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1 Introduction

The purpose of this paper is to develop a model structure on bi-simplicial
presheaves in which the weak equivalences are stalkwise equivalences in the
complete Segal model structure on bi-simplicial sets, and show that it is
Quillen equivalent to the local Joyal model structure on simplicial presheaves
of [9]. The existence of the local complete Segal model structure was con-
jectured in [10, Section 1.3]. The technique of Boolean localization is used
extensively to develop this model structure (c.f. [4] and [9]).

This is the second in a series of three papers, including [9] and [8], which
establish local analogues of three of the main extant models of higher category
theory and establish a series of Quillen equivalences connecting them. The
long-term objectives of this project are to apply these results to Simpson’s
theory of higher stacks, as discussed in [11], and study variants of non-abelian
cohomology (c.f. [8, Section 5] for an initial thrust in this direction). As such,
we have modelled our approach to local higher category theory on [4]; this
book contains numerous applications of local homotopy theory to geometric
phenomena.

In Section 2, we establish notational and terminology conventions. In
Section 3 of the paper, we review some properties of the complete Segal model
structure, as well as describe a variety of Quillen adjunctions between the
complete Segal model structure, Joyal model structure, and standard model
structure. These results are necessary for establishing the main results of the
paper. We refer to [7] for facts about the Joyal model structure.

In Section 4, we define the local complete Segal model structure as the
Bousfield localization of the Reedy model structure for bi-simplicial presheaves
along the constant bisimplical presheaf maps G(n) ⊂ F (n), F (0) ⊂ I. Using
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the technique of fibred sites (c.f. [3]), we can identify the Reedy model struc-
ture for bi-simplicial presheaves with the injective (Jardine) model structure
on simplicial presheaves. Thus, we can use the localization theory of simpli-
cial presheaves of [4, Chapter 7] to construct the local complete Segal model
structure. This approach was chosen because it makes the fibrant objects,
as well as descent, easy to describe (c.f. 6.7).

In Section 5, we establish the main result of this paper: the Quillen
equivalence between the local Joyal model structure and the local complete
Segal model structure.

In the Section 6, we establish a result which relates descent in the local
Joyal model structure to descent in the injective model structure. Interest-
ingly, this result is proven using the Quillen equivalence established in Section
5. In addition, the description of the local complete Segal model structure
as a Bousfield localization is key here.

2 Notational Conventions

For any category C we write homC(X, Y ) for the set of morphisms between
two X, Y ∈ Ob(C). If the category is unambiguous we omit the subscript C.
We write Iso(C) for the subcategory of C consisting of isomorphisms. If C is
small, we write B(C) for the nerve of the category. Given a simplicial set K,
write π(K) for the fundamental groupoid of K. Let sSet denote the category
of simplicial sets. Let s2Set denote the category of bi-simplicial sets. We
write hom(X, Y ) for the standard mapping complexes in both simplicial sets
and bi-simplicial sets.

bi-simplicial sets are functors X : ∆op × ∆op → Set. We write Xm,n for
X(m,n). We refer to Xm,n as the (m,n) bisimplices of X. Given simplicial
setsK and L, we can define a bi-simplicial set withK×̃L so that (K×̃L)m,n =
Km × Ln. We write ∆p,q for ∆p×̃∆q.

In sections 4- 6, we fix a Grothendieck site C . We denote the simplicial
sheaves (respectively bi-simplicial sheaves) on C by sSh(C ) (respectively
s2Sh(C )). We denote by sPre(C ) (respectively s2Pre(C )) the set of simpli-
cial presheaves on C (respectively bi-simplicial presheaves). We also choose a
Boolean localization p : Sh(B) → Sh(C ). Boolean localization is described
in detail in [4, Chapter 3 and 4]. However, most of the facts we need are re-
viewed in [9, Section 2]. The injective model structure on sPre(C ) is the
standard model structure in which the cofibrations are monomorphisms and
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the weak equivalences are ’stalkwise’ weak equivalences in the standard model
structure on simplicial sets. We call its weak equivalences local weak equiv-
alences. We call its fibrations injective fibrations. We define for a simpli-
cial set K a functor hom(K,−) : sPre(C ) → Pre(C ) by hom(K,X)(U) =
hom(K,X(U)). For a simplicial set K and a simplicial presheaf X, we write
XK for the simplicial presheaf defined by U 7→ hom(K,X(U)). Given a
simplicial set K, we write K for the constant simplicial presheaf U 7→ K.
The injective model structure has a function complex hom(X, Y ) with n-
simplices defined by hom(X, Y )n = hom(X ×∆n, Y ). We also use the local
Joyal model structure of [9, Theorem 3.3]. We call its weak equivalences local
Joyal equivalences and its fibrations quasi-injective fibrations. We de-
note the sheafification functor for both simplicial and bi-simplicial presheaves
by L2.

3 Complete Segal Spaces

Definition 3.1. Write F (k) = ∆k,0 = ∆k×̃∆0, and F̂ (k) = ∂∆k×̃∆0.

