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DYNAMICAL SYSTEMS AND SHEAVES

PATRICK SCHULTZ, DAVID I. SPIVAK, AND CHRISTINA VASILAKOPOULOU

Abstract. A categorical framework for modeling and analyzing systems in a broad sense

is proposed. These systems should be thought of as ‘machines’ with inputs and outputs,

carrying some sort of signal that occurs through some notion of time. Special cases in-

clude continuous and discrete dynamical systems (e.g. Moore machines). Additionally,

morphisms between the different types of systems allow their translation in a common

framework. A central goal is to understand the systems that result from arbitrary intercon-

nection of component subsystems, possibly of different types,as well as establish conditions

that ensure totality and determinism compositionally. The fundamental categorical tools

used here include lax monoidal functors, which provide a language of compositionality,

as well as sheaf theory, which flexibly captures the crucial notion of time.
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1. Introduction

The broad goal of this paper is to suggest a solid categorical framework for understand-
ing and simulating systems of systems. While the current work is certainly theoretical,
our ultimate interest is to make the case that category theory can be useful for modeling
real-world systems, certainly not a novel thesis as we discuss in the related work section.
We consider broadly defined open (dynamical) systems that take in, process, and send out
material. Their complexity level varies greatly; for example, they can be used to model
anything from an electric circuit, to a chemistry experiment, to a robot. Moreover, they are
designed to be interconnected: the material output by one system is sent to, and received
by, another. The central idea to which the current work adheres, building on earlier works
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2 DYNAMICAL SYSTEMS AND SHEAVES

like [RS13, Spi13, VSL15], is that a single system may arise by wiring together any num-
ber of component open subsystems; see Fig. 1. Analyzing a composite system is often

Figure 1. Compositional analyses facilitate the rearrangement as well as
the replacement of internal components

intractable, because its complexity is generally exponential in the number of subsystems.
Hence it is often crucial that the analysis be compositional [SY13] because such analyses
can be applied to the subsystems independently, and the results can be composed in a
specific sense. This also means that the analysis is robust to redesign: improvements
can arise from reconfiguring any one of the numerous parts and subparts of large-scale
systems (see Fig. 1) at any level of a hierarchy, which can itself be re-structured, and the
analyses of unaffected systems remain valid.

The theory of monoidal categories and operads provides an excellent formalism in
which to study compositionality. In our approach, an object in the symmetric monoidal
categoryWC of C-labeled boxes and wiring diagrams (for some category C) looks like a box in
Fig. 1, thought of as an interface for an open dynamical system with input and output ports
through which it can interact with its environment. A morphism in WC describes how
systems can be interconnected together to form new systems: for example, any of the two
dotted composite systems in Fig. 1 are morphisms in the underlying operad, whereas that
picture constitutes an operad composition of a 3-ary (top) and a 2-ary (bottom) morphism
producing a 5-ary one. This framework is a cornerstone for the present work and will
be described in detail; wiring diagrams become the algebraic operations for combining
dynamical systems.

The typing category C indicates the sort of information or material that each component
in a system may send or receive. For example, if C � Set, each port is associated to a
set of possible inputs/outputs signals. To properly model the flow of such signals, we
must decide whether changes are happening continuously, at discrete time steps, or in
some combination; that is how the fundamental issue of time enters our formalization. In
particular, for a discrete dynamical system the flow occurs on the ticks of a global clock,
whereas for continuous dynamical systems it occurs continuously throughout intervals
of time. Furthermore, when different types of systems are composed, their notions of
time must be faithfully translated into a common one, keeping in mind that there is no
‘best’ notion of time: the more expressive a language is for describing systems, the more
difficult it is to answer questions about them.
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The categories, or more precisely toposes, that capture the required variations of time
in this paper are sheaves on intervals in � or in �, structures also studied in [Law86].
Such typing categories, herein denoted Ĩnt or �IntN , endow input and output ports with
sets of allowed trajectories of information over each (discrete or continuous) interval
of time: these trajectories can restrict over smaller intervals of time, and compatible
ones can glue to produce a trajectory over the union of intervals. There is also a (slice)
topos Ĩnt/Sync encompassing ‘synchronized continuous time’, in which each continuous
interval is assigned a phase θ ∈ [0, 1). If one wishes to combine continuous-time systems
with discrete ones that operate on the same clock, the result is in the topos of synchronous

sheaves; see Remark 3.3.1.
Having established the interface and the time framework, our world of interacting

open systems is expressed as a wiring diagram algebra, namely a lax monoidal functor
F : WC → Cat or equivalently an operad morphism from the underlying operad. For any
such functor and X a C-labeled box, FX is the category of F-systems (for example, Moore
machines or continuous dynamical systems) with input and output ports determined by
the shape of X. Given F-systems ‘inhabiting’ the boxes of a picture like Fig. 1, the lax
monoidal structure along with functoriality of F coherently produce a composite F-system
that inhabits the outer box. Moreover, any functor H : C→ D induces a strong monoidal
functor WH : WC →WD capable of changing the input/output types. A morphism, then,
of wiring diagram algebras is a monoidal opindexed 1-cell [MV18], i.e. a monoidal natural
transformation

WC

Cat

WD

F

WH ⇓ α

G

with components αX : FX→ G(WH(X)) that specifically translate F-systems to G-systems.
Our work is based on a class of very general, span-like wiring diagram algebras, which

we simply call machines. A lax monoidal functor SpnC : WC → Cat (Proposition 2.4.1)
gives rise to certain open systems called discrete, continuous, or synchronous machines,
corresponding to the situation in which the typing category C is the topos of discrete,
continuous, or synchronous interval sheaves respectively. Not only do ordinary discrete
and continuous dynamical systems translate into discrete and continuous machines via
an embedding of algebras, but also they can ultimately compose to one another since all
machines embed into the algebra of synchronous ones, MchSync : WĨnt/Sync → Cat.

A very important feature of our machines is that—in all time versions—there exist
subalgebras of inertial, deterministic, and total machines. In more detail, certain lifting
conditions examine whether a system can determine a piece of a future output trajectory,
whether a state could evolve in more than one way, or whether a state could potentially
‘die’, when the current state is subject to some input trajectory. The fact that such sub-
categories form algebras themselves means that the respective definitions are carefully
chosen so as to be closed under arbitrary compositions, including feedback. For that, the
formalism of WC-algebras is essential; such a result would not hold if traced monoidal
categories were used instead, roughly for the same reason that [ABP99] introduces trace
ideals: “there appears to be a tension between having identities and having compact
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closed structure”, or in our terminology, identity maps are not inertial. Finally, for all
above machine variations, there exist contracted machines defined as systems of the same
type that comply with a given ‘contract’, expressed as a sub-presheaf. A logic of behavior
contracts in a slightly different setting was later given in [SS17].

