such that m∗ is a surjective
homomorphism, where two such maps m : S → Q and m′ : S ′ → Q are equivalent if
there is an isomorphism S ∼= S ′ commuting with m and m′.1

A quantic subspace of Q can also be identified with an involutive quantic nucleus
on Q, i.e., a closure operator on Q that satisfies j(a)j(b) ≤ j(ab) and j(a∗) = j(a)∗ for
all a, b ∈ Q, as we now explain. Let Q be an involutive quantale, and let j : Q → Q
be an involutive quantic nucleus. The set of closed elements

Qj = j(Q) = {a ∈ Q | j(a) = a}

is closed under meets and involution, and it is an involutive quantale with multiplica-
tion defined by (a, b) 7→ j(ab) and the join of each family (ai) in Qj being j

(∨
i ai

)
.

Moreover, j : Q → Qj is a surjective homomorphism of involutive quantales, and,
up to isomorphisms, every surjective homomorphism of involutive quantales arises like
this. For a proof of this (for non involutive quantales) see [27]. Hence, the involutive
quantic nuclei on Q are in bijective correspondence with quantic subspaces of Q: given
a regular monomorphism m : S → Q in QSp we have S ∼= Qj , where j = m∗ ◦m

∗ and
m∗ is the right adjoint of m∗.

Quantic subspaces presented by relations. Let Q be an involutive quantale. If
R ⊆ Q × Q is a binary relation on Q, the least (in the pointwise order) involutive
quantic nucleus j on Q such that j(r) = j(s) for all (r, s) ∈ R is denoted by jR, and

ιR : QjR → Q

is the regular monomorphism defined by ι∗R = jR. Any regular monomomorphism

ξ : S → Q

such that ξ∗(r) = ξ∗(s) for all (r, s) ∈ R factors (uniquely) through ιR:

S
ξ //

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ Q

QjR

ιR

88qqqqqqqqqqqqq

1We note that the terminology ‘quantic space versus quantale’ is consistent with the terminology
‘space versus locale’ of Joyal and Tierney [9], albeit not with the more common terminology ‘locale
versus frame’. An alternative would be to use ‘quantale’ in the topological sense and, say, ‘quantic
frame’ in the algebraic one. However, the ensuing meaning of ‘subquantale’ would go against the
usual terminology in quantale theory, and, moreover, ‘quantic frame’ is misleadingly close to ‘quantal
frame’, which has been consistently used by more than one author in order to refer to a quantale
whose order satisfies the locale distributivity law.
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This provides us with the construction of equalizers in QSp: the equalizer of two maps
f, g : Q → X is the quantic subspace ιR : QjR → Q for R = {(f ∗(x), g∗(x)) | x ∈ X}.

The following facts are easily derived from [9] and are useful in calculations in order
to translate the universal property of QjR into sup-lattices:

2.1 Lemma. Let Q be an involutive quantale, let R ⊆ Q × Q be a binary relation
on Q, and let R̃ ⊆ Q × Q be the least binary relation on Q such that the following
conditions hold:

• R ⊆ R̃,

• (r∗, s∗) ∈ R̃ for all (r, s) ∈ R̃,

• (ar, as) ∈ R̃ for all (r, s) ∈ R̃ and all a ∈ Q.

The following equivalent conditions hold:

1. The quantic nucleus jR coincides with the least closure operator j on Q such that
j(r) = j(s) for all (r, s) ∈ R̃.

2. QjR consists of those α ∈ Q such that for all (r, s) ∈ R̃ the following condition
holds:

r ≤ α ⇐⇒ s ≤ α .

3. Any sup-lattice homomorphism h : Q → L, where L is a sup-lattice, factors
through the quotient homomorphism jR : Q → QjR if and only if for all (r, s) ∈ R̃
we have h(r) = h(s).

3 Open maps

Locales. Let us first recall open maps of locales (see [9]). A map of locales p : L → X
is open if the image of any open sublocale of L is an open sublocale of X . Equivalently,
p is open if and only if the inverse image homomorphism p∗ : X → L has a left adjoint
p! : L → X which is a homomorphism of X-modules; that is, such that for all x ∈ X
and a ∈ L the Frobenius reciprocity condition holds:

p!(a ∧ p∗(x)) = p!(a) ∧ x .

