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STRICTLY ZERO-DIMENSIONAL BIFRAMES AND A

CHARACTERISATION OF CONGRUENCE FRAMES

GRAHAM MANUELL

Abstract. Strictly zero-dimensional biframes were introduced by Banaschew-
ski and Brümmer as a class of strongly zero-dimensional biframes including the
congruence biframes. We consider the category of strictly zero-dimensional
biframes and show it is both complete and cocomplete. We characterise the
extremal monomorphisms in this category and explore the special position that
congruence biframes hold in it. Finally, we provide an internal characterisation
of congruence biframes, and hence, of congruence frames.

0. Introduction

It is a remarkable aspect of frame theory that the lattice of congruences on a
frame is itself a frame. It is natural to wonder precisely what form these congru-
ence frames take. Isbell asks for such a characterisation in [9] and there have sub-
sequently been a number of results which provide some insight. Joyal and Tierney
[11] characterise the inclusion of a frame into its congruence frame by a universal
property. More recently, Frith and Schauerte [8] provide a simple bitopological
characterisation of the congruence functor. We would, however, particularly like
an internal characterisation of congruence frames. In the compact case, this first
was obtained by Dow and Watson [6] and independently by Isbell [10], but we do
not believe a general characterisation has appeared until now.

Frith observes in [7] that the congruence frame is arguably better viewed as a
biframe. All the previous attempts at characterisation can be viewed from this
perspective. The characterisation of Joyal and Tierney suggests proposition 2.2,
while that of Dow and Watson yields part of proposition 2.6.

In this paper, we provide a simple internal characterisation of general congru-
ence biframes. This then implies a somewhat more complicated characterisation
of congruence frames. The result follows naturally from consideration of strictly
zero-dimensional biframes.

Since their introduction in [3], strictly zero-dimensional biframes have mainly
been used as a technical tool to simplify proofs involving congruence biframes. In
this paper we attempt to develop a theory of strictly zero-dimensional biframes as
objects of study in their own right. It is hoped that the study of strictly zero-
dimensional biframes might provide insight into other aspects of pointfree topology
in future.
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2 G. MANUELL

1. Background

For background on frames, biframes and congruence frames see [14], [4] and [7].
For background on topological functors see [1].

1.1. Frames, biframes and congruences. A frame is a complete lattice satis-
fying the frame distributivity condition x ∧

∨
α∈I xα =

∨
α∈I(x ∧ xα) for arbitrary

families (xα)α∈I . We denote the smallest element of a frame by 0 and the largest
element by 1. A frame homomorphism is a function between frames which preserves
finite meets and arbitrary joins. The category of frames is called Frm.

A frame homomorphism f is dense if f(x) = 0 =⇒ x = 0 and codense if
f(x) = 1 =⇒ x = 1. Every codense homomorphism from a zero-dimensional
frame is injective.

A congruence on a frame L is an equivalence relation on L that is also a subframe
of L×L. A closed congruence ∇a is a congruence generated by the pair (0, a) and
has the explicit form {(x, y) | x ∨ a = y ∨ a}. The quotient L/∇a is isomorphic to
the upset ↑a ⊆ L. Similarly, an open congruence ∆a is generated by (a, 1) and the
quotient L/∆a is isomorphic to the downset ↓a ⊆ L.

The lattice of all congruences CL on a frame L is itself a frame and the assign-
ment ∇L : a 7→ ∇a is an injective frame homomorphism. The congruences ∇a and
∆a are complements of each other and together the closed congruences and open
congruences generate CL.

The map ∇L : L → CL is initial amongst all maps g : L → M for which every
element in the image of g is complemented in M . This universal property can
be used to define a functor C : Frm → Frm so that the family of maps (∇L)L
becomes a natural transformation ∇ : 1Frm → C. So if f : L → M and a ∈ L, then
Cf(∇a) = ∇f(a).

