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GROTHENDIECK CATEGORIES AS A BILOCALIZATION OF LINEAR SITES

JULIA RAMOS GONZÁLEZ

ABSTRACT. We prove that the 2-category Grt of Grothendieck abelian categories with
colimit preserving functors and natural transformations is a bicategory of fractions in
the sense of Pronk of the 2-category Site of linear sites with continuous morphisms
of sites and natural transformations. This result can potentially be used to make the
tensor product of Grothendieck categories from earlier work by Lowen, Shoikhet and
the author into a bi-monoidal structure on Grt.

1. INTRODUCTION

Grothendieck categories are arguably the best-behaved and most studied large abel-
ian categories, second only to module categories which are their first examples. They
play a fundamental role in algebraic geometry since the Grothendieck school, and are
center stage in non-commutative algebraic geometry since the work of Artin, Stafford,
Van den Bergh and others (see, for example, [2], [3], [16]). By the Gabriel-Popescu
Theorem, Grothendieck categories can be viewed as “linear topoi”, that is, as cate-
gories of sheaves on linear sites. The aim of this paper is to study the relation between
Grothendieck categories and linear sites on a bicategorical level.

Throughout the paper k will be a commutative ring.
Let Grt denote the 2-category of k -linear Grothendieck categories with colimit pre-

serving k -linear functors and k -linear natural transformations. Let Site denote the
2-category of k -linear sites with k -linear continuous morphisms of sites and k -linear
natural transformations1.

Given a linear site (a,Ta) we can naturally associate to it a Grothendieck category,
namely its category of sheaves Sh(a,Ta). In addition, given a continuous morphism
f : (a,Ta) −→ (b,Tb) between sites, it naturally induces a colimit preserving functor
f s : Sh(a,Ta) −→ Sh(b,Tb) between the corresponding categories of sheaves (see §2).
In particular, among continuous morphisms there is a distinguished class of the so-
called LC morphisms (see Definition 2.5 below), which induce equivalences between
the corresponding categories of sheaves.

Observe that, from the Gabriel-Popescu theorem, it follows that every Grothendieck
category can be realised as a category of sheaves on a linear site . Moreover, every col-
imit preserving functor between two categories of sheaves can be obtained as a “roof”
of functors coming from continuous morphisms between sites, where the “reversed
arrows” are equivalences induced by LC morphisms (see Theorem 2.8 below). These
observations make it natural to view Grt as a kind of “localization” of Site at the class
of LC morphisms. In this paper we make this idea precise by using the localization
of bicategories with respect to a class of 1-morphisms developed by Pronk in [13] and
further analysed by Tommasini in the series of papers [17, 18, 19]. Our main result is
the following:

Theorem 1.1 (Theorem 6.1). There exists a pseudofunctor

Φ : Site−→Grt

The author acknowledges the support of the Research Foundation Flanders (FWO) under Grant No.
G.0112.13N.

1We address size issues in §4.
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which sends LC morphisms to equivalences in Grt, such that the pseudofunctor

Φ̃ : Site[LC−1
]−→Grt

induced by Φ via the universal property of the bicategory of fractions is an equivalence

of bicategories.

The paper is structured as follows.
In sections §2 and §3 we provide the introductory material required for the rest of

the paper.
Linear sites and Grothendieck categories are the linear counterpart of Grothendieck

sites and Grothendieck topoi. In §2 we recall the basic notions of the corresponding
linearized topos theory based on [10] and [12]. More concretely, we define continuous
and cocontinuous morphism of linear sites and analyse the corresponding induced
functors between the sheaf categories. In particular, we focus on the class of LC mor-
phisms, as they play a fundamental role for the rest of the paper.

Next, in §3, we revisit some basic notions and results from [13] and [17] on bicat-
egories and their localizations with respect to classes of 1-morphisms, which we will
refer to as bilocalizations from now on.

The tecnical core of the paper that allows the proof of Theorem 1.1 is developed in
§4, §5 and §6.

In §4 we show that the natural map that assigns to each site its category of sheaves
and to each continuous morphism between sites the induced colimit preserving func-
tor between the categories of sheaves extends to a pseudofunctor

(1) Φ : Site−→Grt.

In addition, the class LC of LC morphisms admits a calculus of fractions in Site and
hence we have a bilocalization Site[LC−1

]. This is done in §5.
In particular, Φ sends LC morphisms to equivalences in Grt, and hence, by the uni-

versal property of the bilocalization we obtain a pseudofunctor from the bilocalization
to Grt:

(2) Φ̃ : Site[LC−1
]−→Grt.

In §6, based on [19], we show that the pseudofunctor Φ : Site−→Grt fulfills the nec-
essary and sufficient conditions for the induced pseudofunctor Φ̃ : Site[LC−1

] −→ Grt

to be an equivalence of bicategories, which finishes the proof of Theorem 1.1.
Our original interest in representing Grt as a localization of Site is of geometrical na-

ture and comes from [12], where a tensor product of Grothendieck categories is defined
in terms of a tensor product of linear sites. In particular, the fact that LC morphisms
are closed under the tensor product of sites [12, Prop 3.14] is key to the proof of the
independence of the tensor product of Grothendieck categories from the sheaf rep-
resentations chosen. Combining Theorem 1.1 with this fact makes it natural to think
that the monoidal structure on Site could be transferred to Grt via the bilocalization,
following the same principle as the monoidal localization of ordinary categories from
[6]. This is briefly addressed in §7.

The reader can easily check that the methods and arguments used along the paper
are also available in the classical set-theoretical setup of topos theory. Hence, if we
denote by Topoi the 2-category of Grothendieck topoi with colimit preserving functors
and natural transformations and by GrSite the 2-category of Grothendieck sites with
continuous morphisms and natural transformations, we can state the corresponding
analogue of Theorem 1.1 above:

Theorem 1.2. There exists a pseudofunctor

Φ : GrSite−→Topoi
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which sends LC morphisms to equivalences, such that the pseudofunctor

Φ̃ : GrSite[LC−1
]−→Topoi

induced by Φ via the universal property of the bicategory of fractions is an equivalence

of bicategories.

Acknowledgement. I am very grateful to Wendy Lowen for many interesting discus-
sions, the careful reading of this manuscript and her valuable suggestions. I would
also like to thank Ivo Dell’Ambrogio, Boris Shoikhet and Enrico Vitale for useful com-
ments on bicategories of fractions and Matteo Tommasini, whose explanations on the
behaviour of 2-morphisms after localization have been essential in order to obtain the
main result of this paper.

2. LINEAR SITES AND GROTHENDIECK CATEGORIES

Linear sites and Grothendieck categories are the linear counterpart of the classical
notions of Grothendieck sites and Grothendieck topoi from [1]. We proceed now to
give a brief account on this linearized version of topos theory. We refer the reader to
[10, §2] for further details.

Let a be a small k -linear category and A ∈ a an object. A sieve on A is a subobject R

of the representable module a(−, A) on A in the category Mod(a) := Funk (a
op,Mod(k )).

Given F = ( fi : Ai → A)i∈I a family of morphisms in a, the sieve generated by F is the
smallest sieve R on A such that fi ∈R (Ai ) for all i ∈ I . We denote it by 〈F 〉= 〈 fi 〉i∈I .

A cover systemR on a consists of providing for each A ∈ a a family of sievesR(A) on
A. The sieves in a cover system R are called covering sieves or simply covers (for R).
We will say that a family ( fi : Ai −→ A)i∈I is a cover if the sieve 〈 fi 〉i∈I it generates is a
cover.