Then it is also true that a sublocale of X is open if and only if its inclusion into X in
Loc = Frmop is an open map. Moreover, the open sublocales of X can be identified
with elements u ∈ X : the quotient that determines the corresponding open sublocale
can be taken to be (−) ∧ u : X → ↓u. Finally, one important property of open maps
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is their stability under pullbacks: if the following is a pullback diagram in Loc and p
is open then so is π1,

Y ⊗X L
π2 //

π1

��

L

p

��
Y

f
// X

and the following diagram is commutative (Beck–Chevalley condition):

Y ⊗X L oo
π∗

2

π1!

��

L

p!
��

Y oo
f∗

X

Frobenius reciprocity conditions. A straightforward generalization of the facts
above does not exist for an involutive quantale X , as there is no a priori known notion
of open quantic subspace of X , and the elements u ∈ X do not determine quotients
of X in Qu in a canonical way. So we shall look at maps of involutive quantales
satisfying conditions that mimick the Frobenius reciprocity condition of locales, at the
same time keeping in mind that any reasonable notion of open map should be such that
pullbacks of open maps are open. Namely, we shall examine the following conditions
for a semiopen map p : Q → X of involutive quantales:

FR1: p!(ap
∗(x)) = p!(a)x for all x ∈ X and a ∈ Q;

FR2: p!(ap
∗(x)b) = p!(a)xp!(b) for all x ∈ X and a, b ∈ Q.

The first condition, FR1, which we refer to as the one-sided Frobenius reciprocity
condition, is an immediate generalization of the Frobenius reciprocity condition of
locales, stating that p! is a homomorphism of left X-modules. We shall call a semiopen
map that satisfies FR1 weakly open, following [26]. We note that, due to the involution,
FR1 is equivalent to the analogous condition applied to right X-modules:

3.1 Lemma. Let p : Q → X be a weakly open map. Then for all a ∈ Q and x ∈ X
we have

p!(p
∗(x)a) = xp!(a) .

Proof. Let a ∈ Q and x ∈ X . Then p!
(
p∗(x)a

)
= p!

(
p∗(x)a

)∗∗
= p!

(
(p∗(x)a)∗

)∗
=

p!
(
a∗p∗(x)∗

)∗
= p!

(
a∗p∗(x∗)

)∗
=

(
p!(a

∗)x∗
)∗

=
(
p!(a)

∗x∗
)∗

= xp!(a).

Another simple property of weakly open maps is the following:

3.2 Lemma. Let p : Q → X be a weakly open map with X a unital involutive quantale.
Then p is a surjection if and only if p!(p

∗(e)) = e.

5



Proof. p is a surjection if and only if for all x ∈ X we have p!(p
∗(x)) = x, so one

implication is trivial. Let then p!(p
∗(e)) = e and assume that p is weakly open. Then for

all x ∈ X we have p!(p
∗(x)) = p!(p

∗(ex)) = p!(p
∗(e)p∗(x)) = p!(p

∗(e))x = ex = x.

Contrary to the situation with locales, it is not to be expected that weakly open
maps should be stable under pullbacks in QSp (cf. section 5). Hence, as a working
definition of openness, even if a naive one, let us say that a semiopen map p : Q → X
is open if for all maps f : Y → X the pullback f ∗(p) in QSp of p along f is weakly
open:

P //

f∗(p)
��

Q

p

��
Y

f
// X

It is clear that identity maps are open, and that the class of open maps is closed under
composition, so the open maps define a subcategory of QSp. And, since any pullback of
f ∗(p) is itself isomorphic to a pullback of p, this subcategory is closed under pullbacks
along arbitrary maps:

3.3 Lemma. Let p : Q → X be an open map of involutive quantales, and let f : Y → X
be an arbitrary map of involutive quantales. Then the pullback f ∗(p) is an open map.

Note that it is not implied that open maps of locales (in the usual sense) are
necessarily open when regarded as maps in QSp.

The second condition, FR2, will be referred to as the two-sided Frobenius reciprocity
condition. It is not a generalization of the Frobenius reciprocity condition of locales,
for in general it is not satisfied by open maps of locales, as the following shows:

3.4 Lemma. Let p : L → X be a semiopen map of locales that satisfies FR2. Then
for all a, b ∈ L we have p!(a ∧ b) = p!(a) ∧ p!(b).