A biframe is a triple of frames L = (L0,L1,L2) where L1 and L2 are subframes of
L0 which together generate L0. The frame L0 is called the total part of L, while L1

and L2 are called the first and second parts respectively. A biframe homomorphism
h is a frame homomorphism h0 between the total parts which preserves the first
and second parts. The restrictions of a biframe homomorphism h to the first and
seconds parts are denoted by h1 and h2 respectively. The category of biframes is
called BiFrm.

A biframe homomorphism is said to be dense if its total part is dense. A biframe
homomorphism is a surjection or quotient map if its first and second parts are
surjective. The total parts of biframe quotients are also surjective and quotients
of a biframe are induced uniquely by quotients of its total part. Furthermore, a
biframe homomorphism factors through a biframe quotient if and only if its total
part does.

A biframe L is strictly zero-dimensional if every element a ∈ L1 is complemented
in L0 with its complement ac lying in L2, and moreover, these complements generate
L2. (The original definition in [3] allowed the roles of L1 and L2 above to be
interchanged, but as has become standard, we will fix a chirality.) The category
of strictly zero-dimensional biframes and biframe homomorphisms will be called
Str0DBiFrm.

A congruence frame CL has a natural biframe structure (CL,∇L,∆L) where
∇L ∼= L is the subframe of closed congruences and ∆L is the subframe generated
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by the open congruences. A congruence biframe is readily seen to be strictly zero-
dimensional. Maps of the form Cf are part preserving and so we may think of C
as a functor from the category frames to the category of strictly zero-dimensional
biframes.

1.2. Closure and quotients. We will make use of the ‘closure’ map cℓ : CL → CL
given by cℓ = ∇L ◦ (∇L)∗. This map assigns every congruence to the largest closed
congruence below it. It is easily seen to be monotone, deflationary and idempotent
and to preserve finite meets. Furthermore, if C ≤ D in CL, then cℓ(D) ≤ C if and
only if the canonical map L/C ։ L/D is dense. In particular, L ։ L/D is dense
if and only if cℓ(D) = 0, in which case we say D is a dense congruence.

It is an oft-touted advantage of the pointfree approach to topology that every
frame L has a smallest dense sublocale. We write DL for the corresponding largest
dense congruence. More generally, for every a ∈ L there is a largest congruence
with closure ∇a, which we will denote by ∂a. These are precisely the congruences
which induce Boolean quotients of L. We might call them Boolean congruences,
but to avoid terminological confusion later, we will call them clear congruences
as in [13]. Clear congruences will play an essential role in our characterisation of
congruence biframes in section 5.

We now consider the congruence functor in more detail. Let f : L → M be a
frame homomorphism. We can describe the map Cf : CL → CM explicitly. If C
is a congruence on L then Cf(C) is the congruence generated by the image of C
under f × f . The right adjoint of Cf , which we write as Cf∗, also has a simple
description: it sends congruences on M to their preimages under f × f .

Note that if we think of elements of CL as equivalence classes of extremal epi-
morphisms instead of congruences, then Cf computes the pushout along f . Indeed,
Cf∗ and Cf are closely related to the covariant and contravariant extremal subob-
ject functors on Frmop. Either this perspective or the explicit description of Cf∗
quickly gives the following lemma.

Lemma 1.1. A frame homomorphism f : L → M induces a map f̃ : L/C → M/D
if and only if Cf(C) ≤ D.

Another result that will come in useful describes the interaction between the
closure map and Cf and can be viewed as a pointfree analogue of the definition of
continuity in terms of preimages and the topological closure operator.

Lemma 1.2. Let f : L → M and take C ∈ CL. Then Cf(cℓ(C)) ≤ cℓ(Cf(C)).

Proof. We have cℓ(C) ≤ C and so Cf(cℓ(C)) ≤ Cf(C). But Cf(cℓ(C)) is closed
since cℓ(C) is. Hence Cf(cℓ(C)) ≤ cℓ(Cf(C)) as required. �

We write qC : L ։ L/C for the quotient map associated to a congruence C.
Applying the congruence functor to such a map gives closed quotient of CL with
kernel ∇C . So we will often identify CqC with the quotient CL ։ CL/∇C . Indeed,
congruences on L/C can be identified with congruences on L lying above C by
the third isomorphism theorem. We will sometimes write D/C for the image of D
under CqC .