A cover system T on a is called a k -linear topology if it fulfills the linearized ver-
sion of the well-known identity, pullback and glueing axioms [10, §2.2]. In particular,
a k -linear site is a pair (a,T ) where a is a small k -linear category and T is a k -linear
topology on a.

As in the classical setting, one defines presheaves and sheaves as follows.

Definition 2.1. A presheaf F on (a,T ) is simply an a-module, i.e. F is an object in
Mod(a).

A sheaf F on (a,T ) is a presheaf such that the restriction functor

F (A)∼=Mod(a)(a(−, A), F )−→Mod(a)(R , F )

is an isomorphism for all A ∈ a and all covering sieves R ∈T (A). We denote by

Sh(a,T )⊆Mod(a)

the full subcategory of k -linear sheaves.

In analogy with the classical setting, given a k -linear category a, a k -linear topology
T on a is said to be subcanonical if all the representable presheaves are sheaves forT .
The finest k -linear topology on a for which all representable presheaves are sheaves is
called the canonical topology on a.

We now proceed to give in more detail the corresponding linear notions of mor-
phisms of sites and the morphisms of linear topoi induced by them. This is a linearized
version of [1, Exposé iii].

Given a k -linear functor f : a −→ b between two k -linear categories a and b, we
have the following induced functors between their module categories:

• f ∗ : Mod(b)−→Mod(a) : F 7−→ F ◦ f ;
• Its left adjoint, denoted by f! : Mod(a)−→Mod(b);
• Its right adjoint, denoted by f∗ : Mod(a)−→Mod(b).
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Definition 2.2. Consider k -linear sites (a,Ta) and (b,Tb). A k -linear functor f : a−→ b

is continuous, if any of the following equivalent properties hold:

(1) The functor f ∗ : Mod(b)−→Mod(a) : F 7−→ F ◦ f preserves sheaves;
(2) There exists a functor fs : Sh(b,Tb)−→ Sh(a,Ta) such that the diagram

Mod(a) Mod(b)

Sh(a,Ta) Sh(b,Tb)

f ∗

ia

fs

ib

commutes;
(3) There exists a colimit preserving functor f s : Sh(a,Ta) −→ Sh(b,Tb) such that

the diagram

a b

Mod(a) Mod(b)

Sh(a,Ta) Sh(a,Ta)

f

Ya Yb

f!

#a #b

f s

commutes, where Ya : a ,−→Mod(a), Yb : b ,−→Mod(b) are the corresponding
Yoneda embeddings and #a : Mod(a)−→ Sh(a,Ta), #b : Mod(b)−→ Sh(b,Tb) are
the corresponding sheafification functors.

In addition, if any of the previous properties holds, we necessarily have that f s ⊣ fs

and

(3) f s ∼= #b ◦ f! ◦ ia.

Definition 2.3. Consider k -linear sites (a,Ta) and (b,Tb). A k -linear functor f : a−→ b

is cocontinuous, if any of the following equivalent properties hold:

(1) For each object A ∈ a and each covering sieve R ∈ Tb( f (A)), there exists a cov-
ering sieve S ∈Ta(A)with f S ⊆R .

(2) The functor f∗ : Mod(a,Ta)−→Mod(b,Tb) preserves sheaves.

In addition, if any of the previous properties holds we have:

(1) The functor ef ∗ = #a ◦ f ∗ ◦ ib is colimit preserving and exact and the diagram

Mod(a) Mod(b)

Sh(a,Ta) Sh(b,Tb)

#a #b

f ∗

ef ∗

is commutative up to canonical isomorphism.
(2) There exists a functor ef∗ : Sh(a,Ta)−→ Sh(b,Tb) such that the diagram

Mod(a,Ta) Mod(b,Tb)

Sh(a,Ta) Sh(b,Tb)

f∗

ef∗

ia ib

commutes up to canonical isomorphism and ef ∗ ⊣ ef∗ is an adjoint pair.

Remark 2.4. In [10] the term cover continuous is used for what we call here cocontin-
uous.
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Recall that a k -linear Grothendieck abelian category C is a cocomplete abelian k -
linear category with a generator and exact filtered colimits.

The fact that the categories of sheaves over linear sites (or linear Grothendieck topoi)
are precisely the Grothendieck categories can be deduced from Gabriel-Popescu the-
orem [7] together with the main result in [5]. Indeed, Gabriel-Popescu theorem char-
acterizes Grothendieck categories as the localizations of presheaf categories of linear
sites, that is subcategories of presheaf categories whose embedding functor has a left
exact left adjoint. On the other hand, from [5, Thm 1.5] one deduces that categories
of sheaves are precisely the localizations of presheaf categories of linear categories.
Thus, the combination of the two results provides a linear counterpart of the classical
Giraud Theorem that characterizes Grothendieck topoi in the classical setting.

Observe, nevertheless, that the classical Gabriel-Popescu theorem does not provide
us with all the possible realizations of Grothendieck categories as categories of linear
sheaves. Such result is provided by the generalization of Gabriel-Popescu theorem in
[11]: given a Grothendieck category C, it characterizes the linear functors u : a −→ C

such that the functor

c−→Mod(a) : C 7−→C(u (−), C )

is a localization.
We now introduce a distinguished class of continuous morphisms, called LC mor-

phisms (see [12, Def 3.4]), where LC stands for “Lemme de comparison” (see [11, §4]).
In particular, the functoriality of these morphisms with respect to the tensor product of
linear sites constructed in [12, §2.4] is the key point in order to provide a well-defined
tensor product of Grothendieck categories expressed in terms of realizations as sheaf
categories [12, §4.1].

Definition 2.5. Consider a k -linear functor f : a−→ c.

(1) Suppose c is endowed with a cover system Tc. We say that f : a −→ (c,Tc) sat-
isfies
(G) if for every C ∈ c there is a covering family ( f (Ai )−→ C )i for Tc.

(2) Suppose a is endowed with a cover system Ta. We say that f : (a,Ta) −→ c

satisfies
(F) if for every c : f (A)−→ f (A′) in c there exists a covering family ai : Ai −→ A

for Ta and fi : Ai −→ A′ with c f (ai ) = f ( fi );
(FF) if for every a : A −→ A′ in a with f (a ) = 0 there exists a covering family

ai : Ai −→ A for Ta with a ai = 0.
(3) Suppose a and c are endowed with cover systems Ta and Tc respectively. We

say that f : (a,Ta)−→ (c,Tc) satisfies
(LC) if f satisfies (G) with respect to Tc, (F) and (FF) with respect toTa, and we

further have Ta = f −1Tc.

The following gives a characterization of LC morphisms between linear sites in terms
of continuity and cocontinuity, and it will be used in §5.

Proposition 2.6. Consider a morphism of sites f : (a,Ta) −→ (b,Tb) satisfying (G) with

respect to Tb and (F), (FF) with respect to Ta. Then, the following are equivalent:

(1) The morphism f satisfies (LC) (with respect to the topologies Ta and Tb);

(2) The morphism f is continuous and cocontinuous.

Proof. Assume (1) holds. The fact that f is continuous is given by Lemme de compar-
ison [11, Cor 4.5] and the fact that f is cocontinuous follows from [10, Lem 2.15].