Proof. Let a, b ∈ L. Then p!(a∧ b) = p!(a∧ 1L ∧ b) = p!(a∧ p∗(1X)∧ b) = p!(a) ∧ 1X ∧
p!(b) = p!(a) ∧ p!(b).

3.5 Example. Let f : X → Y be a continuous open map of topological spaces, with X
Hausdorff. The map of locales Ω(f) : Ω(X) → Ω(Y ) defined by Ω(f)∗ = f−1 satisfies
FR2 if and only if f is injective.

This example also shows that in general FR1 does not imply FR2, whereas in some
situations (in particular those coming from Fell bundles — see below) FR2 implies
FR1:

3.6 Lemma. Let p : Q → X be a semiopen map of involutive quantales satisfying
FR2. If X is unital and p!(p

∗(e)) = e then p is surjective and it satisfies FR1.
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Proof. Let e be the multiplicative unit of X . For all a ∈ Q and x ∈ X we have, using
FR2,

p!(ap
∗(x)) = p!(ap

∗(xe)) = p!(ap
∗(x)p∗(e))

= p!(a)xp!(p
∗(e)) = p!(a)xe = p!(a)x ,

and thus FR1 holds. Surjectivity of p follows from Lemma 3.2.

As we shall see in section 5, the conjunction of FR1 and FR2 is interesting, at least
in the case of surjective maps, because the class of semiopen surjections satisfying FR1
and FR2 is closed under pullbacks. In particular, it follows that such surjections are
examples of open maps according to the definition above.

Fell bundles. A Fell bundle π : E → G on a (suitable) topological étale groupoid
G is a Banach bundle on G equipped with additional structure such that, among
other things, E is an involutive semicategory and p is functorial [12]. Associated to
a Fell bundle π : E → G there is a convolution algebra of sections Cc(G,E) (this
generalizes the usual convolution algebra Cc(G) of continuous compactly supported
functions G → C) and for a large class of C*-completions A of Cc(G,E) we obtain
maps of involutive quantales p : MaxA → Ω(G), where MaxA and Ω(G) are the
involutive quantales associated to A and G, respectively (MaxA consists of all the
norm-closed linear subspaces of A with multiplication given by the topological closure
of the linear span of the pointwise multiplication, and Ω(G) is the topology of G under
pointwise multiplication). The properties of p are closely related to properties of π
and A. In particular, the situations where p is semiopen are closely related to G
being Hausdorff and A being the reduced C*-algebra C∗

r (G,E). Further imposing on
p conditions that approach FR2 has the effect of restricting the bundle to be a line
bundle, or even force G to be a principal groupoid (an equivalence relation). See [26].

3.7 Example. As a simple illustration, take G to be the discrete pair groupoid (=
total binary relation) on the set {1, . . . , n}, and let π := π1 : G × C → G. The
convolution algebra of π can be identified with the matrix algebra A = Mn(C), and
the quantale Ω(G) is the quantale of binary relations on {1, . . . , n}. For each binary
relation U ∈ Ω(G) let p∗(U) be the set of matrices M such that mij = 0 whenever
(i, j) /∈ U . Then p∗(U) ∈ MaxA. The mapping p∗ : Ω(G) → MaxA is an injective
homomorphism of involutive quantales, and it has a left adjoint p! which to each linear
subspace V ⊆ A assigns the relation

{(i, j) ∈ G | mij 6= 0 for some M ∈ V } .

The semiopen map p thus defined is a surjection in QSp. It satisfies FR2, and therefore
also FR1 because Ω(G) is unital.

3.8 Example. Let again π = π1 : G× C → G, now for G a non-trivial finite discrete
group. Then the convolution algebra A can be identified with the group algebra CG,
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and again we obtain a surjective semiopen map p : MaxA → Ω(G), such that p∗(U) =
CU for all U ⊆ G and

p!(V ) = {g ∈ G | vg 6= 0 for some v ∈ V }

for all V ∈ MaxA. Now p satisfies FR1 but not FR2.

4 Pullbacks of quantic spaces

Given two sup-lattices L and M we write L ⊗ M for their tensor product, as in [9],
and L ⊕M (= L ×M) for their coproduct, which we shall refer to as the direct sum
of L and M . Similarly,

⊕
i Li is the coproduct of a family (Li) of sup-lattices.