Definition 3.2. Given a category C, its discrete nerve, Disc(C), is defined
to be the bi-simplicial set B(C)×̃∆0. We write I = Disc(Bπ(∆1)). If n is
the ordinal number category, Disc(n) = ∆n×̃∆0 = F (n). Thus, there is a
map F (0)→ I induced by the inclusion of the initial vertex 0 ⊂ π(∆1).

Remark 3.3. We will identify sSet with a subcategory of s2Set via the em-
bedding K 7→ ∆0×̃K.

Definition 3.4. Let G(n) be the glued together string of 1-simplices 1 ≤ 2 ≤
· · · ≤ n inside ∆n regarded as a vertically discrete bi-simplicial set. Thus,
there are natural inclusions G(n) ⊂ F (n).

Remark 3.5. Note that for a bi-simplicial set X, hom(F (k), X) ∼= Xk, the
vertical simplicial set in horizontal degree k since

hom(∆k×̃∆0, X)n ∼= hom(∆k×̃(∆0 ×∆n), X)
= hom(∆k,n, X)
∼= Xk,n

Note that this implies that hom(F (n), X) → hom(G(n), X) can be identi-
fied with the map

Xn∗ → X1∗ ×X0∗ X1∗ · · · ×X0∗ X1∗

3



where the right hand side is the limit of the diagram

X1∗
d1−→ X0∗

d0←− X1∗....

constructed from n copies of X1∗.

Example 3.6. The Reedy model structure on s2Set has cofibrations
which are levelwise monomorphisms and weak equivalences which are lev-
elwise weak equivalences. The generating cofibrations for the Reedy model
structure are of the form

∂(∆n×̃∆k) = (∂∆n×̃∆k) ∪ (∆n×̃∂∆k) ⊂ ∆n×̃∆k

for k, n ∈ N. The generating trivial cofibrations are of the form

(∆k×̃∆n) ∪ (∆k×̃Λn
r ) ⊂ ∆k×̃∆n

where 0 ≤ r ≤ n.

Definition 3.7. The complete Segal model structure is the left Bousfield
localization of the Reedy model structure on s2Set along the set of maps
G(n) ⊂ F (n), n ∈ N, and the natural inclusion F (0) → I, where I is as in
3.2. The fibrant objects of this model category are called complete Segal
spaces.

The complete Segal model structure first appeared in [10].

Example 3.8. If S is some set of maps in a simplicial model category, we
say that X is S-local if and only if X is fibrant and for each g ∈ S, g∗ :
hom(D,X)→ hom(C,X) is a weak equivalence. By [2, Theorem 4.1.1], an
object of X is fibrant for the model structure of 3.7 if and only if it is fibrant
in the Reedy model structure and it is S-local, where S is the set of maps in
3.7.

Definition 3.9. There are adjoint functors

k! : sSet � sSet : k!

where k!(X) = lim
−→

∆n→X

(Bπ(∆n)) and k!(X)n = hom(Bπ(∆n), X)
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The inclusion ∆n → Bπ(∆n) give a natural map X → k!(X). Since
k!(X)n = hom(Bπ(∆n), X), the inclusion ∆n → Bπ(∆n) induces natural
maps k!(X)n = hom(Bπ(∆n), X) → hom(∆n, X) = Xn, and hence induces
a simplicial set map k!(X)→ X.

Lemma 3.10. The functor k! preserves monomorphisms and the natural
map X → k!(X) is a weak equivalence for simplicial sets.

Proof. The fundamental groupoid functor takes pullbacks

∆n−2 //

��

∆n−1

di
��

∆n−1
dj

// ∆n

to pullbacks. All maps Bπ(∆n−1)→ Bπ(∆n) are monomorphisms and there
is a coequalizer diagram∐

i<j

Bπ(∆n−2)→
∐

0≤i≤n

Bπ(∆n−1)→ C

where C is the union of the images in Bπ(∆n). The functor k! preserves
coequalizers so that C ∼= k!(∂∆n) and the induced map

k!(∂∆n)→ k!(∆
n) = Bπ(∆n)

is a monomorphism. The monomorphisms are the saturation of the inclu-
sions ∂∆n ⊂ ∆n. Since k! preserves colimits, it follows that k! preserves
monomorphisms.

We show by induction on n that X → k!(X) is a weak equivalence for all
n-skeletal finite simplicial sets X. In the case n = 0 this is trivial. In general,
we can obtain X as a finite succession of pushouts

∂∆n //

��

Y

��
∆n // Y ′

where Y → k!(Y ) is a weak equivalence. By the inductive hypothesis ∂∆n →
k!(∂∆n) is a weak equivalence. Furthermore, ∆n → k!(∆

n) = Bπ(∆n) is a
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weak equivalence. Thus, by the gluing lemma ([1, Lemma 2.8.8]), we conclude
that Y ′ → k!(Y

′) is a weak equivalence.
Let X be an infinite simplicial set. Let M(X) be the set of finite subcom-

plexes of X. We have a commutative diagram

lim
−→

K∈M(X)

K //

∼=
��

lim
−→

K∈M(X)

k!(K)

∼=
��

X // k!(X)

where the top horizontal map is a filtered colimit of weak equivalences. Since
weak equivalences are preserved by filtered colimits, the map X → k!(X) is
a weak equivalence in general.