A particular case of the above gives L/(C∨∇a) ∼= (L/C)/∇[a] and thus ∇a∨C =
∇b ∨C if and only if (a, b) ∈ C. Consequently, we have the following lemma.

Lemma 1.3. If q : L ։ L/C is a quotient and a ∈ L, then cℓ(C ∨ ∇a) = ∇q∗q(a)

in CL.
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2. First parts and the congruence functor

Strictly zero-dimensional biframes are best understood as additional structure
placed on their first parts. The first part functor is of lesser interest for general
biframes since it fails to be faithful, but its restriction F : Str0DBiFrm → Frm will
play a pivotal role in what follows.

If M is strictly zero-dimensional then the inclusion M1 →֒ M0 is epic and so F is
faithful. Furthermore, important classes of morphisms of strictly zero-dimensional
biframes can be characterised by their first parts.

A biframe homomorphism from a strictly zero-dimensional biframe is a surjection
if and only if its first part is surjective. Dense biframe maps in Str0DBiFrm can
also be characterised by their first parts.

Lemma 2.1. Let L be a strictly zero-dimensional biframe. A biframe map f : L →
M is dense if and only if f1 is injective.

Proof. Observe first that if a, b ∈ L1, then a ≤ b if and only if a ∧ bc = 0 in L0. In
the same way, f1(a) ≤ f1(b) if and only if f0(a ∧ bc) = f1(a) ∧ f1(b)

c = 0. So if f0
is dense, f1 reflects order and is thus injective. Conversely, if f1 is injective, then
f0 is dense, since L0 is generated under joins by elements of the form a ∧ bc. �

The first part functor F : Str0DBiFrm → Frm has a left adjoint.

Proposition 2.2. The congruence functor C : Frm → Str0DBiFrm is left adjoint
to F.

Proof. This is simply a rephrasing of the usual universal property of ∇L : L → CL.
Let L be a frame and M a strictly zero-dimensional biframe. Suppose we have
a frame homomorphism f : L → M1. Then every element in the image of f has
a complement in M0 and thus by the universal property of CL there is a unique
f : CL → M0 making the diagram commute.

CL M

L

∇L

f

f

The commutativity of the diagram ensures that f maps ∇L into M1. Then f
maps ∆L into M2 since these subframes are both generated by the complements of
elements in the first parts. So f is a biframe homomorphism and C is left adjoint
to F. �

Since the unit of the adjunction is an isomorphism, C is fully faithful and Frm
embeds as coreflective subcategory of Str0DBiFrm. We will denote the counit by
χ : CM1 → M and call this the congruential coreflection of M.
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We can now characterise the (essential) fibre of a frame L under the functor F.
We say a strictly zero-dimensional biframe M is strictly zero-dimensional over L
if L ∼= FM.

Proposition 2.3. The strictly zero-dimensional biframes over L are precisely the
dense quotients of CL (up to isomorphism).

Proof. Let M be a strictly zero-dimensional biframe over L and let χ : CL →
M be its congruential coreflection. The triangle identities imply that χ1 is an
isomorphism. Thus, χ is a dense quotient by lemma 2.1.

Conversely, suppose q : CL → M is a dense biframe quotient. Then q1 is an
isomorphism and so L ∼= M1. The complements of elements of ∇L map to comple-
ments of elements of M1 under q and these generate M2 since the former generate
∆L. Thus, M is strictly zero-dimensional. �

Corollary 2.4. The fibre category F−1(L) is a preordered class which is dually
equivalent to the frame C2L/∆DCL

— the frame of congruences on CL that lie
below DCL.