Products. Let Y and Q be involutive quantales. The product Y ∗Q in QSp can be
constructed concretely as being the following sup-lattice:

Y ∗Q :=
∞⊕

n=1

Tn

∼= Y ⊕Q⊕ (Y ⊗Q)⊕ (Q⊗ Y )⊕ (Y ⊗Q⊗ Y )⊕ (Q⊗ Y ⊗Q)⊕ · · · ,

where

T4k+1 = Y ⊗ (Q⊗ Y )⊗k

T4k+2 = Q⊗ (Y ⊗Q)⊗k

T4k+3 = (Y ⊗Q)⊗(k+1)

T4k+4 = (Q⊗ Y )⊗(k+1)

for all k ∈ {0, 1, 2, . . .} and we use the notation Z⊗k for the tensor product Z⊗· · ·⊗Z
of k copies of Z, with Z⊗0 being Ω = P({∗}). Hence,

(Y ∗Q)⊗ (Y ∗Q) ∼=

∞⊕

m,n=1

Tm ⊗ Tn .

The quantale multiplication on Y ∗Q is given by a sup-lattice homomorphism

(Y ∗Q)⊗ (Y ∗Q) → Y ∗Q ,

which, due to the universal property of the sup-lattice coproduct, is equivalent to
specifying, for each m and n, a sup-lattice homomorphism

µm,n : Tm ⊗ Tn → Y ∗Q .

8



Succintly, the homomorphisms µm,n are computed using the following rules, for all
y, y′ ∈ Y and a, a′ ∈ Q:

(· · · ⊗ y)(a⊗ · · · ) = · · · ⊗ y ⊗ a⊗ · · ·

(· · · ⊗ a)(y ⊗ · · · ) = · · · ⊗ a⊗ y ⊗ · · ·

(· · · ⊗ y)(y′ ⊗ · · · ) = · · · ⊗ yy′ ⊗ · · ·

(· · · ⊗ a)(a′ ⊗ · · · ) = · · · ⊗ aa′ ⊗ · · ·

For instance,
µ5,6 : (Y ⊗ (Q⊗ Y ))⊗ (Q⊗ (Y ⊗Q)) → Y ∗Q

is given by

(y ⊗ (a⊗ y′))⊗ (b⊗ (z ⊗ b′)) 7→ (y ⊗ a)⊗ (y′ ⊗ b)⊗ (z ⊗ b′) ,

which means µ5,6 is an isomorphism

T5 ⊗ T6

∼=
→ T11

composed with the inclusion T11 → Y ∗ Q. Another example, now one that uses the
multiplication of Y , is

µ5,5 : (Y ⊗ (Q⊗ Y ))⊗ (Y ⊗ (Q⊗ Y )) → Y ∗Q ,

which is given by

(y ⊗ (a⊗ y′))⊗ (z ⊗ (b⊗ z′)) 7→ y ⊗ (a⊗ y′z)⊗ (b⊗ z′) ,

so µ5,5 is a homomorphism
T5 ⊗ T5 → T9

following by the inclusion T9 → Y ∗Q. We note that this homomorphism is well defined
because the distributivity of the quantale product of Y ensures that µ5,5, regarded as
a multilinear map, preserves joins in each variable separately. A complete specification
of the multiplication involves sixteen different cases, corresponding to the four types
of direct summands in the construction of Y ∗ Q, and we omit it. We note that,
similarly to the two examples just seen, for each m and n there is k such that the
homomorphism µm,n is the composition of a homomorphism Tm ⊗ Tn → Tk with the
inclusion Tk → Y ∗Q.

Due to the universal property of the tensor product the multiplication thus obtained
on Y ∗Q preserves joins in each variable. It is also associative due to the associativity
of both Y and Q, and due to the fact that if a product of pure tensors τ ⊗ (τ ′ ⊗ τ

′′)
is valued in Tn then so is (τ ⊗ τ

′) ⊗ τ
′′, and thus no bracketing mismatches occur.