We prove now the converse. As by hypothesis f is cocontinuous and satisfies (F)

and (FF), we have that f −1Tb ⊆ Ta by [10, Prop 2.16]. Now, as f is continuous, by
applying the linear counterpart of [1, Exposé iii, Prop 1.6], we have that f (Ta) ⊆ Tb.
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Consequently, by applying f −1 we have that Ta ⊆ f −1 f Ta ⊆ f −1(Tb), which concludes
the argument. �

Remark 2.7. Let f : (a,Ta) −→ (b,Tb) be an LC morphism. As it is continuous and co-
continuous, one can consider the induced functors between the corresponding sheaf
categories both as a continuous and as a cocontinuous morphism. An easy check
shows that those are related as follows:

(4) ef∗ ∼= f s ,

and hence

(5) ef ∗ ∼= fs .

Our interest in LC morphisms is twofold. Firstly, they induce equivalences between
the corresponding sheaf categories [11, Cor 4.5]. Secondly, making essential use of LC
morphisms we are able recover any colimit preserving functor between Grothendieck
categories as being induced by a roof of continuous morphisms of linear sites. More
precisely:

Theorem 2.8 (Roof theorem). Let (a,Ta)and (b,Tb)be linear sites and consider a colimit

preserving functor F : Sh(a,Ta)−→ Sh(b,Tb). Then, there exist a subcanonical site (c,Tc)
and a diagram

(6)

c

a b,

f w

where f is a continuous morphism and w is an LC morphism, such that

(7)

Sh(a,Ta) Sh(b,Tb)

Sh(c,Tc)

F

f s w̃ ∗

is a commutative diagram up to isomorphism.

This theorem is a slight generalization of [15, Tag 03A2] in the linear setting, where
the result is provided for geometric morphisms between Grothendieck topoi (i.e. ad-
junctions of functors between Grothendieck topoi where the left adjoint is left exact).
Our version focuses on the left adjoints, or equivalently on the colimit preserving func-
tors, without requiring them to be left exact (i.e. without requiring the adjunction to
be a geometric morphism). Observe that we call LC morphism what in [15] is called
special cocontinuous functor (see Proposition 2.6).

The proof can be obtained along the lines of [15, Tag 032A]. We will just provide, for
convenience of the reader, the construction of the site (c,Tc) and the morphisms f and
w , as these constructions will be frequently used throughout the paper.

Take c to be the full k -linear subcategory of Sh(b,Tb)with the following set of objects

(8) Obj(c) = {#b(b(−, B ))}B∈b∪{F (#a(a(−, A)))}A∈a.

We endow it with the topology Tc induced from the canonical topology in Sh(b,Tb).
Then we define f : a −→ c as the composition F ◦ #a ◦ Ya and w : b −→ c as the

composition #b ◦ Yb.
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3. BICATEGORIES OF FRACTIONS

In this section we recall the main notions and results on localizations of bicategories
from [13] and [17]. In general we will follow the notations and terminology from [13]
with the exception that, following a more standard terminology, we will call pseudo-

functor what in [13] is called homomorphism of bicategories.
We first fix some notations for the rest of the paper.
Given a bicategory, we denote the vertical composition of 2-morphisms by • and

the horizontal composition of 2-morphisms by ◦. In particular, given a diagram

A B C

f

f

⇓ Idf

g

h

⇓α

in a bicategory C, we denote by α ◦ f to the horizontal composition α ◦ Idf .
We will recall some important definitions for the rest of the paper.

Definition 3.1. Given a 1-morphism f : A −→ B in a bicategory C, we say it is an
equivalence (or internal equivalence in the terminology of [17]) if there exists another 1-
morphism g : B −→ A and two invertible 2-morphismsα : IdA⇒ g ◦ f andβ : f ◦g ⇒ IdB

satisfying the triangle identities, i.e. the compositions

f f ◦ g ◦ f f ;

g g ◦ f ◦ g g

f ◦α β◦f

α◦g g ◦β

are the identity on f and on g respectively.

Definition 3.2. A pseudofunctor Φ :A−→B between two bicategories is

• essentially surjective on objects if and only if for all B ∈ Obj(B) there exists an
A ∈Obj(A) such that there is an equivalence Φ(A)∼= B in B;
• essentially full if for all A, A′ ∈Obj(A) the functor

ΦA,A′ :A(A, A′)−→B(Φ(A),Φ(A′))

is essentially surjective ;
• fully faithful on 2-morphisms if for all A, A′ ∈Obj(A) the functor

ΦA,A′ :A(A, A′)−→B(Φ(A),Φ(A′))

is fully faithful;
• an equivalence of bicategories if it is essentially surjective on objects, essen-

tially full and fully faithful on 2-morphisms.

In [13, §2] a localization theory for bicategories along a class of 1-morphisms is
developed generalizing the well-known localization of (1-)categories due to Gabriel-
Zisman [8]. In particular, the bicategory of fractions in loc.cit. is defined and con-
structed by means of a right calculus of fractions. Observe that one could analogously
develop the theory for a left calculus of fractions, as it is done in the 1-categorical case.
More precisely, a class of (1-)morphisms admits a left calculus of fractions if and only
if the same class of (1-)morphisms in the opposite (bi)category admits a right calculus
of fractions. Recall that the opposite bicategory (or transpose bicategory in the termi-
nology of [4]) is given by reversing the 1-morphisms and keeping the direction of the
2-morphisms. In our case, we will use a left calculus of fractions, hence we introduce
the analogous results from [13] for a left calculus of fractions.

Definition 3.3. [13, §2.1] Let C be a bicategory. We say a class W of 1-morphisms on C

admits a left calculus of fractions if it satisfies:
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LF1 All equivalences belong to W;
LF2 W is closed under composition of 1-morphisms;
LF3 Every solid diagram

a

c b

f

w

in C with w ∈W can be completed to a square

a d

c b

v

f

w

gα

where α is an invertible 2-morphism and v ∈W;
LF4 (1) Given two morphisms f , g : B −→ A, a morphism w : B ′ −→ B in W and a

2-morphism α : f ◦w ⇒ g ◦w , there exists a morphism v : A −→ A′ in W

and a 2-morphism β : v ◦ f ⇒ v ◦ g such that v ◦α=β ◦w ;
(2) if α is an isomorphism, we require β to be an isomorphism too; and
(3) given another pair v ′ : A −→ A′ in W and β ′ : v ′ ◦ f ⇒ v ′ ◦ g satisfying

condition (1), there exist 1-morphisms u , u ′ : A′ −→ A′′ with u ◦ v , u ′ ◦ v ′

in W and an invertible 2-morphismε : u◦v ⇒ u ′◦v ′ such that the diagram

u ◦ v ◦ f u ◦ v ◦ g

u ′ ◦ v ′ ◦ f u ′ ◦ v ′ ◦ g

u◦β

ε◦f ε◦g

u ′◦β ′

is commutative;
LF5 W is closed under invertible 2-morphisms.

Remark 3.4. The first axiom can be weakened as is done in [17].

Definition 3.5. [13, §2] Given a category C and a class of 1-morphisms W in C admit-
ting a left calculus of fractions, a bilocalization ofC along W is a pair (C[W−1],Ψ), where
C[W−1] is a bicategory and Ψ :C−→C[W−1] is a pseudofunctor such that:

(1) Ψ sends elements in W to equivalences;
(2) Composition with Ψ gives an equivalence of bicategories

Hom(C[W−1],D)−→HomW(C,D)

for each bicategory D, where Hom denotes the bicategory of pseudofunctors
(see [4, §8]) and HomW its full sub-bicategory of elements sending W to equiv-
alences.