Related work and future goals. The present work is part of a far more general, ongoing
endeavor by many researchers to categorically formalize general processes and exhibit
the advantages of such compositional analyses. Our results aim to contribute towards
a better understanding of systems, using the theory of monoidal categories to capture
nesting and sheaf theory to capture time. In particular, as mentioned earlier, the topos Ĩnt

of sheaves on real intervals was also studied by Lawvere in [Law86] for similar purposes;
this becomes evident especially in Appendix A. Notably, all of our models of time assume
a common reference time frame for all components in the system: real time progresses for
everyone at the same rate. If one wants a more flexible model for non-interacting parallel
subsystems (i.e. concurrency), or to allow for relativistic effects, Int-sheaves would have to
be replaced by a different formalism such as event structures [Win87] or action structures
[Mil96].

The parts of this work oriented to discrete dynamical systems connect to the well-
established theory of composing finite state automata (Moore machines) or more generally
cyber-physical systems, see e.g. [LS17]. In our framework, the basic operations are
feedback and parallel placement, expressed as morphisms and monoidal product in the
wiring diagram category; for example, serial composition (or CASCADE) is derived from
those. An advantage of this framework is that every wiring diagram arrangement of
automata, like the one in Fig. 1, can be directly given a precise mathematical formulation
as their composite. This constitutes a universal way of composing systems, agnostic to
the complications of interconnections; we plan to further pursue this point—as well as
compositions of Moore machines with different types of systems—according to current
challenges in the respective fields.

Our general system notion is essentially a span inside Ĩnt, which is in fact equivalent
to a discrete Conduché fibration [Joh99] as explained in Appendix A.3. In [Fio00, BF00],
the authors present a very similar strategy of expressing a general process via a discrete
Conduché fibration (therein called unique factorization lifting functor) over monoids of in-
tervals, also distinguishing between discrete and continuous variations. They also discuss
hybrid systems which can in fact be modeled as continuous machines, see [SS17]. Thus
there exist strong similarities between the core formalisms of the two works which should
be further investigated, while also examining certain differences: first, the distinction
between input and output for us is essential—we are interested in the conditions under
which deterministic and total systems compose—whereas their systems communicate
with the outer world via a single control space. Moreover, the two works’ scopes differ a
great deal: we focus on nesting and composing systems of different types, whereas they
focus on the designs of languages and their logic.

Such an investigation is also relevant to connections of the current framework to a
more behavioral approach to systems, e.g. [WP13], which abandons the input/output
distinction: our span formalization of machines is already symmetric in that sense. This
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is also related to machines giving an immediate instance of a hypergraph category, recently
shown to be equivalent to algebras for an operad of cospans [FS18]. On the other hand,
total machines in our context seem to be strongly associated to the concept of open maps in
the theory of bisimulation, see e.g. [JNW96], where again the distinction between input
and output is critical.

Our work is also connected to the theory of traced monoidal categories [JSV96] and
PROPs in the following way. Recall that a prop is a symmetric strict monoidal category
whose monoid of objects is (�, 0,+), the free monoid on one generator. A wheeled prop (see
e.g. [MMS09]) is a traced, symmetric, strict monoidal category whose underlying (can-
cellable) monoid of objects is again (�, 0,+). The diagrams in a wheeled prop look very
similar to diagrams in this paper like (11), so it is worth elaborating on their differences.
First of all, it was shown in [SSR16] that the category of wheeled props is equivalent to
that of algebras on the operad 1-CatCob of oriented 1-cobordisms. The operad of wiring
diagrams does indeed compare to that of cobordisms, but the two are not equivalent.
In more detail, in a wheeled prop there is only one generating object, but we have a
generating object for each sheaf; thus one should begin by using a colored wheeled prop.
Moreover, wires in our diagrams are allowed to split or terminate; thus one should as-
sume that each color in the prop is equipped with a comonoid structure. Finally, wires in
our diagrams are not allowed to feed straight through; this is a sort of dialectica condition
in the sense of [Pai90], which renders it unreasonable to ask for a map from cobordisms to
W since the usual axiomatization of traced monoidal categories depends on the identity.
Thus while it is true that every wheeled colored prop with a comonoid structure on every
object induces a wiring diagram algebra in our sense, the converse does not hold.

Our work is also similar in spirit to that of [KSW00] on systems with boundary. This
work builds on a notion of a category with feedback, closely related to traced monoidal
categories but with a built-in notion of delay, used to define an ifo (input-feedback-delay)
system: examples of those include circuits, algorithms as well as Mealy machines. A
significant example is that of spans of graphs, which are shown to model discrete time
processes; since graphs are precisely sheaves on discrete intervals ĨntN as explained by
Proposition 3.2.3, our interests fully align in this case. When it comes to continuity,
the authors keep the same model by perceiving discrete spaces as infinitesimal motions,
whereas our continuous machines live as spans inside a completely different topos—
sheaves on real intervals.

Finally, our notion of machines was motivated by a project with NASA and Honeywell,
in which we were tasked with giving semantics to a system of interacting systems, such as
the US national airspace system. This work later morphed into [SS17] which emphasizes
the logical aspects, whereas the current paper is geared toward an understanding of
control-theoretic issues: when do systems of systems, with components of different types,
still exhibit deterministic control based on inputs. The work is ongoing, e.g. we hope to
understand the semantics of probabilistic structures (internal valuations), so that we can
model probabilistic behaviors, such as stochastic processes.

Plan of the paper. In Chapter 2, we briefly review monoidal categories and (colored)
operads as well as the theory of their algebras, and we describe the categoryWC of labeled
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boxes and wiring diagrams for a typing category C. We recall the WC-algebras of discrete
and continuous dynamical systems, for which wires carry only static information—the
set of symbols or the space of parameters that drive the system—and finally we introduce
the general C-span algebras.

We bring time into the picture in Chapter 3, where we define sites Int and IntN of contin-
uous and discrete-time intervals respectively, and consider their toposes of sheaves. We
also provide morphisms from discrete and continuous sheaves to a slice topos Ĩnt/Sync,
where Sync is a synchronizing sheaf whose sections can be thought of as phase shifts.

We define abstract dynamical systems, which we call machines, in Chapter 4. They
form WC-algebras, and so do various subclasses such as machines that are total and/or
deterministic. For C � Ĩnt,�IntN or Ĩnt/Sync we obtain different time-typed machines,
designed to encompass as general systems as possible, and we also discuss a notion of
safety contracts for machines.

In Chapter 5 we provide algebra morphisms that translate between almost every com-
bination of machines discussed previously. In particular, we convert our older, static
definitions of discrete and continuous dynamical systems into our new language of time-
based machines, and also discrete and continuous machines into synchronous machines.
We give sufficient conditions for these translations to preserve totality and determinism.

Finally, in Appendix A we give an alternative categorical construction of the sheaf topos
Ĩnt, namely as the category of discrete Conduché fibrations over the monoid of nonnegative
real numbers. This equivalence is derived from results in [Joh99] and provides another
viewpoint for machines and their variations.

Acknowledgments. We greatly appreciate our collaboration with Alberto Speranzon and
Srivatsan Varadarajan, who have helped us to understand how the ideas presented here
can be applied in practice (specifically for modeling the National Airspace System) and
who provided motivating examples with which to test and often augment the theory.
We also thank the anonymous reviewers for valuable suggestions; in particular, such a
suggestion led to a more abstract formalism of system algebras, explained in Section 2.4.