Therefore Y ∗ Q is a quantale. It is also an involutive quantale, with the involution
Y ∗Q → Y ∗Q defined again separately for each Tn by the generic rule

(· · · a⊗ y ⊗ b⊗ z · · · )∗ = · · · z∗ ⊗ b∗ ⊗ y∗ ⊗ a∗ · · · .
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The embeddings Y = T1 → Y ∗Q and Q = T2 → Y ∗Q are therefore homomorphisms
of involutive quantales, and they provide the projections

Y Y ∗Q
π1oo π2 // Q

of the product in QS. The pairing 〈f, g〉 of two maps f and g

R

f

}}④④
④④
④④
④④
④④
④④
④④
④④
④④

g

!!❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈

〈f,g〉

��
Y Y ∗Qπ1

oo
π2

// Q

is again defined separately on each Tn; that is, its inverse image 〈f, g〉∗ is obtained by
linear extension from the assignments

· · ·Y ⊗Q⊗ Y ⊗Q · · ·
〈f,g〉∗=[f∗,g∗]

// R

· · · y ⊗ a⊗ y′ ⊗ a′ · · · ✤ // · · · f ∗(y)g∗(a)f ∗(y′)g∗(a′) · · ·

It is straightforward to verify that 〈f, g〉 is a map of involutive quantales, and that it
is the unique map making the above diagram commute, so Y ∗ Q is a product in QS
as intended.

Pullbacks. Let the following be a pullback diagram in QSp:

Y ∗X Q
π2 //

π1

��

Q

p

��
Y

f
// X

Of course, Y ∗X Q equals (Y ∗Q)j where j is the least quantic nucleus on Y ∗Q such
that j(p∗(x)) = j(f ∗(x)) for all x ∈ X (for notational convenience we shall usually

identify f ∗(x) with π∗
1(f

∗(x)) and p∗(x) with π∗
2(p

∗(x))). By Lemma 2.1, taking R̃ to
be the closure of R under involution and multiplication by elements of Y ∗Q, we obtain

Y ∗X Q = {α ∈ Y ∗Q | ∀(r,s)∈R̃ r ≤ α⇔s ≤ α} .

More explicitly, and taking into account that in this case R is already closed under
involution, Y ∗XQ consists of those α ∈ Y ∗Q such that for all x ∈ X and all z, w ∈ Y ∗Q
the following conditions hold:

p∗(x) ≤ α ⇐⇒ f ∗(x) ≤ α (4.1)

zp∗(x) ≤ α ⇐⇒ zf ∗(x) ≤ α (4.2)

p∗(x)w ≤ α ⇐⇒ f ∗(x)w ≤ α (4.3)

zp∗(x)w ≤ α ⇐⇒ zf ∗(x)w ≤ α (4.4)
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Moreover, it suffices to take z and w to be pure tensors

· · · y ⊗ a⊗ y′ ⊗ a′ · · · ,

and thus Y ∗X Q consists of those α ∈ Y ∗ Q that satisfy the following nine types of
conditions, for all a, a′ ∈ Q and all y, y′ ∈ Y , and all pure tensors τ , τ ′ ∈ Y ∗ Q that
are appropriate in the sense that they yield ⊗-strings τ ⊗a, y⊗τ

′, etc., that alternate
the elements of Q and Y :

p∗(x) ≤ α ⇐⇒ f ∗(x) ≤ α (4.5)

p∗(x)a⊗ τ ≤ α ⇐⇒ f ∗(x)⊗ a⊗ τ ≤ α (4.6)

p∗(x)⊗ y ⊗ τ ≤ α ⇐⇒ f ∗(x)y ⊗ τ ≤ α (4.7)

τ ⊗ ap∗(x) ≤ α ⇐⇒ τ ⊗ a⊗ f ∗(x) ≤ α (4.8)

τ ⊗ y ⊗ p∗(x) ≤ α ⇐⇒ τ ⊗ yf ∗(x) ≤ α (4.9)

τ ⊗ ap∗(x)a′ ⊗ τ
′ ≤ α ⇐⇒ τ ⊗ a⊗ f ∗(x)⊗ a′ ⊗ τ

′ ≤ α (4.10)

τ ⊗ y ⊗ p∗(x)a⊗ τ
′ ≤ α ⇐⇒ τ ⊗ yf ∗(x)⊗ a⊗ τ

′ ≤ α (4.11)

τ ⊗ ap∗(x)⊗ y ⊗ τ
′ ≤ α ⇐⇒ τ ⊗ a⊗ f ∗(x)y ⊗ τ

′ ≤ α (4.12)