Remark 2.5. Proposition 2.3 was first mentioned (without proof) in [8]. In that
paper the authors discuss the relationship between F : RegBiFrm → Frm and
C : Frm → RegBiFrm in the context of regular biframes. These are not adjoint,
but it is shown that F is faithful and C is its unique pseudosection. Using sim-
ilar techniques one can show that Str0DBiFrm is the largest full subcategory of
RegBiFrm for which F restricts to a coreflector.

A result of [5] states that every compact congruence frame is the congruence
frame of a Noetherian frame (and conversely). In fact, every compact strictly zero-
dimensional biframe is of this form.

Proposition 2.6. Every compact strictly zero-dimensional biframe is the congru-
ence biframe of a Noetherian frame.

Proof. Let L be a compact strictly zero-dimensional biframe. Every element of L1

is complemented and thus compact in L0. Hence L1 is a Noetherian frame. By
proposition 2.3, the coreflection χ : CL1 → L is a dense quotient. But a dense
frame homomorphism from a regular frame to a compact frame is injective and so
χ is an isomorphism. �

This gives a characterisation of compact congruence frames as those compact
frames admitting a strictly zero-dimensional biframe structure. A similar charac-
terisation in terms of ordered topological spaces was proved in [6] and [10]. We
will generalise our characterisation to the non-compact case in section 5. For now,
we note that proposition 2.6 also immediately yields the following equivalence of
categories.

Corollary 2.7. The functors C and F restrict to an equivalence between the cat-
egory of Noetherian frames and the category of compact strictly zero-dimensional
biframes.

The above equivalence can alternatively be viewed as a restriction of the equi-
valence between the category of coherent frames and the category of compact zero-
dimensional biframes, which is itself a restriction of the equivalence described in [2]
between the categories of stably continuous frames and compact regular biframes.
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3. The category of strictly zero-dimensional biframes

The functor F : Str0DBiFrm → Frm has strong lifting properties. In fact, we
will show that F is a solid or semi-topological functor (see [15]). In particular, this
implies Str0DBiFrm is complete and cocomplete.

Corollary 2.4 shows that we can define a strictly zero-dimensional biframe by
its first part L and a dense congruence on CL. The map sending a frame to its
fibre under F is not functorial, but the situation improves if we ignore the density
requirement.

Consider the functor Frm
C

2

−−→ Frm →֒ Cat where C2 = C ◦ C with C viewed as
a functor from Frm to Frm. Applying the Grothendieck construction we obtain a
category

∫
C2 and an opfibration F :

∫
C2 → Frm which is even topological since

the above functor factors through the category of suplattices.
The category

∫
C2 consists of objects (L,C) where L is a frame and C ∈ C2L and

morphisms f : (L,C) → (L′, C′) where f : L → L′ is a frame homomorphism and
C2f(C) ≤ C′. The functor F simply sends (L,C) to L. A morphism f : (L,C) →
(L′, C′) is F -final if and only if C′ = C2f(C) and F -initial if and only if C =
C2f∗(C

′).
Since Cf : CL → CL′ induces a map from CL/C to CL′/C′ precisely when

C2f(C) ≤ C′, we may equivalently describe the morphisms in this category as
frame homomorphisms f : L → L′ such that Cf induces a map from CL/C to
CL′/C′.

Now Str0DBiFrm corresponds (up to equivalence) to the full subcategory of∫
C2 consisting of the objects (L,C) where C ≤ DCL. Furthermore, restricting

F :
∫
C2 → Frm to this subcategory gives the first part functor F.

Lemma 3.1. The inclusion Str0DBiFrm →֒
∫
C2 has a left adjoint.

Proof. Suppose (L,C) is an object in
∫
C

2. Consider the quotient map ηL : L ։

L/∇∗(C). We can view CηL as the quotient CL ։ CL/cℓ(C) and hence C2ηL(C) =
C/cℓ(C), using the element C/cℓ(C) ∈ C(CL/cℓ(C)) to refer to the corresponding
element of C2(L/∇∗(C)). So ηL : (L,C) → (L/∇∗(C), C/cℓ(C)) is a final morphism
in

∫
C2.