Lemma 3.11. If X is a Kan complex, the canonical map k!(X) → X is a
trivial Kan fibration of simplicial sets. If X is a quasi-category, the induced
map k!(X)→ J(X) is a trivial fibration.

Proof. The lifting problem

∂∆n //

��

k!(X)

��
∆n

;;

// X

is equivalent to a lifting problem

k!(∂∆n) ∪∂∆n ×∆n //

��

X

k!(∆
n)

77

The diagram of monomorphisms

∂∆n w.e. //

��

k!(∂∆n)

��

��

∆n w.e. //

w.e.

++

k!(∂∆n) ∪∂∆n ×∆n

((
k!(∆

n)

6



shows that k!(∂∆n) ∪∂∆n ×∆n → k!(∆
n) is a trivial cofibration. Therefore,

since X is a Kan complex, the required lift exists.
For the second statement, note that every map Bπ(∆n) → X factors

through J(X) by [5, Corollary 1.5]. Thus, k!J(X) → k!(X) is an isomor-
phism. The induced map is the diagonal in the diagram

k!(J(X)) ∼=
//

��

k!(X)

��yy
J(X) // X

where k!J(X)→ J(X) is a trivial fibration by the first statement.

Lemma 3.12. Suppose that q : X → Y is a quasi-fibration (i.e. a fibration
in the Joyal model structure) and Y is a quasi-category. Then k!(q) is a Kan
fibration.

Proof. All horn inclusions Λn
k → ∆n induce trivial cofibrations by 3.10. Every

diagram
k!(Λ

n
k) //

i∗
��

X

��
k!(∆

n) // Y

can be refined to a diagram

k!(Λ
n
k) //

i∗
��

J(X)

J(q)

��

// X

q

��
k!(∆

n) //

::

J(Y ) // Y

Since i∗ is a trivial cofibration, to show that the lifting exists, it suffices to
show that J(q) is a Kan fibration (i.e. that J takes quasi-fibrations to Kan
fibrations).

Let f be a quasi-fibration. By [5, Corollary 1.3], J preserves inner fibra-
tions of quasi-categories. By the dual of [7, Proposition 2.1.3.3], it suffices to
show that J(f) is a right fibration, i.e. we want to solve liftings

Λn
n

��

// J(X)

J(f)

��
∆n

<<

// J(Y )
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In the case n = 1 this follows from [7, Corollary 2.4.6.5]. In the case n ≥ 2,
it follows from [7, Remark 2.4.1.4] and [7, Proposition 2.4.1.5].

Lemma 3.13. The functor k! takes weak equivalences to Joyal equivalences.

Proof. Suppose Z is a quasi-category. Then k!(Z) is a Kan complex by 3.12.
The functor k! preserves trivial fibrations, and takes quasi-fibrations between
quasi-categories to Kan fibrations.

Suppose that

ZI

��
Z

∆
//

;;

Z × Z

is a path object for the Joyal model structure. Then the induced diagram

k!(ZI)

(p0∗,p1∗)
��

k!(Z)
∆
//

88

k!(Z)× k!(Z)

is a path object for the standard model structure. It follows that there are
bijections

[X, k!(Z)] ∼= π(X, k!(Z)) ∼= π(k!(X), Z) ∼= [k!(X), Z]

where π(K,Y ) is the set of right homotopy classes for the respective path
objects constructed above. Therefore, k! takes weak equivalences to Joyal
equivalences.

Corollary 3.14. The adjoint pair

k! : sSet � sSet : k!

is a Quillen adjunction between the standard model structure on simplicial
sets and the Joyal model structure.

Proof. Follows from 3.10 and 3.13.

The following theorem ([6, Theorem 4.12]) is a consequence of 3.14 (see
[6, Sections 2-4]).
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Theorem 3.15. Let t! be the colimit-preserving functor defined by t!(∆
n×̃∆m) =

∆n ×Bπ(∆m). There is a Quillen equivalence

t! : s2Set � sSet : t!

between the complete Segal space model structure and the Joyal model struc-
ture.

Example 3.16. Observe that

t!(Y )m,n ∼= hom(∆m ×Bπ(∆n), X) ∼= hom(Bπ(∆n),hom(∆m, X))

so that
t!(Y )m,∗ = k!hom(∆m, Y ) (1)

A bi-simplicial set map f : X → t!(Y ) consists of maps

f : k!(Xm∗)×∆m → Y

so that the diagrams

k!(Xn∗)×∆m

θ∗×1
��

1×θ
// k!(Xn)×∆n

��
k!(Xm∗)×∆m

f
// Y

commute for all ordinal number maps θ : [m]→ [n]. It follows that

t!(X) ∼= d(k!(X)) (2)

Lemma 3.17. Let K be a finite bi-simplicial set (i.e. having finitely many
nondegenerate bisimplices) and X ∈ s2Pre(C ). Then we have isomorphisms
(natural in K,X)

1. p∗hom(K,X) ∼= hom(K, p∗(X)) if X is a simplicial sheaf

2. p∗(XK) ∼= p∗(X)K if X is a simplicial sheaf

3. L2hom(K,X) ∼= hom(K,L2(X))

4. L2(XK) ∼= L2(X)K
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where L2 denotes sheafification and p is our choice of Boolean localization.