2. Wiring diagrams and algebras

This paper is about interconnecting systems in order to build more complex systems.
The notion of building one object from many is nicely captured using operads and their
algebras: an operad describes the ways ’objects’ can be combined, and an operad algebra
gives semantics by describing the ’objects’ themselves. The operads used in this article in
fact all underlie monoidal categories. While we assume familiarity with monoidal cate-
gories, we review some key facts and the relationship to operads in Section 2.1. Standard
references for these topics include [JS93] and [Lei04a]. The notion of a multicategory
(colored operad) was in fact introduced much earlier by Lambek [Lam69], along with the
crucial observation that every monoidal category gives rise to such a structure.

In Section 2.2 we restrict our interest to a certain symmetric monoidal category W

(and its associated operad) studied in previous works like [VSL15]. The objects and
morphisms in W classify a certain sort of string diagrams, which for reasons explained
elsewhere [SSR16] we call wiring diagrams. The category of wiring diagram algebras,
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i.e. monoidal functors W → Cat, is the realm where various notions of systems live and
can be composed according to their wiring arrangements. In Section 2.3 we elaborate on
two important examples of those algebras, namely discrete and continuous dynamical
systems, whereas in Section 2.4 we describe a very general class of span-like algebras,
whose semantics is fundamental for our description of abstract systems in Chapter 4.

2.1. Background on monoidal categories and operads. We denote a monoidal category
by (V, ⊗, I). Recall that a lax monoidal functor F : (V, ⊗, I) → (W, ⊗, I) comes equipped
with natural structure morphisms

Fc,d : F(c) ⊗ F(d) → F(c ⊗ d) and FI : I → F(I)

satisfying well-known coherence axioms. The functor F is strong monoidal if these struc-
ture morphisms are isomorphisms. If the monoidal categories V and W are moreover
symmetric, with bc,d : c ⊗ d ∼−→ d ⊗ c, then F is symmetric if the structure maps appro-
priately commute with the symmetry isomorphisms. A monoidal natural transformation
α : F ⇒ G between monoidal functors is an ordinary natural transformation whose com-
ponents furthermore commute with the structure morphisms. For detailed descriptions,
see e.g. [JS93].

We denote by SMCℓ the 2-category of symmetric monoidal categories, symmetric lax
monoidal functors and monoidal natural transformations, and by SMC the corresponding
2-category with strong monoidal functors.

Two fundamental examples of cartesian monoidal categories are (Set,×, {∗}) and
(Cat,×, 1). In our context, we will often refer to symmetric lax monoidal functorsV→ Cat

as (Cat-valued) V-algebras, and to monoidal natural transformations between them as V-
algebra maps; hence we denote V-Alg :� SMCℓ(V,Cat). The terminology comes from the
closely-connected world of operads, to which we next turn.

Recall that a colored operad, or multicategory, P consists of a set of objects (colors) obP,
a hom-set of n-ary operations P(c1, . . . , cn ; c) for each (n + 1)-tuple of objects, an identity
operation idc ∈ P(c; c), and a composition formula

P(c1, . . . , cn; c) × P(c11 , . . . , c1k1 ; c1) × · · · × P(cn1 , . . . , cnkn ; cn) → P(c11, . . . , cnkn ; c)

that can be visualized [Lei04a, Fig. 2-B] as

(1)

θn
...

θ1
...

θ

c1

cn

... θ ◦ (θ1, . . . , θn)
...

cc

c11

cnkn

c11

c1k1

cn1

cnkn

7→
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This data is subject to associativity and unitality axioms, and the operad is moreover
symmetric if there are compatible permutation actions on the hom-sets, P(c1, . . . , cn ; c) ∼−→

P(cσ(1) , . . . , cσ(n); c). An operad functor F : P→ P′ consists of a mapping on objects, and a
mapping on hom-sets P(c1, . . . , cn ; c) → P′(Fc1, . . . , Fcn; Fc) that preserves composition,
symmetries and identities. An operad transformation α : F⇒ G consists of unary operations
αc ∈ P′(Fc; Gc) that are compatible with respect to the composition formula. Therefore
we obtain a 2-category SOpd, often denoted SMulticat in the literature, of symmetric
colored operads; see e.g. [Her00, Lei04a].

There exists a 2-functor, called the underlying operad functor as in [Lei04a, Example
2.1.3],

(2) O : SMCℓ → SOpd

mapping each symmetric monoidal category V to the operad with ob(OV) :� obV and
OV(c1 , . . . , cn; c) :� V(c1 ⊗ · · · ⊗ cn , c). Note that for c � c1 ⊗ · · · ⊗ cn , there is a unique
morphism in OV corresponding to idc , called the universal morphism for (c1, . . . , cn). To
each lax monoidal functor F : V→W, we can assign an operad functor OF with the same
mapping on objects. On morphisms, it sends some f : c1 ⊗ · · · ⊗ cn → c in V to the
composite

Fc1 ⊗ · · · ⊗ Fcn

Fc1 ,··· ,cn
−−−−−→ F(c1 ⊗ · · · ⊗ cn)

F f
−−→ Fc

in W. Lastly, a monoidal natural transformation α involves exactly the data needed to
define the operad transformation Oα.

The functor O is clearly faithful, but it is also full: for any operad map G : OV → OW,
we can define a functor F : V → W via the action of G on objects and unary morphisms.
Its lax monoidal structure is given by the action of G on universal morphisms. Moreover,
there is also a bĳection between the respective 2-cells, which exhibits O as a fully faithful
2-functor; see [Her00, Remark 9.5] for relevant results. Not all operads underlie monoidal
categories—the functor O is not essentially surjective—however, all operads of interest in
this paper do happen to be in the image of O.

For typographical reasons,we denote the operadOCatunderlying the cartesian monoidal
category of categories using the same symbol Cat, when no confusion arises. If P is an op-
erad, a (Cat-valued) P-algebra is an operad functor P→ Cat. The category of P-algebras is
denoted P-Alg :� SOpd(P,Cat), see [Lei04a, Def 2.1.12]. This nomenclature agrees with
that above, since for any monoidal categoryV, the fully faithfulO induces an isomorphism
between the corresponding categories of algebras

(3) V-Alg ∼−→ (OV)-Alg.

Remark 2.1.1. In this article, we will in fact work with W-pseudoalgebras for various
monoidal categories W, rather than ordinary algebras. This amounts to viewing W as a
monoidal 2-category (with trivial 2-cells), and considering weak monoidal pseudofunctors

A : (W , ⊗, I) → (Cat,×, 1). More explicitly, for any pair of maps ψ, φ in W, we have only
a natural isomorphism of functors A(ψ ◦ φ) ∼� A(ψ) ◦ A(φ) rather than a strict equality;
similarly for the identities, along with coherence axioms. Moreover, the lax monoidal
structure is pseudo, meaning that any previously commutative diagram of the axioms
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now only commutes up to natural isomorphism (with certain coherence conditions tying
them together). In fact, W-algebras are really monoidal indexed categories in the sense of
[MV18].