Observe that, in particular, C[W−1] is unique up to equivalence of bicategories [13,
§3.3].

In [13, §2] a detailed construction for (C[W−1],Ψ) is provided for a right calculus of
fractions and in [17] a simplified version of this construction is provided, less depen-
dent of the axiom of choice. By inverting the direction of 1-morphisms one gets the
analogous construction of the bilocalization for a left calculus of fractions.

4. THE 2-CATEGORY OF GROTHENDIECK CATEGORIES AND THE 2-CATEGORY OF SITES

Fix a universe U. For a U-small k -linear site (a,Ta), the category Sh(a,Ta) is defined
with respect to the category U-Mod(k ) of U-small k -modules. Let Site denote the 2-
category of U-small k -linear sites with k -linear continuous morphisms of sites and k -
linear natural transformations. By definition, a U-Grothendieck category is a k -linear
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abelian category with a U-small set of generators, U-small colimits and exact U-small
filtered colimits. Let V be a larger universe such that all the categories Sh(a,Ta) are V-
small and let Grt denote the 2-category of k -linearV-smallU-Grothendieck categories.
Up to equivalence, Grt is easily seen to be independent of the choice of V. In the rest
of the paper, we will omit the universes U and V from our notations and terminology.

Remark 4.1. Observe that Site and Grt are actually enriched 2-categories, more pre-
cisely k -linear 2-categories in the sense of [9, Def 2.4 & 2.5].

Remark 4.2. Observe that equivalences (see Definition 3.1 above) in Grt are just the
colimit preserving k -linear functors which are equivalences of categories in the usual
sense, while equivalences in Site are just the k -linear continuous morphisms which
are equivalences of categories in the usual sense.

Notation 4.3. We denote by LC the family of LC morphisms in Site (see Definition 2.5).

The 2-category Grt is related to Site in a natural way. Indeed, we define a pseudo-
functor

(9) Φ : Site−→Grt

as follows:

• Given a site (a,Ta), we define

Φ(a,Ta) = Sh(a,Ta),

which is a Grothendieck category;
• Given a continuous map between two sites f : (a,Ta)−→ (b,Tb), we define

Φ( f ) = Sh(a,Ta) Sh(b,Tb),
f s

which is colimit preserving;
• Given two continuous morphisms f , g : (a,Ta) −→ (b,Tb) and a natural trans-

formation α : f ⇒ g , we define a natural transformation

(10) Φ(α) = αs : f s ⇒ g s

as follows. For any F ∈ Sh(b,Tb) and any A ∈ a, we have the following mor-
phism:

(αs )F (A) := F (αA ) : g s (F )(A) = F (g (A))−→ F ( f (A)) = fs (F )(A)

which is k -linear and natural in A and F and hence it defines a natural trans-
formation αs : g s ⇒ fs . We define αs as the natural transformation corre-
sponding toαs via the natural adjunctions. More precisely, for all F ∈ Sh(b,Tb)
and all G ∈ Sh(a,Ta)we have a composition:

Sh(a,Ta)(G , g s (F )) Sh(a,Ta)(G , fs (F ))

Sh(b,Tb)(g
s (G ), F ) Sh(b,Tb)( f

s (G ), F )

(αs )F ◦−

∼=∼=

where the vertical functors are the adjunctions. Observe this composition is
natural in F and G . Consequently, there is an induced 2-morphism f s ⇒ g s ,
and this is the 2-morphism we denote by αs .

One can easily check these data indeed define a pseudofunctor:

• Given any two sites (a,Ta), (b,Tb) the map

Φa,b : Site(a,b)−→Grt(Sh(a),Sh(b))

induced byΦ is a functor. Indeed, consider a continuous morphism f : a−→ b,
trivially the 2-morphism Idf : f ⇒ f is mapped to Idf s : f s ⇒ f s . Now consider
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α : f ⇒ g and β : g ⇒ h and their vertical composition β •α : f ⇒ h . One has
that
�
αs •βs

�
G
(A) =G (αA) ◦G (βA) =G ((α •β )A) =

�
(β •α)s
�

G
(A)

for all G ∈ Sh(b) and all A ∈ a. Hence, by adjunction, Φa,b preserves composi-
tions.
• Let a = (a,Ta) be a site and consider its identity morphism Ida. One has that
(Ida)s = IdSh(a) is the identity functor of Sh(a). Hence, by adjunction,

IdSh(a)
∼= (Ida)

s ,

which gives us the unitor of Φ.
Consider now two continous morphisms f : a −→ b and g : b −→ c in Site.

By definition, we have that

(g ◦ f )s ∼= g s ◦ f s ,

which provides the associator of Φ.
• It can be readily seen, using the fact that adjoints are unique up to unique iso-

morphism, that the unitor and associator of Φ fulfill the corresponding coher-
ence axioms.

Observe that Φ sends LC morphisms to equivalences. This is a direct consequence
of the Lemme de comparaison. Hence, if LC admits a left calculus of fractions in Site,
we will get, by the universal property of bilocalizations, a pseudofunctor

(11) Φ̃ : Site[LC−1]−→Grt.

Remark 4.4. Recall from Remark 4.1 that Site and Grt are k -linear 2-categories, and
observe that Φ is also a k -linear pseudofunctor. While in this paper we only need the
bilocalization to exist as an ordinary bicategory, it is possible to show that in this case
the bilocalization automatically satisfies the universal property of an “enriched bilo-
calization” (and in particular, the induced functor Φ̃ is automatically k -linear), where
we use the term in analogy with the enriched localizations from [20].

5. BILOCALIZATION OF THE 2-CATEGORY OF SITES WITH RESPECT TO LC MORPHISMS

In this section we prove that LC admits a left calculus of fractions in Site.
First, we fix the following notations. Given a site (a,Ta), it will usually be denoted

simply by a for the sake of brevity. We will denote by ia : Sh(a) ,−→ Mod(a) the nat-
ural inclusion and by #a : Mod(a) −→ Sh(a) the corresponding sheafification functor.
The indexes will be omitted if the site we are working with is clear from the context.
Furthermore, given an object A ∈ a we will denote hA = a(−, A) the corresponding rep-
resentable presheaf and by h #

A
= #(a(−, A)) its sheafification. We adopt these notations

in order to simplify the formulas that will appear further in the paper.

Lemma 5.1. Condition LF1 holds for LC in Site.

Proof. Take an equivalence f ∈ Site(a,b), and denote by g : b −→ a its quasi-inverse.
Then, it is easy to see that the induced functor

fs : Sh(b)−→ Sh(a)

is an equivalence of Grothendieck categories, with quasi-inverse given by g s . We prove
that f belongs to LC. Property (G) follows from the fact that f is essentially surjective,
and properties (F) and (FF) follow immediately from the fact that f is fully-faithful. By
Proposition 2.6, it only remains to prove that f is cocontinuous. One can easily see
that

f ∗ : Mod(b)−→Mod(a)
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is also an equivalence with quasi-inverse given by g ∗ : Mod(a) −→Mod(b). Hence we
have that f∗

∼= f!
∼= g ∗ by unicity of adjoint functors. Observe then that

f∗ ◦ ia
∼= g ∗ ◦ ia = ib ◦ g s ,

which implies that f∗|Sh(a) takes values in Sh(b)⊆Mod(b). Consequently f is cocontin-
uous. �

Lemma 5.2. Condition LF2 holds for LC in Site.