Now take (M,D) ∈
∫
C2 with D ≤ DCM and consider a morphism f : (L,C) →

(M,D). We show that there is a unique f̃ making the following diagram commute.

(L/∇∗(C), C/cℓ(C)) (M,D)

(L,C)

ηL

f̃

f

We have C2f(C) ≤ D ≤ DCM and so C2f(cℓ(C)) ≤ cℓ(C2f(C)) = 0 by lemma 1.2.
But C2f(cℓ(C)) = ∇Cf(∇∗(C)) and hence Cf(∇∗(C)) = 0. Thus, f factors through
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ηL to give a unique frame homomorphism f̃ : L/∇∗(C) → M and this lifts to a
morphism of

∫
C2 since ηL is final. Thus Str0DBiFrm →֒

∫
C2 has a left adjoint and

ηL is the unit of the adjunction. �

So F is the composition of the embedding of a reflective subcategory and a
topological functor and is therefore solid. It follows that Str0DBiFrm is complete
and cocomplete. More explicitly, we have the following propositions.

Proposition 3.2. Consider a diagram D : I → Str0DBiFrm with DX = CLX/CX

and let (αX : LX → L)X∈I be the colimit of FD in Frm. Then the colimit of D
consists of the object CL/

∨
X C

2αX(CX) and the morphisms given by lifting each
CαX to a map between the appropriate quotients.

Proposition 3.3. Consider a diagram D : I → Str0DBiFrm with DX = CLX/CX

and let (βX : L → LX)X∈I be the limit of FD in Frm. Then the limit of D consists
of the object CL/

∧
X(C2βX)∗(CX) and the morphisms given by lifting each CβX

to a map between the appropriate quotients.

Remark 3.4. Products and coequalisers of strictly zero-dimensional biframes in
BiFrm are strictly zero-dimensional and so the standard biframe constructions give
an alternative way to compute products and coequalisers in Str0DBiFrm. Further-
more, while the equaliser in BiFrm of morphisms between strictly zero-dimensional
biframes need not be strictly zero-dimensional, the construction is easily modified
to give an alternative way to compute equalisers in Str0DBiFrm. Another way to
compute coproducts would be of particular interest; however, I do not know of one
at present.

4. Biframes of distinguished congruences

We can now characterise the monomorphisms and extremal epimorphisms in
Str0DBiFrm.

Lemma 4.1. A morphism f : L → M in Str0DBiFrm is monic if and only if it is
dense if and only if Ff is injective.

Proof. The result follows immediately from lemma 2.1 since F is a faithful right
adjoint. �

Lemma 4.2. A morphism f : L → M in Str0DBiFrm is an extremal epimorphism
if and only if it is a regular epimorphism if and only if it is a closed quotient.

Proof. The regular epimorphisms in Frm are the surjections and Frm has (regular
epi, mono)-factorisations. Since

∫
C2 is topological over Frm, it too has (regular epi,

mono)-factorisations and the regular epimorphisms in
∫
C

2 are the final surjections.
So Str0DBiFrm is a regular-epireflective subcategory of

∫
C2. The inclusion func-

tor thus preserves and reflects regular epimorphisms and Str0DBiFrm has (regular
epi, mono)-factorisations.

A final surjection in
∫
C2 has the form qA : (L,C) ։ (L/A,C2qA(C)). Hence the

regular (and extremal) epimorphisms in Str0DBiFrm are surjections of the form
CL/C ։ (CL/∇A)/Cq∇A

(C) ∼= CL/(∇A ∨ C) ∼= (CL/C)/CqC(∇A), which are
precisely the closed surjections. �
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So the extremal quotients of a strictly zero-dimensional biframe are in bijection
with the elements of its total part. This generalises the relationship between a
frame and its congruence frame.