More details of such structures can be found e.g. in [DS97], where WMonHom(A,B)

denotes the category of weak monoidal pseudofunctors and monoidal pseudonatural
transformations, for any two monoidal 2-categories A,B. Due to coherence theorems,
there is an equivalence W-Alg ≃WMonHom(W,Cat) and so we safely omit such details
in the presentation below, to keep the already-technical material more readable. Thus we
will speak of the pseudoalgebra A as above simply as a W-algebra and the pseudomaps
between them simply as W-algebra morphisms.

2.2. The operad of labeled boxes and wiring diagrams. Operads (or monoidal cate-
gories) of various ‘wiring diagram shapes’ have been considered in [Spi13, RS13]. More
recently, [SSR16] showed a strong relationship between the category of algebras on a
certain operad (namely Cob, the operad of oriented 1-dimensional cobordisms) and the
category of traced monoidal categories; results along similar lines were proven in [Fon16].
The operads W we use here are designed to model what could be called ‘cartesian traced
categories without identities’.1

For any category C, a C-typed finite set is a finite set X together with a function τ : X →

obC assigning to every element x ∈ X an object τ(x) ∈ C, called its type. We often elide
the typing function in notation when it is implied from the context, writing X rather than
(X, τ). The C-typed finite sets form a category TFSC, where morphisms are functions
f : X → X′ that respect the types, i.e. τ( f x) � τ(x); we call such an f a C-typed function.2
Thus we have

TFSC
∼
� FinSet/obC

and C is called the typing category. Notice that (TFSC ,+, ∅) is a cocartesian monoidal
category via

(X, τ) + (X′, τ′) �
(
X + X′, (τ, τ′)

)

where X + X′ is the disjoint union of X, X′ and (τ, τ′) denotes the co-pairing of func-
tions. Moreover, any functor F : C → D induces a (symmetric strong monoidal) functor
TFSF : TFSC → TFSD, sending (X, τ) to (X, F ◦ τ). We have thus constructed a functor
TFS(−) : Cat→ SMC.

1The reason to study traced categories without identities is that there is no ‘identity’ dynamical system.

Attempting to define such a thing, one loses the trace structure; similar problems arise throughout computer

science and engineering applications: see [Age96, Sel97]. A solution to this problem was described in

[ABP99], using trace ideals. The present operadic approach is another solution, which appears to be roughly

equivalent.
2 The category TFSC of typed finite sets in C is closely related to the finite family fibration Fam(Cop) →

FinSet (see [Jac99, Definition 1.2.1]); namely TFSC is the category of cartesian arrows in Fam(Cop), or

equivalently cartesian arrows in Fam(C). Replacing TFSC with Fam(Cop) throughout the paper would

yield similar definitions and results; for example, taking product of types (4) is well-defined in this context,∏
: Fam(Cop)op → C.
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If C has finite products, then we can assign to each C-typed finite set (X, τ) the product
of all types of its elements, denoted X̂ ∈ C:

(4) X̂ :�
∏

x∈X

τ(x)

This induces a functor (̂−)C : TFS
op
C
→ C, which is strong monoidal because there are

isomorphisms X̂1 × X̂2
∼
� �X1 + X2 and ∅̂ ∼� 1. In fact, if FPCat is the category of finite-

product categories and functors which preserve them, and i : FPCat → SMC realizes a
finite-product category with its canonical cartesian monoidal structure, then the functors

(̂−)C are the components of a pseudonatural transformation

(5)
Cat

FPCat SMC

TFS
op
(−)

i

⇓(̂−)

where the ordinary category FPCat and functor TFS are viewed as 2-structures with the
trivial 2-cells and mappings respectively.

Example 2.2.1. Typed finite sets will be heavily used in the context of wiring diagrams;
here we consider a few typing categories C, whose objects will serve as types of elements
later. In general, if (X, τ) is a typed finite set, we think of each element x ∈ X as a port,
while its associated type τ(x) ∈ obC specifies what sort of information passes through
that port.

(1) When C � Set, each port carries a set of possible signals; there is no notion of time.
Ports of this type are relevant when studying discrete dynamical systems.

(2) When C � Man, (a small category equivalent to) the category of second-countable
smooth manifolds and smooth maps between them, each port carries a manifold
of possible signals, again without a notion of time. Ports of this type are relevant
when specifying continuous dynamical systems: machines that behave according
to (ordinary) differential equations on manifolds.

(3) When C � Ĩnt, the category of interval sheaves defined in Section 3.1, each port
carries a very general kind of time-based signal. The two types of dynamical
systems described above in terms of sets and manifolds can be translated into this
language, at which point the time-based dynamics itself becomes evident. The
topos of interval sheaves will be central in our construction of machines.

We are now in position to define a symmetric monoidal category (WC , ⊕, 0) for any
typing category C, see [VSL15, §3] or [Spi15, §3.3]. Its objects will be called C-labeled boxes;
they are pairs X � (Xin ,Xout) ∈ TFSC × TFSC of C-typed finite sets. We can picture such
an X as

(6)

X

a1

...

am

b1

...

bn



DYNAMICAL SYSTEMS AND SHEAVES 11

Here, Xin
� {a1 , . . . , am} is the set of input ports, and Xout

� {b1 , . . . , bn} is the set of
output ports. Each port ai or b j comes with its associated C-type τ(ai) or τ(b j) ∈ C.

A morphism φ : X→ Y in WC is called a wiring diagram. It consists of a pair

(7)

{
φin : Xin→ Xout

+ Yin

φout : Yout → Xout

of C-typed functions which express ‘which port is fed information by which’. Graphically,
we can picture such a map φ, going from the inside box X to the outside box Y, as

(8)

Y

X

... ...

φ : X→Y

The identity wiring diagram 1X � (1in
X : Xin → Xout

+ Xin , 1out
X : Xout → Xout) is given

by the coproduct inclusion and identity respectively. Given another wiring diagram
ψ � (ψin , ψout) : Y→ Z, their composite ψ ◦ φ �: ω � (ωin , ωout) is given by

ωin : Xin φin

−−→ Xout
+Yin 1+ψin

−−−−→ Xout
+Yout

+Zin 1+φout
+1

−−−−−−−→ Xout
+Xout

+Zin ∇+1
−−−→ Xout

+Zin

ωout : Zout ψout

−−−→ Yout φout

−−−→ Xout

Associativity and unitality can be verified; see [Spi15, Def 3.10] for details.
There is a monoidal structure onWC as follows. For two labeled boxes X1 � (X1

in ,X1
out)

and X2 � (X2
in ,X2

out), their tensor product X1 ⊕ X2 is defined to be (X1
in
+ X2

in ,X1
out

+

X2
out) and amounts to parallel composition

X1

X2

... ...

... ...

of boxes, viewed as a new box. The monoidal unit is 0 � (∅, ∅). We refer to (WC , ⊕, 0) as
the symmetric monoidal category of C-labeled boxes and wiring diagrams

An arbitrary functor F : C→ D induces a symmetric strong monoidal functorWF : WC →

WD. It maps objects X � ((Xin , τin), (Xout, τout)) to WF(X) � ((X
in , F ◦τin), (Xout, F ◦τout))

which consist of the same finite set of input and output ports, but with new typing func-
tions defined by F. Together with the identity-like action of WF on morphisms, we obtain
a functor

(9) W(−) : Cat→ SMC.