Example 3.18. Suppose thatX is a simplicial sheaf andK is a simplicial set.
Let p : sSh(B)→ Sh(C ) be a geometric morphism. We have isomorphisms

p∗hom(K,X) ∼= lim
←−

∆n→K

p∗(Xn) ∼= hom(K, p∗(X))

Recall that k!(X)m = hom(Bπ(∆m), X). Thus, there is a natural isomor-
phism of sheaves

p∗k
!(X) ∼= k!p∗(X)

Thus, by adjunction
p∗L2k!

∼= L2k!p
∗L2 (3)

4 The Model Structure

The following construction is an example of the Grothendieck construction
for a presheaf of categories A on a site C .

Definition 4.1. There is a site C /A whose objects are all pairs (U, x) where
U is an object of C and x ∈ Ob(A)(U). A morphism (α, f) : (V, y)→ (U, x)
in the category C /A is a pair consisting of a morphism α : V → U of C
along with a morphism f : α∗(x) → y of A(U). Given another morphism
(γ, g), the composite (α, f) ◦ (γ, g) is defined by

(α, f) ◦ (γ, g) = (αγ, g · γ∗(f))

There is a forgetful functor c : C /A → C which is defined by (U, x) 7→ U .
The covering sieves for C /A are the sieves which contain a sieve of the form
c−1(S) for S is a covering sieve of C .

Definition 4.2. Denote s, t : Mor(A)→ Ob(A) the source and target maps.
We will regard Mor(A) and Ob(A) as discrete simplicial presheaves. An A-
diagram is a simplicial presheaf map πX : X → Ob(A) together with an
’action diagram’

X ×sMor(A)

pr

��

m // X

πX
��

Mor(A)
t

// Ob(A)
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One further requires that m respects compositions and identities. We de-
note by sPre(C )A the category of A-diagrams whose morphisms are natural
transformations

X
f //

πX ##

Y

πY||
Ob(A)

that respect compositions and identities.

Example 4.3. There is a natural isomorphism of categories

sSet ∼= Pre(∗/∆op)

Consequently, we have an identification

s2Pre(C ) ∼= sPre(C /∆op)

Theorem 4.4. ([3, pg. 817-819]). Let A be a presheaf of categories on C .
There is an equivalence of categories between sPre(C /A) and sPre(C )A

op
.

This equivalence induces a model structure on sPre(C )A
op

defined as follows

1. A weak equivalence (respectively a cofibration)

X
f //

##

Y

||
Ob(A)

of Aop-diagrams is a map such that the simplicial presheaf map f : X →
Y is a local weak equivalence (respectively monomorphism).

2. A fibration of Aop-diagrams is a map which has the right lifting property
with respect to all trivial cofibrations.

Remark 4.5. 4.3 and 4.4 imply that there is a Quillen equivalence

sPre(C /∆op) � s2Pre(C )

where the latter is equipped with a model structure in which a map f : X →
Y is a weak equivalence (respectively cofibration) if and only if Xn∗ → Yn∗
is a local weak equivalence (respectively monomorphism).

We call this model structure on bi-simplicial presheaves the local Reedy
model structure and its weak equivalence local Reedy equivalences.
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Suppose we choose a set S of monomorphisms in sPre(C ). By the results
of [4, Chapter 5], we can choose an uncountable regular cardinal α so that the
α-bounded cofibrations (respectively α-bounded trivial cofibrations) form a
set of generating cofibrations (respectively generating trivial cofibrations) for
the injective model structure on sPre(C ). We can form a smallest saturated
set of monomorphisms F , S ⊆ F subject to the following conditions

1. The class F contains all α-bounded trivial cofibrations and all elements
of S.

2. If C → D is an α-bounded cofibration, and A→ B is an element of F ,
then (A×D) ∪ (B × C)→ B ×D is an element of F .

The following is [4, Theorem 7.18]

Theorem 4.6. Let F be the set of cofibrations defined above. We call an
object X of sPre(C ) F-injective if the map X → ∗ has the right lifting
property with respect to each map in F . We call a map a F−local equiv-
alence if and only if hom(f, Z) is a weak equivalence of simplicial sets for
each F-injective object Z. There is a model structure on sPre(C ), called
the F-local model structure, in which the weak equivalences are the F-
equivalences and cofibrations are monomorphisms.

Note that local weak equivalences are F -equivalences.

Lemma 4.7. An F-equivalence between two F-injective objects of sPre(C )
is a sectionwise weak equivalence.