Proof. The composition of continuous morphisms is again continuous, and the anal-
ogous statement is true for cocontinuous morphisms. So we only have to see that the
composition of two LC morphisms again fulfills properties (G), (F) and (FF) and we
conclude by Proposition 2.6.

Consider v : a−→ b and w : b−→ c two LC morphisms between sites.
Property (G) for w ◦ v follows immediately from the fact that both v and w have

property (G) and that the composition of coverings is again a covering (this is a direct
consequence of the glueing axiom [10, §2.2 ]).

We now prove property (F). Consider a morphism

c : (w ◦ v )(A)−→ (w ◦ v )(A′)

in c. As w has property (F), we know there exist a covering {ri : Bi −→ v (A)}i in b and
morphisms bi : Bi −→ v (A′) such that

(12) c ◦w (ri ) =w (bi ).

Now, as v has property (G), we can find covering families {si j : v (Ai j ) −→ Bi } j in b for
all i . Now consider the morphisms ri ◦ si j : v (Ai j )−→ v (A) and bi ◦ si j : v (Ai j )−→ v (A′)

for each i , j . As v has property (F), we know there exist coverings {ti j k : Ai j k −→ Ai j }k
and {t ′

i j k
: A′

i j k
−→ Ai j }k and morphisms ai j k : Ai j k −→ A and a ′

i j k
: A′

i j k
−→ A′ in a,

such that
ri ◦ si j ◦ v (ti j k ) = v (ai j k )

bi ◦ si j ◦ v (t ′
i j k
) = v (a ′

i j k
)

for all i , j , k . Consider now the intersection of the two covering sieves generated by
{ti j k : Ai j k −→ Ai j }k and {t ′

i j k
: A′

i j k
−→ Ai j }k in a for each i , j and take a covering

family {ui j k : Ai j k −→ Ai j }k generating this sieve. Then we have that

ri ◦ si j ◦ v (ui j k ) = v (āi j k )

bi ◦ si j ◦ v (ui j k ) = v ( ¯̄ai j k )

for morphisms āi j k : Ai j k −→ A and ¯̄ai j k : Ai j k −→ A′. Observe that the family formed
by the compositions {ri ◦ si j ◦ v (ui j k )}i , j ,k is a covering because it is a composition of
coverings (note that {v (ui j k )}k is a covering of v (Ai j ) in b because {ui j k }k is a covering
of Ai j in a and v is an LC morphism). Consequently {āi j k}i , j ,k is a covering in a of A,
because v is an LC morphism and {v (āi j k )}i , j ,k is a covering on b. Hence precompos-
ing with w (si j ◦ v (ui j k )) in both terms of (12) we have that:

c ◦w (ri ) ◦w (si j ◦ v (ui j k )) =w (bi ) ◦w (si j ◦ v (ui j k ))

for all i , j , k . Observe that the first term is equal to c ◦(w ◦v )(āi j k ) and the second term
is equal to (w ◦ v )( ¯̄ai j k ). This proves (F) for w ◦ v .

To conclude, we prove property (FF). Consider a morphism a : A −→ A′ in a such
that (w ◦ v )(a ) = 0. As w has property (FF), there is a covering {ri : Bi −→ v (A)}i in b

such that

(13) v (a ) ◦ ri = 0
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for all i . As v has property (G), for each i there exists a covering {si j : v (Ai j ) −→ Bi } j
in b. Consider the covering {ri ◦ si j : v (Ai j ) −→ v (A)}i , j of v (A) in b given by the com-
position. As v has property (F), for each i , j there exist a covering {ti j k : Ai j k −→ Ai j }k
in a and a family of morphisms āi j k : Ai j k −→ A such that:

(14) ri ◦ si j ◦ v (ti j k ) = v (āi j k ).

Then, precomposing in both terms of (13) with si j ◦ v (ti j k ), one has that

v (a ) ◦ ri ◦ si j ◦ v (ti j k ) = v (a ◦ āi j k ) = 0.

Eventually, as v has property (FF), we know that for every i , j , k there exists a covering
{ui j k l : Ai j k l −→ Ai j k}l in a such that:

a ◦ āi j k ◦ui j k l = 0

But the family {āi j k ◦ui j k l : Ai j k l −→ A}i j k l is a covering because it is a composition of
coverings (observe in (14) that, as v is LC, {v (ti j k )}k is a covering in b and hence so is
{v (āi j k )}i , j ,k and thus {āi j k}i , j ,k is a covering in a). Hence we conclude the argument.

�

Lemma 5.3. Condition LF3 holds for LC in Site.

Proof. Assume we have a solid diagram

b

c a

w

f

in Site with w ∈ LC. We have to prove that it can be completed to a square

b d

c a

g

α
w

f

v

where α is an invertible 2-morphism and v ∈ LC.
Consider the following morphism of Grothendieck categories

Sh(a) Sh(c) Sh(b)
fs w̃∗

induced by f and w , whose left adjoint is given by f s ◦ w̃ ∗ : Sh(b)−→ Sh(a) (see §2).
We apply the roof theorem (Theorem 2.8) to this latter morphism. Take d the site

defined as the full subcategory of Sh(a)with objects {h #
A
}A∈a∪{( f

s ◦w̃ ∗)(h #
B
)}B∈b and we

endow it with the topology induced by the canonical topology in Sh(a). Then consider
the following morphisms:

b d

a

g

v

defined v = #a ◦ Ya and g = ( f s ◦ w̃ ∗) ◦#b ◦ Yb.
Now, as w is an LC morphism by hypothesis, and thus continuous and cocontinu-

ous, we have the following chain of invertible 2-morphisms (see §2 for the properties
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of continuous and cocontinuous functors):

g ◦w = f s ◦ w̃ ∗ ◦#b ◦ Yb ◦w

= f s ◦#c ◦w ∗ ◦ ib ◦#b ◦ Yb ◦w

= f s ◦#c ◦w ∗ ◦ ib ◦w s ◦#c ◦ Yc

= f s ◦#c ◦ ic ◦ws ◦w s ◦#c ◦ Yc

∼= f s ◦#c ◦ Yc

= #a ◦ Ya ◦ f

= v ◦ f

Hence, if we take α to be this invertible 2-morphism, we conclude the argument. �

Lemma 5.4. Condition LF5 holds for LC in Site.

Proof. Consider two morphisms v, w : a −→ b in Site such that w ∈ LC. Assume we
also have an invertible 2-morphism α : v ⇒ w . We want to prove that v also belongs
to LC.

Consider an object B ∈ b. By hypothesis, there exists a covering {ri : w (Ai ) −→ B}i
and we can consider the associated covering

{v (Ai )
αAi
−→w (Ai )

ri
−→ B}

by composing with the isomorphism αAi
given by the invertible 2-morphism (recall

that any isomorphism generates a covering sieve in a topology, the corresponding rep-
resentable one). This proves property (G) for v .

Consider now a morphism b : v (A)−→ v (A′) in b. Then we can take the morphism
αA′ ◦b ◦α−1

A
: w (A)−→w (A′), and as property (F) holds for w , we have that there exists

a covering {si : Ai −→ A}i and morphisms ai : Ai −→ A′ in a, such that

αA′ ◦ b ◦α−1
A
◦w (si ) =w (ai )

for all i . Consequently:

v (ai ) = α
−1
A′
◦w (ai ) ◦αAi

=α−1
A′
◦αA′ ◦ b ◦α−1

A
◦w (si ) ◦αAi

= b ◦ v (si ),

which proves that property (F) holds for v .
Take now a : A −→ A′ in a such that v (a ) = 0. This implies that w (a ) = 0 and hence

there exists a covering {ti : Ai −→ A}i such that a ◦ ti = 0 for all i , which proves that
property (FF) holds for v .