Even though this is defined on arbitrary categories and functors, it turns out that in
many of the examples that follow, using products (4) and pullbacks is essential; see also
Remark 2.2.2. Thus we often restrict to finitely complete categories FCCat ֌ Cat as the
domain of W(−), e.g. see Proposition 2.4.4.
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Following Example 2.2.1, some wiring diagram categories we will use includeWSet,WEuc

and WĨnt. Regarding induced functors between them, consider the example of the limit-
preserving U : Euc → Set which maps a Euclidean space to its underlying set. This
naturally induces a symmetric strong monoidal functor

(10) WU : WEuc→WSet

between the respective categories of wiring diagrams, important for Proposition 2.3.5.
If we apply the underlying operad functor (2) to any monoidal category WC, we obtain

the operad of wiring diagrams OWC. An object, or color, is a C-labeled box (6), whereas for
example a 5-ary morphism φ : X1, . . . ,X5→ Y in OWC can be drawn like

(11) X1

X2

X3

X4

X5

Y

Notice that the boxes are the objects and not the morphisms in the underlying operad
OWC, as the earlier triangles representation for n-ary operad morphisms might suggest;
therefore operadic composition as in (1) in this framework corresponds to a zoomed-in
picture of a box three layers ‘deep’, as in Fig. 1.

In what follows, our goal is to model various processes as objects of (OWC)-Alg, i.e.
algebras for this operad. Due to the isomorphism (3) between algebras for a monoidal
category and for its underlying operad, we can identify such an operad algebra with a
lax monoidal functor from (WC ,+, 0) to (Cat,×, 1), namely a WC-algebra. Given such an
algebra F : WC → Cat and a C-labeled box X (6), we refer to the objects of the category
F(X) as inhabitants of X. An algebra provides semantics to the boxes, examples of which
we will encounter at Section 2.3 as well as Chapter 4. Whereas the formal description of
the algebras will be completely in terms of lax monoidal functors, having an associated
operadic interpretation provides meaningful pictorial representations like (11).

In more detail, given inhabitants of each inside box and their arrangement φ, an algebra
F constructs an inhabitant of the outside box, thus associating a sort of composition formula

to φ. Indeed, for any algebra F : WC → Cat, the composite functor

(12) F(X1) × · · · × F(X5)
FX1 ,...,X5
−−−−−−→ F(X1 + · · · + X5)

F(φ)
−−−→ F(Y)

performs the following two steps. The F-inhabitants of five boxes X1, . . . ,X5 are first
combined—using the lax structure morphisms of F—to form a single inhabitant of the
parallel composite box X :� X1 + · · · + X5. The wiring diagram φ can then be considered
1-ary, and the functor F(φ) converts the inhabitant of X to an inhabitant of the outer box
Y.
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Finally, there exists a category with objects symmetric lax monoidal functors F : WC→

Cat3 with domains categories of C-labeled boxes and wiring diagrams, and morphisms

(13)

WC

Cat

WD

F

WF ⇓ α

G

where WF is the symmetric strong monoidal functor induced by some functor F : C→ D

as in (9), and α is a monoidal natural transformation. Denote this category by WD-Alg4

and notice there is an obvious forgetful functor WD-Alg
dom
−−−→ SMC. All of our algebras

examples like discrete and continuous dynamical systems from Section 2.3, SpnC from
Proposition 2.4.1 and machines from Chapter 4 are objects ofWD-Alg, whereas Chapter 5
describes various maps between them, which allow the translation of one system kind to
another.

Remark 2.2.2. Suppose the typing category C has finite products and consider a C-labeled

box X � (Xin ,Xout) as in (6). By forming the products X̂in
�

∏
x∈Xin τ(x) and X̂out

�∏
x∈Xout τ(x), we can associate to the entire input side (all its ports) a single object X̂in ∈ C,

and similarly associate X̂out ∈ C to the entire output side. Since the functor (̂ · )C (5) is
contravariant and strong monoidal, a wiring diagram φ � (φin , φout) (7) induces a pair of
morphisms in C

(14)

{
φ̂in : Ŷin × X̂out→ X̂in

φ̂out : X̂out→ Ŷout

Intuitively, these now describe the direction of information flow in the wiring diagram:
in (8) the box X receives information only from the input of Y as well as from X’s output
(feedback operation), whereas information that exits Y only came from the output of X.

Through all examples of WC-algebras F : WC → Cat found in this paper, a pattern
arises: C will be a finitely complete category, and we always begin by taking the product
of types. That is, all of our example algebras F factor as

WC Cat

WC

F

X 7→X̂ F

where WC is the monoidal category with objects ob(C × C), and morphisms (X1,X2) →

(Y1, Y2) pairs of C-morphisms
{
φ1 : Y1 × X2→ X1

φ2 : X2→ Y2

3In fact, F should be a symmetric weak monoidal pseudofunctor and α : F → GWF should be a monoidal

pseudonatural transformation; we sweep these details under the rug as discussed in Remark 2.1.1.

4This is a subcategory of MonOpICat of the tensor objects in (op)indexed categories, see [MV18].
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with appropriate composition, identities and monoidal structure. The map WC → WC

sends X � (Xin,Xout) 7→ (X̂in , X̂out). We will not mention WC again, though we often
slightly abuse notation by writing F in place of F.

The above description of WC is reminiscent of compositional game theory [Hed18] and
there also seem to be connections with bilenses and the Dialectica category [Pai90]; such
considerations are in the center of future research goals.

2.3. Discrete and continuous dynamical systems. As our primary examples, we consider
two well-known classes of dynamical systems, namely discrete and continuous, which have
already been studied within the context of the operad of wiring diagrams in previous
works; see e.g. [RS13, Spi15]. A broad goal of this paper is to group these, as well as
other notions of systems, inside a generalized framework. This will be accomplished by
constructing algebra maps from these special case systems to the new, abstracted ones,
described in Chapter 5.

Definition 2.3.1. A discrete dynamical system with input set A and output set B consists of a
set S, called the state set, together with two functions

{
f upd : A × S→ S

f rdt : S→ B

respectively called update and readout functions, which express the transition operation
and the produced output of the machine. We refer to (S, f upd, f rdt) as an (A, B)-discrete

dynamical system or (A, B)-DDS. If additionally an element s0 ∈ S is chosen, we refer to
(S, s0, f upd, f rdt) as an initialized (A, B)-DDS.5

A morphism (S1, f
upd
1 , f rdt

1 ) → (S2, f
upd
2 , f rdt

2 ) of (A, B)-discrete dynamical systems is a
function h : S1→ S2 which commutes with the update and readout functions elementwise,

i.e. h( f
upd
1 (s , x)) � f

upd
2 (hs , x) and f rdt

1 (s) � f rdt
2 (hs).