τ ⊗ y ⊗ p∗(x)⊗ y′ ⊗ τ
′ ≤ α ⇐⇒ τ ⊗ yf ∗(x)y′ ⊗ τ

′ ≤ α (4.13)

5 Stability under pullbacks

5.1 Theorem. Let p : Q → X be a semiopen surjective map of involutive quantales
satisfying both FR1 and FR2, and let the following be a pullback diagram in QSp:

Y ∗X Q
π2 //

π1

��

Q

p

��
Y

f
// X

(5.1)

Then π1 is a semiopen surjection satisfying both FR1 and FR2, and the following
diagram in the category of sup-lattices is commutative (Beck–Chevalley condition):

Y ∗X Q oo
π∗

2

π1!

��

Q

p!

��
Y oo

f∗
X

(5.2)

Proof. Consider the pullback diagram (5.1) with p a semiopen surjection satisfying
FR1 and FR2. In order to show that π1 is semiopen we begin by defining a sup-lattice
homomorphism Y ∗X Q → Y which will then be shown to be the required direct image
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homomorphism of π1. First let us recall the following notation from the definition of
the product in QSp, where k ∈ {0, 1, 2, . . .}:

Y ∗Q =
∞⊕

n=1

Tn

T4k+1 = Y ⊗ (Q⊗ Y )⊗k

T4k+2 = Q⊗ (Y ⊗Q)⊗k

T4k+3 = (Y ⊗Q)⊗(k+1)

T4k+4 = (Q⊗ Y )⊗(k+1) .

For each n define a sup-lattice homomorphism hn : Tn → Y :

h1(y) = y (5.3)

h2(a) = f ∗(p!(a)) (5.4)

h3(y ⊗ a) = yf ∗(p!(a)) (5.5)

h4(a⊗ y) = f ∗(p!(a))y (5.6)

...

hn(· · · y ⊗ a⊗ y′ ⊗ a′ · · · ) = · · · yf ∗(p!(a))y
′f ∗(p!(a

′)) · · · (5.7)

h = [hn] : Y ∗Q → Y : (5.8)

Y ∗Q
h // Y

Tn

hn

<<②②②②②②②②②

OO

We prove that h factors through the surjection q : Y ∗Q → Y ∗X Q by showing that it
satisfies the following nine conditions [cf. (4.5)–(4.13)] for all a, a′ ∈ Q and all y, y′ ∈ Y ,
and all appropriate alternated pure tensors τ , τ ′ ∈ Y ∗Q as in (4.5)–(4.13):

h(p∗(x)) = h(f ∗(x)) (5.9)

h(p∗(x)a⊗ τ ) = h(f ∗(x)⊗ a⊗ τ ) (5.10)

h(p∗(x)⊗ y ⊗ τ ) = h(f ∗(x)y ⊗ τ ) (5.11)

h(τ ⊗ ap∗(x)) = h(τ ⊗ a⊗ f ∗(x)) (5.12)

h(τ ⊗ y ⊗ p∗(x)) = h(τ ⊗ yf ∗(x)) (5.13)

h(τ ⊗ ap∗(x)a′ ⊗ τ
′) = h(τ ⊗ a⊗ f ∗(x)⊗ a′ ⊗ τ

′) (5.14)

h(τ ⊗ y ⊗ p∗(x)a⊗ τ
′) = h(τ ⊗ yf ∗(x)⊗ a⊗ τ

′) (5.15)

h(τ ⊗ ap∗(x)⊗ y ⊗ τ
′) = h(τ ⊗ a⊗ f ∗(x)y ⊗ τ

′) (5.16)

h(τ ⊗ y ⊗ p∗(x)⊗ y′ ⊗ τ
′) = h(τ ⊗ yf ∗(x)y′ ⊗ τ

′) . (5.17)
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Condition (5.9) is a consequence of surjectivity:

h(p∗(x)) = h2(p
∗(x)) = f ∗(p!(p

∗(x))) = f ∗(x) = h1(f
∗(x)) = h(f ∗(x)) .

Similarly, (5.11), (5.13) and (5.17) follow from surjectivity: for instance, for (5.17) we
obtain, applying (5.3)–(5.8),

h(τ ⊗ y ⊗ p∗(x)⊗ y′ ⊗ τ
′) = h(τ )yf ∗(p!(p

∗(x)))y′h(τ ′) = h(τ )yf ∗(x)y′h(τ ′)

= h(τ ⊗ yf ∗(x)y′ ⊗ τ
′) .