It remains to prove thatTa = v−1Tb. We have thatTa =w −1Tb by hypothesis, hence
given a covering sieve 〈ri : Ai −→ A〉 of A in a, we have that 〈ri 〉 ∈ Ta(A) if and only if
〈w (ri ) : w (Ai )−→w (A)〉 ∈ Tb(w (A)).

On the other hand, it is easy to see that 〈w (ri )〉 ∈ Tb(w (A)) if and only if

〈α−1
A
◦w (ri ) ◦αAi

= v (ri ) : v (Ai )−→ v (A)〉 ∈ Tb(v (A)),

because αAi
,αA are isomorphisms. This concludes the argument. �

Lemma 5.5. Condition LF4 holds for LC in Site.

Proof. First we prove (1) holds. Given two continuous morphisms f , g : b−→ a in Site,
an LC morphism w : b′ −→ b and a 2-morphism α : f ◦w ⇒ g ◦w , we have to prove
that there exists an LC morphism v : a −→ a′ and a 2-morphism β : v ◦ f ⇒ v ◦ g such
that v ◦α= β ◦w .

Consider the morphisms

Sh(a) Sh(b′) and Sh(a) Sh(b′)
( f ◦w )s (g ◦w )s
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between the corresponding sheaf categories, with left adjoints ( f ◦w )s : Sh(b′)−→ Sh(a)

and (g ◦w )s : Sh(b′) −→ Sh(a) respectively. We now perform a similar construction to
that on the roof theorem. Take the full subcategory a′ of Sh(a)with

Obj(a′) = {h #
A
}A∈a∪{( f ◦w )s (h #

B ′
)}B ′∈b′ ∪{(g ◦w )s (h #

B ′
)}B ′∈b′ ,

and endow it with the topology given by the restriction of the canonical topology in
Sh(a). In particular, a′ is subcanonical. We construct the following roofs

a′ a′

b′ a b′ a

r f v rg v

where v = #a ◦Ya, rf = ( f ◦w )s ◦#b′ ◦Yb′ and rg = (g ◦w )s ◦#b′ ◦Yb′ . One can easily see,
following the same arguments as in the roof theorem, that v is an LC morphism and
that ( f ◦w )s ∼= ṽ ∗ ◦ (rf )

s and (g ◦w )s ∼= ṽ ∗ ◦ (rg )
s . We have chosen this special a′ in order

to have the same site on the top of both roofs, but the reasoning to prove that these
roofs behave as the usual roof construction is not affected by this enlargement of the
top category, as it remains to be small. Now that v is constructed, we proceed to build
the 2-morphism β : v ◦ f ⇒ v ◦ g .

First observe that givenα : f ◦w ⇒ g ◦w we haveαs : ( f ◦w )s ⇒ (g ◦w )s the induced
2-morphism described in (10). In particular, one has that:

(15)

HomSh(b′)(h
#
(g ◦w )(A), F ) HomSh(b′)(h

#
( f ◦w )(A), F )

F ((g ◦w )(A)) F (( f ◦w )(A))

HomSh(a)(h
#
A

, (g ◦w )s (F )) HomSh(a)(h
#
A

, ( f ◦w )s (F ))

HomSh(b′)((g ◦w )s (h #
A
), F ) HomSh(b′)(( f ◦w )s (h #

A
), F )

−◦h#
αA

∼= ∼=

F (αA )

∼= ∼=

(αs )F ◦−

∼= ∼=
−◦(αs )

h#
A

is a commutative diagram. Now observe that:

v ◦ f = #a ◦ Ya ◦ f = f s ◦#b ◦ Yb,

v ◦ g = #a ◦ Ya ◦ g = g s ◦#b ◦ Yb.

But notice that, as w is an LC morphism, w s : Sh(b′) −→ Sh(b) is an equivalence with
quasi-inverse given by ws : Sh(b)−→ Sh(b′). Hence we have that

(16)
v ◦ f ∼= ( f ◦w )s (ws ◦#b ◦ Yb)

v ◦ g ∼= (g ◦w )s (ws ◦#b ◦ Yb).

We define β as the composition

(17) v ◦ f ( f ◦w )s ◦ws ◦#b ◦ Yb (g ◦w )s ◦ws ◦#b ◦ Yb v ◦ g
∼= ∼=

where the second 2-morphism is given by αs ◦ (ws ◦#b ◦ Yb).
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Let’s now check that v ◦α=β ◦w . First observe that have the following commutative
diagram

h #
(g ◦w )(B ′) h #

( f ◦w )(B ′)

(g ◦w )s ◦ws ◦h #
w (B ′)

( f ◦w )s ◦ws ◦h #
w (B ′)

(g ◦w )s (h #
B ′
) ( f ◦w )s (h #

B ′
)

h #
(g ◦w )(B ′) h #

( f ◦w )(B ′),

βw (B ′ )

∼= ∼=
(αs )

ws (h
#
w (B ′)

)

∼= ∼=
(αs )

h#
B ′

h#
αB ′

where the last commutative square comes from the commutative diagram (15) above.
It is easily seen that the vertical compositions are the identity. Hence we have that
βw (B ′) = h #

αB ′
= v (αB ′ ) for all B ′ ∈ b′, which concludes the argument.

We prove now (2). Assume α is an invertible 2-morphism. Then so are αs and
αs , and hence αs ◦ (ts ◦ w ) is also an invertible 2-morphism. As β is obtained from
αs ◦ (ws ◦ v ) via pre- and postcomposing (vertically) with invertible 2-morphisms, we
conclude the argument.

Finally, we prove (3). Assume there exists another v ′ : a −→ a′ in LC and another
2-morphism β ′ : v ′ ◦ f ⇒ v ′ ◦ g with v ′ ◦α = β ′ ◦w . We have to prove that there exist
morphisms u , u ′ : a′ −→ a′′ such that u ◦ v ∈ LC and u ′ ◦ v ′ ∈ LC, and an invertible
2-morphism ε : u ◦ v ⇒ u ′ ◦ v ′ such that the following diagram

(18)

u ◦ v ◦ f u ◦ v ◦ g

u ′ ◦ v ′ ◦ f u ′ ◦ v ′ ◦ g

u◦β

ε◦f ε◦g

u ′◦β ′

commutes.
Consider the equivalence v ′s ◦ vs : Sh(a′)−→ Sh(a′), whose quasi-inverse is given by

v s ◦ v ′
s
. We consider the associated roof construction for v s ◦ v ′

s
:

a′′

a′ a′,

u ′ u

with a′′ = {h #
A′
}A′∈a′ ∪ {v

s ◦ v ′
s
(h #

A′
)}A′∈a′ , u = #a′ ◦ Ya′ and u ′ = (v s ◦ v ′

s
) ◦ #a′ ◦ Ya′ . In

particular, u is in LC and as so was v by assumption, so it follows from Lemma 5.2 that
u ◦ v belongs to LC.

Now let’s construct ε. For each A ∈ a we have:

u ◦ v = #a′ ◦ Ya′ ◦ v = v s ◦#a ◦ Ya
∼= (v

s ◦ v ′
s
◦ v ′s ) ◦#a ◦ Ya

∼= (v
s ◦ v ′

s
)(#a′ ◦ Ya′ ◦ v ′) = u ′ ◦ v ′.