The resulting category is denoted by DDS(A, B). Notice the similarity of the above
description with a morphism inside W of Remark 2.2.2: a discrete dynamical system is a
WSet-map (S, S) → (A, B) in that sense.

We can now define a functor DDS : WSet → Cat, as in [Spi15, Def. 4.1,4.6,4.11]. To an

object X � (Xin ,Xout) ∈WSet we assign the category DDS(X) :� DDS(X̂in, X̂out) as defined
above. To a morphism (wiring diagram) φ : X → Y (14), we define DDS(φ) : DDS(X) →

DDS(Y) to be the functor which sends the system (S, f upd, f rdt) ∈ DDS(X) to the system
(S, 1upd, 1rdt) ∈ DDS(Y)having the same state set S, and new update and readout functions
given by

1upd : Ŷin × S
1×∆
−−−→ Ŷin × S × S

1× f rdt×1
−−−−−−→ Ŷin × X̂out × S

φ̂in×1
−−−−→ X̂in × S

f upd

−−−→ S

1rdt : S
f rdt

−−→ X̂out
φ̂out

−−−→ Ŷout

5 Note that if A, B, S are finite, what we have called an initialized (A, B)-DDS is often called a Moore

machine.
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also written, via their mappings on elements, as

(15) 1upd(y , s) :� f upd
(
φ̂in

(
y , f rdt(s)

)
, s
)

and 1rdt(s) :� φ̂out
(

f rdt(s)
)

It can be verified that DDS(φ) preserves composition and identities in WSet. Moreover,
DDS has a symmetric lax monoidal structure essentially given by cartesian product: for
systems F � (S, f upd, f rdt) ∈ DDS(X) and G � (T, 1upd, 1rdt) ∈ DDS(Y), we define the
functor DDSX,Y : DDS(X) × DDS(Y) → DDS(X + Y) to map (F,G) to

(S × T, X̂in × Ŷin × S × T
∼
−→ X̂in × S × Ŷin × T

f upd×1upd

−−−−−−−→ S × T, S × T
f rdt×1rdt

−−−−−−→ X̂out × Ŷout).

Proposition 2.3.2. There exists a WSet-algebra DDS, for which the labeled boxes inhabitants are

discrete dynamical systems.

In particular, if we have any interconnection arrangement of discrete dynamical systems
like (11), we can use this algebra structure to explicitly construct the state set, the update
and the readout function of the new discrete dynamical system which the subsystems
form.

Notice that the minor abuse of notation DDS(X) :� DDS(X̂in , X̂out) is explained by
Remark 2.2.2. The algebra DDS is a prototype of many algebras throughout this paper,
e.g. the abstract systems in Chapter 4. One will see strong similarities in what we describe
next, the algebra of continuous dynamical systems (details on which can be found in
[VSL15, §4] or [Spi15, §2.4]).

Definition 2.3.3. Let A, B be Euclidean spaces. An (A, B)-continuous dynamical system is a
Euclidean space S, called the state space, equipped with smooth functions

{
f dyn : A × S→ TS

f rdt : S→ B

where TS is the tangent bundle of S, such that f dyn commutes with the projections to S.
That is, f dyn(a , s) � (s , v) for some vector v; it is standard notation to write ( f dyn)a,s :� v.
The maps f dyn and f rdt are respectively called the dynamics and readout functions. The
first is an ordinary differential equation (with parameters in A), and the second is an
output function for the system.

A morphism of (A, B)-continuous dynamical systems (S1, f
dyn
1 , f rdt

1 ) → (S2, f
dyn
2 , f rdt

2 )

is a smooth map h : S1 → S2 such that f rdt
1 (s) � f rdt

2 (hs) and Th( f
dyn
1 (a , s)) � f

dyn
2 (a , hs),

where Th : TS1→ TS2 is the derivative of h.

The category of (A, B)-continuous dynamical systems is denoted by CDS(A, B). We
can now define a functor CDS : WEuc → Cat as follows. To an object X � (Xin ,Xout)

we assign the category CDS(X) :� CDS(X̂in , X̂out). To a morphism φ : X → Y, we de-
fine CDS(φ) : CDS(X) → CDS(Y) to be the functor which sends a continuous system
(S, f dyn, f rdt) to the continuous system (S, 1dyn, 1rdt) where

(16) 1dyn(y , s) :� f dyn
(
φ̂in

(
y , f rdt(s)

)
, s
)

and 1rdt(s) :� φ̂out
(

f rdt(s)
)

The functor’s symmetric lax monoidal structure is again given by cartesian product.
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Proposition 2.3.4. There exists a WEuc-algebra CDS, for which the labeled boxes inhabitants are

continuous dynamical systems.

Even though discrete and continuous dynamical systems have quite different notions of
time and continuity, one can compare (15) and (16) to see that their algebraic structure (e.g.
the action on wiring diagrams) is very similar. One aspect of this similarity is summarized
as follows.
Proposition 2.3.5. [Spi15, Thm 4.26] For each ǫ > 0, we have a wiring diagram algebra map

WEuc

Cat

WSet

CDS

WU ⇓ αǫ

DDS

where WU is as in (10) and αǫ is given by Euler’s method of linear approximation.

Thus any continuous (A, B)-dynamical system (S, f dyn, f rdt) gives rise to a discrete

(UA,UB)dynamical system (US, f
upd
ǫ , f rdt

ǫ )with readout function f rdt
ǫ :� U f rdt and with

update function given by the linear combination of vectors f
upd
ǫ (a , s) :� s + ǫ · ( f dyn)a,s .

2.4. Spans asW-algebras. We conclude this section with an explicit construction of aWC-
algebra for any finitely complete category C, which eventually induces the most abstract
notion of a machine in Chapter 4. Its special characteristics include the span-like form of
the systems inside the labeled boxes, as well as naturally induced algebra maps between
such systems.

First of all, recall that if C is a category with pullbacks, there is a bicategory SpanC

of spans; its objects are the same as C, and hom-categories SpanC(X, Y) consist of spans
X Y :� X ← A→ Y in C as objects, and commutative diagrams

A

X Y

B

α

as morphisms. Horizontal composition is given by pullbacks, so is associative only up to
isomorphism. If moreover C has finite products, therefore is finitely complete, then spans
X Y can be equivalently viewed as maps A→ X ×Y, and so SpanC(X, Y)

∼
� C/(X ×Y).

The following result shows that for suchC, we can always define a symmetric lax monoidal
functor from WC to Cat, using the bicategory of C-spans.
Proposition 2.4.1. For any finitely complete C, there exists is a WC-algebra

(17) SpnC : WC −→ Cat

for which labeled boxes inhabitants are spans in C.