We can stretch the analogy even further. Let M be a strictly zero-dimensional
biframe and let χ : CM1 → M be its congruential coreflection. Every element
a ∈ M0 may be associated with a congruence χ∗(a) on M1, where χ∗ is the right
adjoint of χ0. In this way, we may view the elements of any strictly zero-dimensional
biframe as certain congruences on the first part. It can be instructive to think
of M as the frame M1 equipped with a frame M0 of distinguished congruences.
Indeed, the following lemma shows that these are precisely the congruences which
are induced on the first part by extremal quotients. So from the point of view of
the frame M1, we can only form quotients by distinguished congruences.

Lemma 4.3. If M is a strictly zero-dimensional biframe over L and a ∈ M0 then
M/∇a is strictly zero-dimensional over L/χ∗(a).

Proof. Suppose M ∼= CL/D. Then M/∇a
∼= CL/(D ∨ ∇χ∗(a)) and we have

that cℓ(D ∨ ∇χ∗(a)) = ∇χ∗(a) by lemma 1.3. Thus, M/∇a is a dense quotient
of CL/∇χ∗(a)

∼= C(L/χ∗(a)). �

Congruence biframes are strictly zero-dimensional biframes for which all congru-
ences are distinguished. On the other extreme we have CL/DCL — the smallest
strictly zero-dimensional biframe over L. Here the distinguished congruences are
the regular elements of CL, the so-called smooth congruences. Hence we find that
smooth congruences are distinguished for any strictly zero-dimensional biframe.

Lemma 4.4. If M is a strictly zero-dimensional biframe, then χ∗(M) contains
every smooth congruence on M1.

Corollary 4.5. The right adjoint χ∗ preserves first parts.

A more interesting example comes from classical topology. Let (X, τ) be a to-
pological space and let υ be the topology generated by the closed sets of X . Then
letting σ denote that join topology τ ∨ υ we obtain a strictly zero-dimensional
biframe SkX = (σ, τ, υ) called the Skula biframe of X (see [3]). This strictly zero-
dimensional biframe only permits us to take spatially induced quotients of the first
part, i.e., quotients induced by (Skula-closed) subspaces of X .

The assignment X 7→ SkX gives a functor from Topop to Str0DBiFrm which has
a left adjoint that sends a strictly zero-dimensional biframe M to a space whose
points are those of M0 and whose open sets come from M1. This adjunction
restricts to a dual equivalence between the category of T0 spaces and the category
of strictly zero-dimensional biframes with spatial total part.

This allows us to deal with even non-sober T0 spaces in the pointfree setting. In
fact, if M is a Skula biframe, then the spatial reflection of CFM corresponds to
the sobrification of the underlying space. Further discussion can be found in [12].

So sobrification appears as the spatial aspect of the congruential coreflection.
This suggests that the congruential coreflection itself may be some kind of pointfree
analogue of sobrification. There are various senses in which this is the case and
some of these will be the subject of a later paper.
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5. Clear elements and characterising congruence biframes

Let M be a strictly zero-dimensional biframe and let χ : CM1 → M be its
congruential coreflection. By analogy to congruence frames we call elements of M1

the closed elements of M and we may define a function cℓ : M0 → M0 so that cℓ(a)
is the largest closed element below a. As before, this map is monotone, deflationary
and idempotent and it preserves finite meets. It will be useful to have a lemma
that generalises the topological formula for closure in a subspace.

Lemma 5.1. Let q : L ։ M be a biframe surjection and let a ∈ M0. Then
cℓ(a) = q(cℓ(q∗(a))).

Proof. First note that q(cℓ(q∗(a))) is a closed element less than a. Now suppose
q(c) ≤ a. Then c ≤ q∗(a) and so c ≤ cℓ(q∗(a)). Therefore, q(c) ≤ q(cℓ(q∗(a))).
Since q1 is surjective, every closed element of M is of the from q(c) for some c ∈ L1

and thus q(cℓ(q∗(a))) is the largest closed element below a. �

The next lemma shows that closure interacts well with the right adjoint of χ.

Lemma 5.2. If a ∈ M0 then χ∗(cℓ(a)) = cℓ(χ∗(a)).