Let’s denote this composition of invertible 2-morphisms by ε : u ◦v ⇒ u ′ ◦v ′. Observe
first that from Lemma 5.4 above, it follows that u ′ ◦ v ′ also belongs to LC. To finish the
argument, it remains to check that the diagram (18) above is commutative. Evaluating
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in any object B ∈ b we obtain the following commutative diagram.

(19)

u ◦ v ◦ f (B ) u ◦ v ◦ g (B )

h #
v ◦f (B ) h #

v ◦g (B )

(v ◦ f ◦w )s (ws (h
#
B
)) (v ◦ g ◦w )s (ws (h

#
B
))

(v ◦ f ◦w )s (ws (h
#
B
)) (v ◦ f ◦w )s (ws (h

#
B
))

(v s ◦ v ′
s
) ◦ (v ′s ◦ f ◦w )s (ws (h

#
B
)) (v ◦ v ′

s
) ◦ (v ′s ◦ f ◦w )s (ws (h

#
B
))

(v s ◦ v ′
s
) ◦ (v ′s ◦ f ◦w )s (ws (h

#
B
)) (v s ◦ v ′

s
) ◦ (v ′s ◦ g ◦w )s (ws (h

#
B
))

(v s ◦ v ′
s
) ◦ (v ′s ◦ f )s (h #

B
) (v s ◦ v ′

s
) ◦ (v ′s ◦ g )s (h #

B
)

(v s ◦ v ′
s
)(h #
(v ′◦f )(B )) (v s ◦ v ′

s
)(h #
(v ′◦g )(B ))

u ′ ◦ v ′ ◦ f (B ) u ′ ◦ v ′ ◦ g (B )

u (βB )

h#
βB

∼= ∼=(β◦w )s
ws (h

#
B
)

(v ◦α)s
ws h#

B

∼= ∼=(v s ◦v ′s )◦(v
′◦α)s

ws h#
B

(v s ◦v ′s )◦(β
′◦w )s

ws h#
B

∼= ∼=(v s ◦v ′s )◦β
′s

h#
B

(v s ◦v ′s )◦h
#
β ′

B

u ′(β ′B )

Observe that the left vertical composition in the diagram equals ε f (B ) and the right
vertical composition equals εg (B ), which concludes our argument. �

Finally, we are in the position to prove the following.

Proposition 5.6. LC admits a left calculus of fractions in Site.

Proof. The statement follows from Lemmas 5.1 to 5.5 above. �

Hence we can localize Sitewith respect to LCand obtain the bilocalization Site[LC−1
].

6. THE 2-CATEGORY OF GROTHENDIECK CATEGORIES AS A BILOCALIZATION OF THE

2-CATEGORY OF SITES

In this section we prove the main result of the paper.

Theorem 6.1. There exists a pseudofunctor

Φ : Site−→Grt

which sends LC morphisms to equivalences in Grt, such that the pseudofunctor

Φ̃ : Site[LC−1
]−→Grt

induced by Φ via the universal property of the bicategory of fractions is an equivalence

of bicategories.

Let C be a bicategory and W a class of 1-morphisms in C that admits a calculus
of left fractions. Given a bicategory D and a pseudofunctor Φ : C −→ D sending 1-
morphisms that belong to W to equivalences in D, we have that Φ induces a pseudo-
functor Φ̃ : C[W−1] −→D by the universal property of bilocalizations. A characteriza-
tion of the pseudofunctors Φ such that Φ̃ is an equivalence of bicategories (in the case
of a right bicategory of fractions) is provided in [19] . The characterization makes use
of the right saturation of a class of morphisms introduced in [18]. We formulate below
an analogue for a left calculus of fractions.
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Definition 6.2. Let W be a class of 1-morphisms in the bicategory C. The (left) satu-

ration Wsat of W is the class of all 1-morphisms f : A −→ B in C, such that there exists
a pair of objects C , D ∈ C and a pair of morphisms g : B −→ C and h : C −→ D , such
that both g ◦ f and h ◦ g belong to W.

We say that W is (left) saturated if W=Wsat.

In analogy to [18, Rem 2.3] in the case of right saturation, we have the following
statement for the left saturation.

Proposition 6.3. If the class of morphisms W admits a left calculus of fractions, then

W⊆Wsat.

Proposition 6.4 ([19, Thm 0.4]). Let C be a bicategory and W a class of 1-morphisms

in C that admits a calculus of left fractions. Given a bicategory D and a pseudofunctor

Φ : C −→D sending 1-morphisms that belong to W to equivalences in D, we have that

Φ induces an equivalence of bicategories Φ̃ :C[W−1]
∼=
−→D if and only if:

B1 Φ is essentially surjective on objects;

B2 Given objects C1, C2 ∈ C and an equivalence e : Φ(C2)
∼=
−→ Φ(C1), there exits an

object C3 ∈ C, a pair of morphisms w1 : C1 −→ C3 in W and w2 : C2 −→ C3

in Wsat, an equivalence e ′ : Φ(C3) −→ Φ(C1) in D and a pair of invertible 2-

morphisms δ1,δ2 as follows

(20)

Φ(C2)

Φ(C3) Φ(C1).

Φ(C1)

Φ(w2)

e

⇓ δ2

e ′

Φ(w1)

IdΦ(C1)

⇓ δ1

B3 Given objects C ∈ C and D ∈D and a morphism f : Φ(C )−→D , there exists an

object C ′ ∈ C, a morphism g : C −→ C ′ in C, an equivalence e : Φ(C ′)
∼=
−→D in

D and an invertible 2-morphism α : f ⇒ e ◦Φ(g ).

B4 Given objects C , C ′ ∈ C, two 1-morphisms f1, f2 : C −→ C ′ in C and two 2-

morphisms γ1,γ2 : f1⇒ f2 such that Φ(γ1) = Φ(γ2), there exits an object C ′′ ∈ C

and a 1-morphism w : C ′ −→ C ′′ in W such that w ◦γ1 =w ◦γ2.

B5 Given objects C , C ′ ∈ C, a pair of morphisms f1, f2 : C −→C ′ and a 2-morphism

α :Φ( f1)⇒ Φ( f2), then, there is an object C ′′ ∈ C, a morphism w : C ′ −→ C ′′ in W

and a 2-morphism β : w ◦ f1⇒w ◦ f2 such thatΦ(w )◦α=ψΦ
w,f2
•Φ(β )•(ψΦ

w,f1
)−1,

whereψΦ denotes the associator of the pseudofunctor Φ.

Remark 6.5. We need to use this set of necessary and sufficient conditions from [19]
as the set of sufficient conditions provided by [13, Prop 24] is not satisfied in our case.

We are now in the position to prove Theorem 6.1.

Proof. Recall from §4 that we have a pseudofunctor Φ : Site−→Grt that sends LC mor-
phisms to equivalences. Hence by the universal property of the bilocalization, we have
an induced pseudofunctor

(21) Φ̃ : Site[LC−1
]−→Grt.

Consequently, if the pseudofunctor Φ : Site −→ Grt satisfies properties B1 to B5 from
Proposition 6.4, we conclude the argument. This is done in Lemma 6.6 below. �

Lemma 6.6. The pseudofunctor Φ : Site −→ Grt satisfies properties B1 to B5 in Propo-

sition 6.4 above.