Proof. For each box X � (Xin,Xout) ∈ obWC, we define the mapping on objects SpnC(X) :�

SpanC(X̂
in , X̂out) to be the hom-category; it consists of C-spans S → X̂in × X̂out. For each
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wiring diagram φ : X → Y (7), which by (14) determines morphisms in C

φ̂in : Ŷin × X̂out→ X̂in and φ̂out : X̂out → Ŷout ,

there is a functor SpnC(φ) : SpanC(X̂
in , X̂out) → SpanC(Ŷ

in , Ŷout) mapping some X̂in ←

S→ X̂out to the outside span below, formed as the composite (pullback)

(18)

T

Ŷin × X̂out S X̂out

Ŷin X̂in X̂out Ŷout

Ŷin X̂in X̂out Ŷout

π1 φ̂in φ̂out

This is clearly functorial, i.e. SpnC(φ) � (id, φ̂out) ◦ − ◦ (π1 , φ̂in) precomposes any span
and span morphism with the right and left φ-induced spans. Finally, the functor SpnC

has a symmetric lax monoidal structure by using products symmetry σ in C:

(19)
SpanC(X̂

in , X̂out) × SpanC(Ẑ
in , Ẑout) SpanC(X̂

in × Ẑin, X̂out × Ẑout)

(
S

p
−→ X̂in × X̂out, T

q
−→ Ẑin × Ẑout

)
S × T

σ◦(p×q)
−−−−−−→ X̂in × Ẑin × X̂out × Ẑout

(SpnC)X,Z

�

Definition 2.4.2. For C a finitely complete category, the WC-algebra SpnC described in
Proposition 2.4.1 is called the algebra of C-span systems.

Explicitly, computing the composite (18) for a C-span S → X̂in × X̂out produces a span

T → Ŷin × Ŷout formed by taking the pullback along φ̂in and composing with φ̂out:

(20)

T S

Ŷin × X̂out X̂in × X̂out

Ŷin × Ŷout

y

(φ̂in ,π2)

1×φ̂out

In particular, if ( f , 1) : S → X̂in × X̂out is the span on the right and k : T → S is the top

morphism, the left one is (h , 1k) inducing the composite (h , 1kφout) : T → Ŷin × Ŷout.
In fact, since any map f : A → B in a category C with pullbacks induces an adjunc-

tion ( f! ⊣ f ∗) between the slice categories, the functor SpnC(φ) : SpanC(X̂
in , X̂out) →

SpanC(Ŷ
in , Ŷout) of the above proof can be equivalently expressed as

(21) C/(X̂in × X̂out)
(φ̂in ,π2)

∗

−−−−−−→ C/(Ŷin × X̂out)
(1×φ̂out)!
−−−−−−→ C/(Ŷin × Ŷout)
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between the slice categories.

Remark 2.4.3. It is the case that for any finitely complete category C, the bicategory SpanC

has the structure of a compact closed bicategory, see [Sta16]. Since on the 1-category level,
every traced monoidal category [JSV96] gives rise to a compact closed one, there is evidence
that the construction of Proposition 2.4.1 could work if we replaced SpanC with any traced
symmetric monoidal bicategory in an appropriate sense.

Following an anonymous reviewer suggestion, for any such bicategory K where every
object is equipped with a comonoid structure, we could define a WK-algebra as follows:

WK Cat

(Xin ,Xout) K(X̂in , X̂out)

(Yin , Yout) K(Ŷin , Ŷout)

φ Φ

where Φ maps some f : X̂in → X̂out to Φ( f ) � Tr
(
(φ̂out × 1) ◦ δ ◦ f ◦ φ̂in

)
. Explicitly, the

map on which the trace acts is

Ŷin × X̂out
φ̂in

−−→ X̂in
f
−→ X̂out δ

−→ X̂out × X̂out
φ̂out×1
−−−−−→ Ŷout × X̂out.

Formally defining the structure of a traced symmetric monoidal bicategory, albeit
possibly further clarifying the origin of such constructions, is certainly beyond the scope
of the current work, and not relevant to the main line. Indeed, central cases of interest
are what we will call deterministic and/or total machines, which do not form traced
monoidal categories or bicategories. Instead, they will form W-algebras enriched in Cat.
For relationships between these formalisms, the reader may see [SSR16], which gives
a tight relationship between enriched traced monoidal categories algebras on operads
similar to W.

Finally, the proposition below shows that the mapping C 7→ SpnC extends to a functor
with target category WD-Alg, as described in Section 2.2.
Proposition 2.4.4. There exists a functor Spn(−) : FCCat → WD-Alg making the following

diagram commute

(22)

WD-Alg

FCCat SMC

dom
Spn(−)

W(−)

(9)

Proof. By Proposition 2.4.1, SpnC : WC → Cat is a symmetric lax monoidal functor. Now
given a functor F : C → D between typing categories which preserves finite limits, we
define a monoidal natural transformation SpnF as in the diagram below, whereWF : WC→
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WD is a (strong) monoidal functor as in (9):

(23)

WC

Cat

WD

SpnC

WF ⇓ SpnF

SpnD

Its components (SpnF)X : SpnC(X) → SpnD(WF(X)) for each box X ∈WC are functors that

assign to any span p : S→ X̂in× X̂out the span (SpnF)X(p) :� Fp, where Fp : FS→ F(X̂in×

X̂out) ∼� FX̂in × FX̂out. Monoidality follows by F(p × q) ∼� Fp × Fq and (pseudo)naturality
follows from the fact that F preserves pullbacks: applying F on the feedback construction
(20) is the same as performing that construction on Fp. �

Notice that by construction, if F is a faithful functor, the algebra morphism SpnF is
an embedding, namely has as components functors which are injective on objects and
faithful.

This functor Spn(−) gives rise to wiring diagram algebras of central importance for this
work, namely machines (Chapter 4) as well as algebra maps between them (Chapter 5).
Moreover, certain subfunctors of it end up capturing fundamental characteristics of sys-
tems, such as totality and determinism (Theorem 5.2.12). What comes next in order to
reach these formalisms is the description of the appropriate typing categories, which
encompass notions of time.

3. Interval sheaves

Guided by some seminal ideas by Lawvere [Law86] and Johnstone [Joh99], in this
chapter we describe a site Int whose objects can be considered as closed intervals of
nonnegative length, and whose morphisms are inclusions of subintervals. A family of
subintervals covers an interval if they are jointly surjective on points. We give several
examples of sheaves on Int, called interval sheaves. We then elaborate on variations of this
site, giving rise to discrete and synchronous interval sheaves; these ultimately correspond
to different notions of time for our system models at Chapter 4.

In Appendix A we discuss an equivalence between the topos of Int-sheaves and the cat-
egory of discrete Conduché fibrations over the additive monoid of nonnegative real numbers,
due to Peter Johnstone [Joh99].

3.1. The interval site Int. Let �≥0 denote the linearly ordered poset of nonnegative real
numbers, and for any p ∈ �≥0, let Trp : �≥0 → �≥0 denote the translation-by-p function
Trp(ℓ) :� p + ℓ.

Definition 3.1.1. The category of continuous intervals, denoted Int, is defined to have:
• objects ob Int � {ℓ ∈ �≥0},
• morphisms Int(ℓ′, ℓ) � {Trp | p ∈ �≥0 and p ≤ ℓ − ℓ′},
• composition Trp ◦ Trp′ :� Trp+p′ , and
• idℓ � Tr0.