Again applying (5.3)–(5.8), conditions (5.10), (5.12), (5.15) and (5.16) follow from
FR1: for instance, for (5.10) we have

h(p∗(x)a⊗ τ ) = f ∗(p!(p
∗(x)a))h(τ ) = f ∗(xp!(a))h(τ )

= f ∗(x)f ∗(p!(a))h(τ ) = h(f ∗(x)⊗ a⊗ τ ) .

Finally, still applying (5.3)–(5.8), (5.14) follows from FR2:

h(τ ⊗ ap∗(x)a′ ⊗ τ
′) = h(τ )f ∗(p!(ap

∗(x)a′))h(τ ′) = h(τ )f ∗(p!(a)xp!(a
′))h(τ ′)

= h(τ )f ∗(p!(a))f
∗(x)f ∗(p!(a

′))h(τ ′)

= h(τ ⊗ a⊗ f ∗(x)⊗ a′ ⊗ τ
′) .

Since h respects all the conditions (5.9)–(5.17) it factors through Y ∗X Q via a sup-
lattice homomorphism h̃:

Y ∗Q

h

%%
q

// // Y ∗X Q
h̃

// Y

Now we show that h̃ is left adjoint to π∗
1. The counit of the adjunction is immediate,

since h̃(π∗
1(y)) = y for all y ∈ Y . This also shows that π1 is a surjection. In order to

prove the unit of the adjunction let us use abbreviations such as

· · · a ⊗̂ y ⊗̂ a′ ⊗̂ y′ · · · := q(· · · a⊗ y ⊗ a′ ⊗ y′ · · · ) ,

and let us consider a “word”

w := a1 ⊗̂ y1 ⊗̂ · · · ⊗̂ an ⊗̂ yn ∈ q(T4n) ⊆ Y ∗X Q .

We have

w = a1 ⊗̂ y1 ⊗̂ · · · ⊗̂ an ⊗̂ yn

≤ p∗(p!(a1)) ⊗̂ y1 ⊗̂ · · · ⊗̂ p∗(p!(an)) ⊗̂ yn

= π∗
1

(
f ∗(p!(a1))y1 · · ·f

∗(p!(an))yn︸ ︷︷ ︸
∈T1=Y

)

= π∗
1

(
h(a1 ⊗ y1 ⊗ · · · ⊗ an ⊗ yn)

)

= π∗
1(h̃(w)) .
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Similar reasoning applies to any z1 ⊗̂ · · · ⊗̂ zm with the z′is taken alternately from Q
and Y , so we conclude that

α ≤ π∗
1

(
h̃(α)

)

for all α ∈ Y ∗X Q, thus showing that h̃ is left adjoint to π∗
1, so π1 is semiopen. It is

also clear that h̃ satisfies FR1 because for all a, a′ ∈ Q and y, y′ ∈ Y , with τ being an
image by q of an appropriate pure tensor in Y ∗Q, we have

h̃
(
yπ∗

1(y
′)︸ ︷︷ ︸

∈T1=Y

)
= h̃(yy′)

= h̃(y)y′ ,

h̃
(
(τ ⊗̂ y)π∗

1(y
′)
)

= h̃(τ ⊗̂ yy′)

= h̃(τ )yy′

= h̃(τ ⊗̂ y)y′ ,

and

h̃
(
aπ∗

1(y)
)

= h̃(a ⊗̂ y)

= f ∗(p!(a))y

= h̃(a)y ,

h̃
(
(τ ⊗̂ a)π∗

1(y)
)

= h̃(τ ⊗̂ a ⊗̂ y)

= h̃(τ )f ∗(p!(a))y

= h̃(τ ⊗̂ a)y .

FR2 is proved in a similar way, now computing h̃
(
[τ ⊗̂]zπ∗

1(y)z
′[⊗̂ τ

′]
)
for a total of

sixteen combinations with z, z′ ∈ Q∪Y . To conclude, the commutativity of the diagram
(5.2) is just the statement that h̃(a) = f ∗(p!(a)) for all a ∈ Q.

5.2 Corollary. Any weakly open surjection satisfying FR2 is an open map.
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