Proof. The F -injective objects are the fibrant objects ([4, Corollary 7.12]),
and a weak equivalence of fibrant objects is a simplicial homotopy equiva-
lence.

Definition 4.8. Recall that we can identify bi-simplicial sets with constant
bi-simplicial presheaves. Under this identification, let

S = {G(n) ⊂ F (n) : n ∈ N} ∪ {F (0) ⊂ I}

Let F be the smallest saturated set containing S as in 4.6. Then the iden-
tification of 4.5 and 4.6 applied to the family F give a model structure on
s2Pre(C ) called the local complete Segal model structure. We call
its weak equivalences local complete Segal equivalences. We call its
fibrations Segal-injective fibrations.

12



Let U ∈ Ob(C ). Then there exists a functor LU : s2Set → s2Pre(C )
defined by LU(K) = hom(−, U)×K.

Remark 4.9. Note that if X is a fibrant object for the local complete Segal
model structure, then it is a presheaf of complete Segal spaces.

Indeed, X has the right lifting property with respect to LU(i) where i
is one of the generating cofibrations for the Reedy model structure in 3.6.
Thus, X is sectionwise Reedy fibrant.

Let U ∈ Ob(C ). Let jn : G(n) → F (n) be the inclusion. By basic
localization theory, hom(LU(jn), X) is a weak equivalence for n ∈ N. But
this can be identified with hom(F (n), X(U)) → hom(G(n), X(U)) (note
that under the identification of 4.3, the constant simplicial presheaf ∆n gets
identified with the constant bi-simplicial presheaf ∆0×̃∆n).

5 Equivalence with the local Joyal model Struc-

ture

Let SCSeg : s2Pre(C ) → s2Pre(C ) and SJoyal : sPre(C ) → sPre(C ) de-
note, respectively, the functors obtained by applying the complete Segal and
Joyal fibrant replacement functor sectionwise. Let LCSeg,LJoyal,Linj denote,
respectively, the fibrant replacement functors for the local complete Segal,
local Joyal and injective model structures.

We define functors t! : s2Pre(C ) → sPre(C ) and t! : sPre(C ) →
s2Pre(C ) by composition with t! and t! respectively. We also have func-
tors k! : sPre(C )→ sPre(C ) and k! : sPre(C )→ sPre(C ).

Lemma 5.1. There is a natural isomorphism L2t!p
∗L2 ∼= p∗L2t!.

Proof. This follows from equation 2 of 3.16 and equation 3 of 3.18.

Lemma 5.2. Let f : X → Y be a local weak equivalence. Then k!(f) is a
local Joyal equivalence.

Proof. Consider the natural sectionwise fibrant replacement map φX : X →
Ex∞(X). k!(φX) is a sectionwise, and hence local Joyal equivalence by 3.14.
Thus, the diagram

k!(X)

k!(f)

��

// k!Ex
∞(X)

k!Ex
∞(f)

��
k!(Y ) // k!Ex

∞(Y )
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and the 2 out of 3 property imply that we may assume that f is a map
of presheaves of Kan complexes. The fact that p∗L2 preserves local weak
equivalences, along with [4, Lemma 4.23], imply that p∗L2(f) is a sectionwise
weak equivalence. Consider the diagram

k!p
∗L2(X) //

k!p
∗L2(f)

��

L2k!p
∗L2(X)

L2k!p
∗L2(f)

��
k!p
∗L2(X) // L2k!p

∗L2(Y )

The left vertical map is a sectionwise, and hence local Joyal equivalence by
3.14. By [9, Corollary 3.2], the horizontal maps are local Joyal equivalences.
Thus, L2k!p

∗L2(f) ∼= p∗L2k!(f) is a local Joyal equivalence. But p∗L2 reflects
local Joyal equivalences by [9, Remark 3.8].

Lemma 5.3. Let f : A→ B be a local Joyal equivalence and g : C → D be a
cofibration. Then h : A×C → B×C and u : (A×D)∪A×C (B×C)→ B×D
are local Joyal equivalences.

Proof. The second statement follows from left properness and the first state-
ment. We prove the first statement.

The map A × C → SJoyal(A) × SJoyal(C) is a sectionwise Joyal equiva-
lence by [7, Corollary 2.2.5.4] so it suffices to prove the statement for A,B,C
presheaves of quasi-categories. By [9, Corollary 3.11], p∗L2(f) is a section-
wise Joyal equivalence. Thus, since p∗L2 preserves finite limits, p∗L2(h) is
isomorphic to

p∗L2(A)× p∗L2(C)→ p∗L2(B)× p∗L2(C)

which is a sectionwise Joyal equivalence by [7, Corollary 2.2.5.4]. Thus, h is
a local Joyal equivalence, as required.

Example 5.4. Recall that simplicial sets can be identified with constant
simplicial presheaves. By a matching space argument, the generating trivial
cofibrations for the local Reedy model structure on s2Pre(C ) are of the form
f = (∆k×̃X) ∪ (∂∆k×̃Y ) → ∆k×̃Y , where X → Y is an α-bounded trivial
cofibration.