Proof. By lemma 5.1 we have χ∗(cℓ(a)) = χ∗χ(cℓ(χ∗(a))). But χ∗χ fixes closed
elements by corollary 4.5 and so the result follows. �

We may now generalise the notion of a clear congruence to elements of any
strictly zero-dimensional biframe.

Definition 5.3. An element a of a strictly zero-dimensional biframe M is called
clear if it is the largest element of M0 with closure cℓ(a).

Lemma 5.4. Let a ∈ M0 and let c = cℓ(a). The following are equivalent:

(1) a is clear
(2) F(M/∇M0

a ) is Boolean
(3) χ∗(a) is a clear congruence
(4) χ∗(a) = ∂c.

Proof. If F(M/∇M0

a ) is Boolean, then χ∗(a) is clear by lemma 4.3. If χ∗(a) is
clear, then χ∗(a) = ∂c by lemma 5.2.

Now suppose χ∗(a) = ∂c and take b ∈ M0 with cℓ(b) = c. By lemma 5.2 we
have ∇M1

c ≤ χ∗(b) ≤ ∂c and so b = χχ∗(b) ≤ a and a is clear.
Finally, suppose that a is clear and take x ∈ M/∇M0

a such that cℓ(x) = 0.
Identifying elements of M/∇M0

a with the elements of M lying above a and using
lemma 5.1, we have that x ≥ a and cℓ(x) ∨ a = a. Hence cℓ(x) = cℓ(a). Since a
is clear, it follows that x ≤ a. But then x = 0 in M/∇M0

a and so 0 is clear in
M/∇M0

a .
We now show that N = F(M/∇M0

a ) is Boolean. Let d be a dense element of N .
This means that cℓ(dc) = d∗ = 0. But 0 is clear in M/∇M0

a and thus dc = 0. So
d = 1 and N is Boolean. �

Corollary 5.5. If a ∈ M0 is clear, then every element b ≥ a is also clear.

Unlike the case of congruence biframes, clear elements of general strictly zero-
dimensional biframes might sometimes fail to exist. That is, there may be no clear
element with a given closure. In fact, the existence of all clear elements characterises
the congruential strictly zero-dimensional biframes.
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Definition 5.6. We say an element a of a strictly zero-dimensional biframe is
clarifiable if there is a clear element with the same closure as a.

Theorem 5.7. A strictly zero-dimensional biframe M is congruential if and only
if all of its (closed) elements are clarifiable.

Proof. If M is congruential, then every element of M is clarifiable.
Conversely, suppose every element of M1 is clarifiable and take A ∈ CM1 such

that χ(A) = 1. Then ∇a ≤ A ≤ ∂a for some a ∈ M1 and so χ(∂a) = 1. Let
b ∈ M0 be the clear element with closure a. Then χ∗(b) = ∂a by lemma 5.4 and
thus b = χχ∗(b) = χ(∂a) = 1. But then a = cℓ(b) = 1 and so A = 1. Hence
χ is codense. Since CM1 is zero-dimensional, χ is therefore injective and M is
congruential. �

Remark 5.8. A Skula biframe M is sober (in the spatial sense) if and only if every
prime element of M1 is clarifiable. So this is another sense in which the theory of
congruence biframes parallels that of sober spaces.

Given a frame M without a specified biframe structure we can still use the-
orem 5.7 to determine if it is a congruence frame. The resulting characterisation is
somewhat more involved, though perhaps it could lead to simpler characterisations
in future.

Corollary 5.9. A frame M is a congruence frame if and only if it admits an
idempotent, deflationary meet-semilattice homomorphism c : M → M such that

(1) Every fixed point of c is complemented
(2) The fixed points of c together with their complements generate M
(3) Every fibre of c has a maximum.

Furthermore, in this case M is isomorphic to CL, where L is the frame of fixed
points of c, and the subframe inclusion L →֒ M corresponds to the map ∇L.

Remark 5.10. For completeness we also mention the easier result that M is a
quotient of a congruence frame if it satisfies the above with condition 3 omitted.
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