GROTHENDIECK CATEGORIES AS A BILOCALIZATION OF LINEAR SITES 18

Proof. We know every Grothendieck category can be realised as a category of sheaves
on a site (see §2), hence Φ is essentially surjective on objects, which proves B1.

We now prove B2. Consider two sites a1,a2 and an equivalence e : Sh(a2)
∼=
−→ Sh(a1)

in Grt. We apply the roof theorem to the functor e . Let a3 be the site with objects

Obj(a3) = {h
#
A1
}A1∈a1

∪{e (h #
A2
)}A2∈a2

⊆ Sh(a1),

and the topology induced by the canonical topology in Sh(a1). We have the roof con-
struction

a3

a2 a1,

w2 w1

where w1 = #a1
◦Ya1

and w2 = e ◦#a2
◦Ya2

. By the roof theorem, w1 is an LC morphism.
On the other hand, we have that

e ∼=Þ(w1)
∗
◦ (w2)

s ∼= (w1)s ◦ (w2)
s ,

where the first step is given by the roof theorem and the second by Remark 2.7. Observe
that (w1)s is an equivalence because w1 is an LC morphism. Then, as e is an equiva-
lence by hypothesis, (w2)

s is also and equivalence and hence so is (w2)s . In summary,
we have a morphism w2 : a2 −→ a3 with a3 subcanonical and such that (w2)s is an
equivalence. Then, it follows from [11, Cor 4.5] that w2 is an LC morphism. Hence, in
particular, as LC⊆ LCsat by Proposition 6.3, we have that w2 ∈ LCsat. Consider now the
equivalence

e ′ : Sh(a3)
∼=
−→ Sh(a1),

given by e ′ =Þ(w1)
∗
. Then we can then choose δ2 to be the isomorphism:

e ∼= e ′ ◦ (w2)
s = e ′ ◦Φ(w2)

given by the roof decomposition of e . On the other hand, we have that

e ′ ◦Φ(w1) =Þ(w1)
∗
◦ (w1)

s ∼= (w1)s ◦ (w1)
s ∼= IdSh(a1)

,

where the second step follows from Remark 2.7, and the last from the fact that w1 is
LC, and hence (w1)

s is an equivalence with quasi-inverse given by (w1)s . Then, we
can denote by δ1 the horizontal composition of this chain of invertible 2-morphisms,
which concludes the argument.

We now proceed to prove B3. Fix a site b, a Grothendieck category A and a 1-
morphism f : Sh(b)−→A in Grt. We choose a site a such that we have an equivalence

e ′ : A
∼=
−→ Sh(a). Consider the morphism e ′◦ f : Sh(b)−→ Sh(a) in Grt and its associated

roof decomposition

c

b a.

g w

We then have an equivalence w̃∗ ◦ e ′ : A
∼=
−→ Sh(a)

∼=
−→ Sh(c). Choose e ′′ a quasi-

inverse of e ′ and consider e = e ′′ ◦ w̃ ∗ : Sh(c)
∼=
−→A which is a quasi-inverse of w̃ ∗ ◦ e ′.

Then, by the roof theorem, we have that e ′ ◦ f ∼= w̃ ∗ ◦g s and hence, by postcomposing
with e ′′ on both the left and the right hand side, we have an invertible 2-morphism
f ∼= e ◦ g s = e ◦Φ(g ), which finishes the argument.

We now prove B4. Fix two sites a,b, two continuous morphisms f1, f2 : a−→ b and a
pair of 2-morphisms γ1,γ2 : f1⇒ f2 such that

(γ1)
s = (γ2)

s : ( f1)
s ⇒ ( f2)

s .
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Consider c the site with objects {h #
B
}B∈b with the topology induced by the canonical

topology in Sh(b) and w = #b ◦ Yb : b −→ c the corresponding LC morphism. Observe
that ((γ1)

s )h#
A
= ((γ2)

s )h#
A

for all A ∈ a. This implies, applying the commutative diagram
(15), that h #

(γ1)A
= h #

(γ2)A
for all A ∈ a. Hence, we have that (w ◦γ1)A = (w ◦γ2)A for all A ∈ a

and natural in A, which concludes the argument.
Finally, we prove property B5. Consider two sites a,b, two continuous morphisms

f1, f2 : a−→ b and a 2-morphism α : f s
1 ⇒ f s

2 . Let c the site with objects {h #
B
}B∈b ⊆ Sh(b)

and the topology induced by the canonical topology in Sh(b) and the LC morphism
w = #b ◦ Yb : b−→ c. Take β : w ◦ f1⇒w ◦ f2 the 2-morphism given by

w ◦ f1 = #b ◦ Yb ◦ f1 = f s
1 ◦#a ◦ Ya

α◦#a◦Ya

=⇒ f s
2 ◦#a ◦ Ya = #b ◦ Yb ◦ f2 =w ◦ f2.

Then, we have that

w s ◦ f s
1 w s ◦ f s

2

(w ◦ f1)
s (w ◦ f2)

s

( f s
1 ◦#a ◦ Ya)

s ( f s
2 ◦#a ◦ Ya)

s

w s ◦α

(ψS
w ,f2
)−1∼=

(ψS
w ,f2
)−1•(w s ◦α)•ψS

w ,f1

ψS
w ,f1
∼=

(α◦#a◦Ya)
s

is a commutative diagram of 2-morphisms. But observe that the composition

(w ◦ f1)
s = ( f s

1 ◦#a ◦ Ya)
s
(α◦#a◦Ya )

s

=⇒ ( f2 ◦#a ◦ Ya)
s = (w ◦ f2)

s

is just β s by definition, hence

w s ◦α=ψS
w,f2
•β s • (ψS

w,f1
)−1,

which concludes the argument. �

7. MONOIDAL BILOCALIZATION

Let C be a category and W a class of morphisms which admits a calculus of frac-
tions in the sense of Gabriel-Zisman [8]. Then, as it is proven in [6], if C has a symmet-
rical monoidal structure such that W is closed under tensoring, then the localization
C[W−1] has a monoidal structure such that the localization functor C −→ C[W−1] is a
monoidal functor. This is what in [6] is referred to as monoidal localization.

It is reasonable to believe that an analogous result for monoidal bicategories and
bilocalizations holds true, and we plan to return to this topic in the future. In this
section, we briefly sketch a possible application of the main result of this paper given
that we have a satisfactory theory of monoidal bilocalization available.

In [12], we define a tensor product of linear sites, which is seen to define a symmetric
monoidal structure on the bicategory Site

⊠ : Site×Site−→ Site : ((a,Ta), (b,Tb)) 7−→ (a⊗ b,Ta⊠Tb).

We further showed in loc. cit. that the class of LC morphisms is closed under ⊠, hence
we obtain an induced bi-pseudofunctor

⊠̃ : Site[LC−1]×Site[LC−1] = (Site×Site)[(LC×LC)−1]−→ Site[LC−1]

which a general theory of monoidal bilocalization would yield to define a monoidal
structure in the bicategorical sense. This structure could then be transferred to the
equivalent bicategory Grt (in a non-canonical way).

Note that in [12], we use the roof construction in order to obtain a well-defined
(up to equivalence) tensor product of Grothendieck categories, at least on the level
of the categories, and we show that this tensor product is a special case of the ten-
sor product of locally presentable categories which is known to be bi-functorial and



GROTHENDIECK CATEGORIES AS A BILOCALIZATION OF LINEAR SITES 20

monoidal. Further, we provide an alternative approach to these issues in [14], making
use of canonical bicolimit presentations of Grothendieck categories.
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