Thus, since t! preserves colimits, we have

t!(f) = (∆k × k!(X)) ∪ (∂∆k × k!(Y ))→ ∆k × k!(Y )

14



The map k!(X) → k!(Y ) is a local Joyal equivalence by 5.2. Thus, the
map t!(f) is a local Joyal equivalence by 5.3.

Lemma 5.5. Let LCSeg be the fibrant replacement for the local complete Segal
model structure. Then the natural map t!(X)→ t!(LCSeg(X)) is a local Joyal
equivalence.

Proof. Let F be the family defined in 4.8. The fibrant objects of the local
complete Segal model structure are the F -injective objects by [4, Corollary
7.12]. Thus, LCSeg is obtained by taking iterated pushouts along maps in
a set G generating F (c.f. [4, Lemma 10.21]). The functor t! commutes
with colimits, and filtered colimits of local Joyal equivalences are local Joyal
equivalences. Thus, it suffices to show that t!(φ) is a local Joyal equivalence
where φ is in the diagram∐

G Q× hom(Q,X) //

��

X

φ

��∐
G R× hom(Q,X) // E1(X)

where Q → R is an element of G. We can take G to be the set of maps
A × D ∪ B × C → B × D, where C → D is a α-bounded cofibration and
A→ B is either

1. G(n) ⊂ F (n)

2. F (0)→ I

3. A generating trivial cofibration for the local Reedy model structure

Let X be a complete Segal space. Then hom(I ×D,X)→ hom(F (0)×
D,X) is naturally isomorphic to hom(I,XD) → hom(F (0), XD). By [10,
Corollary 7.3], XD is a complete Segal space. Since F (0)→ I is a complete
Segal equivalence, hom(I,XD)→ hom(F (0), XD) is a weak equivalence. It
follows that F (0) × D ⊂ I × D is a complete Segal equivalence. Similarly,
we can show that G(n)×D ⊂ F (n)×D is a complete Segal equivalence.

The functor t! takes sectionwise complete Segal equivalences to section-
wise Joyal equivalences by [6, Theorem 4.12]. The maps t!(F (0) × D) ⊂
t!(I × D) and t!(F (0) × D) ⊂ t!(I × D) are sectionwise Joyal equivalences,
and hence local Joyal equivalences. If f a generating trivial cofibration for
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the local Reedy model structure, then t!(f × idD) is a local Joyal equivalence
by 5.4 and 5.3. Thus t!(g), g ∈ G, can be written as

(t!(A×D)) ∪ (t!(B × C))→ t!(B ×D)

The maps t!(A × D) → t!(B × D) and t!(A × C) → t!(B × C) are local
Joyal trivial cofibrations by 5.3 and [6, Theorem 4.12]. Thus, the map t!(g)
is a local Joyal trivial cofibration. In conclusion, t!(φ) is a pushout of a
trivial cofibration for the local Joyal model structure, and is thus a trivial
cofibration.

Lemma 5.6. J preserves both trivial Kan fibrations and Kan fibrations.

Proof. Let f : X → Y be a Kan fibration. The map f creates quasi-
isomorphisms (i.e. 1-simplices that represent isomorphisms in the path cate-
gory) since ∆1 → Bπ∆1 is a trivial cofibration (c.f. [5, Corollary 1.6]). Thus,
one has a pullback

J(X)

��

// J(Y )

��
X // Y

The same proof applies to trivial fibrations.

Lemma 5.7. J preserves local trivial fibrations.

Proof. Let f be a local trivial fibration. Then p∗L2(f) is a sectionwise trivial
fibration so that Jp∗L2(f) is a sectionwise trivial fibration. But [9, Lemma
3.6] implies that Jp∗L2(f) ∼= p∗L2J(f). Thus, J(f) is a local trivial fibration
by [4, Lemma 4.15].

Lemma 5.8. Let f : X → Y be a local Joyal equivalence of presheaves of
quasi-categories. Then t!(f) is a local Reedy equivalence.

Proof. By functorial factorization ([9, Example 3.16]), we can assume that f
is a sectionwise quasi-fibration (since t! preserves Joyal equivalences of quasi-
categories). Thus, f is a local trivial fibration by [9, Lemma 3.15]. Thus,
so are the maps f∆n

. By 5.7, each J(f∆n
) is a local trivial fibration. But

J(f∆n
) is sectionwise Joyal equivalent to t!(f)n∗ = k!(f∆n

).

Theorem 5.9. There is a Quillen equivalence

t! : s2Pre(C ) � sPre(C ) : t!
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Proof. If X is a fibrant object of the local Joyal model structure then it
is a presheaf of quasi-categories and t!t

!(X) → X is a sectionwise Joyal
equivalence by [6, Theorem 4.12] (note that every object is cofibrant in the
model structures involved).

We want to show that the natural map X → t!LJoyalt!(X) is a local
complete Segal equivalence. There is a commutative diagram

X //

��

t!LJoyalt!(X)

��
LCSeg(X) // t!LJoyalt!LCSeg(X)

The map LJoyalt!(X) → LJoyalt!LCSeg(X) is a local Joyal equivalence of
presheaves of quasi-injective objects by 5.5. Thus, it is a sectionwise Joyal
equivalence. It follows from [6, Theorem 4.12] that the right vertical map
is a sectionwise complete Segal equivalence of presheaves of complete Segal
spaces. In particular, it is a sectionwise Reedy, and hence local complete Se-
gal equivalence. The left vertical map is a local complete Segal equivalence
by definition. Thus, we may assume that X is a presheaf of complete Segal
spaces.

The map SJoyalt!(X)→ LJoyalt!(X) is a local Joyal equivalence of presheaves
of quasi-categories. Thus, t!SJoyalt!(X) → t!LJoyalt!(X) is a local complete
Segal equivalence by 5.8. By [6, Theorem 4.12], the map X → t!SJoyalt!(X)
is a sectionwise complete Segal equivalence. It is also a sectionwise Reedy
equivalence (since it is a map of presheaves of complete Segal spaces), and
hence a local complete Segal equivalence. It follows that the map

X → t!t!(X)→ t!SJoyalt!(X)→ t!LJoyalt!(X)

is a local complete Segal equivalence, as required.

Lemma 5.10. t! preserves and reflects local Joyal equivalences of presheaves
of quasi-categories.

Proof. Consider the diagram

X //

f

��

t!t
!(X) a

//

t!t
!(f)
��

t!SJoyalt!(X)

��
Y //// t!t

!(Y )
b
// t!SJoyalt!(Y )

17



The horizontal composites, a and b are all local Joyal equivalences. Thus, by 2
out of 3, the left horizonal maps are local Joyal equivalences.We conclude that
f is a local Joyal equivalence if and only if t!t

!(f) is a local Joyal equivalence.
But t! preserves and reflects local Joyal equivalences.

Corollary 5.11. A sectionwise complete Segal equivalence is a local complete
Segal equivalence.

Proof. Let f be a sectionwise complete Segal equivalence. Then t!(f) is a
sectionwise Joyal equivalence, and hence a local Joyal equivalence. But t!
reflects weak equivalences between cofibrant objects of the local Joyal model
structure, as required.

Corollary 5.12. p∗, L2 both preserve and reflect local complete Segal equiv-
alences.

Proof. Follows from the fact that t! preserves and reflects local equivalences,
1 and 3.

Theorem 5.13. The category s2Sh(C ), along with the class of local complete
Segal equivalences, monomorphisms and Segal-injective fibrations, forms a
left proper model structure. Let i denote the inclusion of bi-simplicial sheaves
into bi-simplicial presheaves. There is a Quillen equivalence

L2 : s2Pre(C ) � s2Sh(C ) : i

Proof. The associated sheaf functor preserves and reflects local complete Se-
gal equivalences and also preserves cofibrations. Hence, the inclusion functor
preserves Segal-injective fibrations. Thus, the functors form a Quillen pair.
The unit map of the adjunction X → L2(X) is a local Reedy, and hence
complete Segal equivalence, and the counit map is the identity. Thus, if we
prove the first statement, we have the second.

Axiom CM1 follows from completeness and cocompleteness of the sheaf
category. Axioms CM2-CM4 follow from the corresponding statements for
local complete Segal model structure on sPre(C ). By [4, Lemma 7.4], there
exists a regular cardinal α so that a map is a fibration in the complete Segal
model structure if and only if it has the right lifting property with respect
to α-bounded trivial cofibrations. Choose a regular cardinal β so that L2(f)
is β bounded for each α-bounded f . Then a sheaf map f is a Segal-injective
fibration if and only if it has the right lifting property with respect to all
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β-bounded trivial cofibration. Doing a small object argument of size 2β, as
in [4, Lemma 5.7], gives CM5.

Theorem 5.14. There is a Quillen equivalence

L2t! : s2Sh(C ) � sSh(C ) : t!

Proof. Immediate from 5.9, and the fact that t! commutes with sheafification
by equation 1.

6 Descent Results

Definition 6.1. One says that a simplicial presheaf (respectively bi-simplicial
presheaf, respectively simplicial presheaf) X satisfies descent for the in-
jective (respectively local complete Segal, local Joyal) model structure if and
only if X → Linj(X) (respectively X → LCSeg(X), X → LJoyal(X)) is a
sectionwise weak equivalence (respectively sectionwise complete Segal equiv-
alence, sectionwise Joyal equivalence).

Lemma 6.2. Let S be a simplicial set. (−)S preserves quasi-injective fibra-
tions.

Proof. Follows from 5.3 since (−)S is right adjoint to −× S.

Lemma 6.3. Let X be a fibrant object in the local Reedy model structure
on s2Pre(C ) (c.f. 4.3). Then Xn∗ is a fibrant object in the injective model
structure.

Proof. Consider the site morphism

sn : C ∼= C /∗ n−→ C /∆op

where the latter map is inclusion of the nth vertex. By [4, Corollary 5.24],
the functor

(sn)∗ : sPre(C /∆op)→ sPre(C )

is a right adjoint of a Quillen adjunction, and hence preserves fibrant objects.
But (sn)∗(X) = Xn∗.
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Lemma 6.4. If X is a presheaf of complete Segal spaces, then its local Reedy
fibrant replacement (i.e. injective fibrant replacement under the identification
of 4.3) Linj(X) is Segal-injective fibrant. In particular, X satisfies descent
for the injective model structure if and only if it satisfies descent for the local
complete Segal model structure.

Proof. Consider the presheaf maps

XG(n) //

��

Linj(X)G(n)

��
XF (n) // Linj(X)F (n)

XI //

��

Linj(X)I

��
XF (0) // Linj(X)F (0)

To show that Linj(X) is Segal-injective fibrant, it suffices to show that the
right vertical maps in the above diagram are local weak equivalences. The left
vertical maps are sectionwise Reedy equivalences. The maps X → Linj(X)
can be identified with a local weak equivalence of presheaves of Kan com-
plexes. Since (−)A preserves local trivial fibrations, it preserves local weak
equivalences of presheaves of Kan complexes by the functorial factorization
of [4, pg. 93]. Thus, the horizontal maps in the above diagram are all local
Reedy equivalences. Thus, by 2 out of 3, the right vertical maps are local
weak equivalences, as required.

Lemma 6.5. Let X and Y be presheaves of quasi-categories. A map f :
X → Y is a local Joyal equivalence if and only if for all n ∈ N

J(X∆n

)→ J(Y ∆n

)

is a local weak equivalence.

Proof. If X is a presheaf of quasi-categories, then so is each X∆n
. Also, there

is a sectionwise weak equivalence

k!(X∆n

)→ J(X∆n

)

Thus, the condition is equivalent to saying that t!(f) is a local Reedy equiv-
alence. The result follows from 5.8 and 5.10.

20



Lemma 6.6. Let X be a presheaf of quasi-categories. Then X satisfies
descent with respect to the local Joyal model structure if and only if t!(X)
satisfies descent with respect to the local complete Segal model structure.

Proof. The map t!(X) → t!LJoyal(X) is a local complete Segal equivalence,
and t!LJoyal(X) is fibrant for the local complete Segal model structure. In
particular, t!LJoyal(X) is a fibrant model of t!(X) in the local complete Segal
model structure. The result follows from the fact that t! preserves and reflects
sectionwise equivalence of presheaves of quasi-categories.

Theorem 6.7. Let X be a presheaf of quasi-categories. Then X satisfies
descent in the local Joyal model structure if and only if each J(X∆n

) satisfies
descent with respect to the injective model structure.

Proof. If each J(X∆n
) satisfies descent, then each k!(X∆n

) satisfies descent,
because of the sectionwise weak equivalence k! → J . By 6.3, for n ∈ N,
k!(X∆n

) = t!(X)n∗ → LCSeg(t!(X))n∗ is an injective fibrant replacement
(and a sectionwise weak equivalence). Therefore, t!(X) satisfies descent for
the injective model structure. Conclude using 6.4 and 6.6.

The proof of the converse is similar.

Lemma 6.8. If C is a category, then JB(C) ∼= B(Iso(C)).

Proof. By construction, the n-simplices of JB(C) are precisely the strings
a1 → · · · → an of invertible arrows in PB(C) ∼= C.

Corollary 6.9. Let C be a presheaf of categories. Then B(C) satisfies
descent for the local Joyal model structure if and only if for each n ∈ N,
Iso(C)[n] is a stack.

Proof. This follows from the preceding two results and the natural isomor-
phism B(C)∆n

= B(C)B([n]) ∼= B(C [n]).

Theorem 6.10. Let X be a presheaf of quasi-categories. Then one has a
bijection [∗, J(X)] = [∗, X]q. Here, [ , ]q denotes maps in the local Joyal
homotopy category and [ , ] denotes maps in the ordinary homotopy category
on simplicial presheaves.

Proof. The constant simplicial presheaf I = Bπ(∆1) is a interval object for
the local Joyal model structure. Furthermore, every map I → X factors
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through J(X) by [5, Corollary 1.6]. Since LJoyal(X) satisfies descent, we
have

[∗, X]q ∼= [∗,LJoyal(X)] ∼= πI(∗,LJoyal(X)) ∼= πI(∗, JLJoyal(X))

where πI(A,B) denotes the I-homotopy classes of maps. The presheaf JLJoyal(X)
satisfies descent with respect to the injective model structure. The constant
simplicial presheaf map ∆1 → I is a trivial cofibration in the injective model
structure so we have

πI(∗, JLJoyal(X)) ∼= π∆1(∗, JLJoyal(X)) ∼= [∗, J(X)]

as required.

Example 6.11. If A is a presheaf of categories, one has an identification
[∗, BA]q = [∗, B(Iso(A))]. In particular, [4, Corollary 9.15] implies that
[∗, BA]q is a non-abelian H1 invariant.
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