We will sometimes denote Trp simply by p : ℓ′→ ℓ.
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The category Int above is the skeleton of (and hence equivalent to) the category whose
objects are closed, positively-oriented intervals [a , b] ∈ �, and whose morphisms are
orientation-preserving isometries, i.e. translations by which one interval becomes a subin-
terval of another. Under the inclusion of the skeleton, an object ℓ ∈ Int is sent to the
interval [0, ℓ] ⊆ �, and we can consider a map Trp : ℓ′ → ℓ as a translation such that
[0, ℓ′] ∼� [p , p + ℓ′] ⊆ [0, ℓ]:

0 ℓpℓ p + ℓ′ ℓ

The following analogous definition is obtained by replacing �≥0 by the linear order�
of natural numbers.

Definition 3.1.2. The category of discrete intervals IntN has as objects the set of natural
numbers, ob IntN � {n ∈ �}, as morphisms n′ → n the set of translations Trp , where
p ∈ � and p ≤ n − n′. The composition and identities are given by + and 0, similarly to
Definition 3.1.1.

In what follows, fix R (resp. N) to be the additive monoid of nonnegative real (resp.
natural) numbers, viewed as a category with one object ∗. Proposition 3.1.4 gives a natural
context for the interval categories Int and IntN from Definitions 3.1.1 and 3.1.2: they are
the twisted arrow categories of R and N respectively.

Definition 3.1.3. [Joh99, §2] For any category C, the twisted arrow category of C, denoted
Ctw, has morphisms of C as objects, and for f : x → y and 1 : w → z in C, a morphism
f → 1 in Ctw is a pair (u , v)making the diagram commute:

x w

y z

f

u

1

v

Proposition 3.1.4. There is an isomorphism of categories

Int ∼� Rtw and IntN
∼
� Ntw.

Proof. The objects of Rtw are nonnegative real numbers ℓ : ∗ → ∗, and a morphism ℓ′→ ℓ

in Rtw is a pair of nonnegative real numbers (p , q) such that p + ℓ′ + q � ℓ. But q is
completely determined by p, ℓ, and ℓ′, hence we can identify (p , q) with the morphism
Trp : ℓ′→ ℓ of Definition 3.1.1. Similarly for the discrete intervals. �

Finally, the one-object categories R and N themselves fall under the general description
of a factorization-linear category defined below. In particular, Fact(q) is called the interval

category in [Law86] and denoted by [[q]] in [Joh99].

Definition 3.1.5. For any categoryC and morphism q : a→ b inC, define the q-factorization

category, denoted Fact(q), as follows. Its objects are triples M � (m , f , 1), where f : a → m

and 1 : m → b are arrows in C composing to q � 1 ◦ f . If M′ � (m′, f ′, 1′), a morphism
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M→ M′ in Fact(q) is an arrow k : m→ m′ in C making the following triangles commute

a m′

m b

f ′

f q 1′

1

k

We furthermore say that C is factorization-linear if for every morphism q, Fact(q) is a
linear preorder, i.e. if for any pair of objects M,M′ ∈ Fact(q),

(1) there is at most one morphism M → M′, and
(2) there exists either a morphism M→ M′ or a morphism M′→ M.

Example 3.1.6.

(1) For any directed graph G, the free category C � Fr(G) on G is factorization-linear.
Since N is the free category on the terminal graph, it is factorization-linear.

(2) The category R is also factorization-linear. Indeed, if f , 1 , f ′, 1′ are nonnegative
real numbers with f + 1 � f ′ + 1′, then there is exactly one real number k such
that k + f � f ′ (iff 1′ + k � 1), and k ≥ 0 iff there is a map ( f , 1) → ( f ′, 1′).

We will later employ these characterizations in order to consider sheaves on the cate-
gories of intervals. Below we fix some notation for presheaves on them.

Notation 3.1.7. For any small category C (such as Int or IntN ), we denote by Psh(C) �

[Cop , Set] the category of presheaves. Consider an Int-presheaf A : Intop → Set. For any
continuous interval ℓ, we refer to elements x ∈ A(ℓ) as sections of A on ℓ. We refer to
sections of length ℓ � 0 as germs of A. For any section x ∈ A(ℓ) and any map Trp : ℓ′→ ℓ,
we write x |[p,p+ℓ′] to denote the restriction A(Trp)(x) ∈ A(ℓ′). Similar notation applies to
IntN .

We can graphically depict a section x on a continuous interval ℓ ∈ Int, together with a
restriction, and a section y on a discrete interval n ∈ IntN , as

0 ℓp p + ℓ′

x |[p ,p+ℓ′]

x 0 n

y

Certain classes of restrictions will come up often, so we create some special notation
for them. For any 0 ≤ ℓ′ ≤ ℓ, we write λℓ′ : A(ℓ) → A(ℓ′) and ρℓ′ : A(ℓ) → A(ℓ′) to denote
the restrictions along the maps [0, ℓ′] ⊆ [0, ℓ] and [ℓ − ℓ′, ℓ] ⊆ [0, ℓ] respectively. We refer
to them as the left and right restrictions of length ℓ′. In particular if ℓ′ � 0, we will often
use the notation

λ0(x) :� x |[0,0] ∈ A(0) and ρ0(x) :� x |[ℓ,ℓ] ∈ A(0)

to denote the left and right endpoint germs of x.
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3.2. Int-sheaves. We now wish to equip each of the categories Int and IntN with a
coverage. In [Joh99], Peter Johnstone defined such a coverage for all twisted arrow
categories Ctw with C factorization-linear. For such C, he moreover proved that the
category of sheaves on Ctw is equivalent to the category of discrete Conduché fibrations
over C, a brief discussion on which we postpone until Appendix A; Johnstone’s result is
Theorem A.2.1.

Definition 3.2.1. Let C be a factorization-linear category, Definition 3.1.5, and Ctw its
twisted arrow category, Definition 3.1.3. The Johnstone coverage onCtw is defined as follows:
a covering family for an object (h : x → z) ∈ Ctw is any pair of maps (idx , 1) : f → h and
( f , idz) : 1 → h in Ctw, where 1 ◦ f � h in C,

x x y x

y z z z

f

idx

h 1

f

h

1 idz

It can be checked that this is indeed a coverage [Joh99, §3.6], and we refer to the associated
site as the Johnstone site for Ctw.6

Applying the above definition to R and N, which are factorization-linear by Exam-
ple 3.1.6, we obtain the Johnstone sites Int and IntN on their twisted-arrow categories, see
Proposition 3.1.4. Below we explicitly describe them, and fix our terminology.

Definition 3.2.2. For any interval ℓ ∈ Int, and any real number p ∈ [0, ℓ], we say that the
pair of subintervals [0, p] and [p , ℓ], or more precisely the morphisms Tr0 : p → ℓ and
Trp : (ℓ − p) → ℓ, form a cover, which we call the p-covering family for ℓ.

0 ℓp

Similarly, the pairs ([0, p], [p , n]) for any natural number p ∈ {0, . . . , n} form the p-covering

family for n ∈ IntN .
If X is an Int-presheaf, we say that sections x1 ∈ X(ℓ1) and x2 ∈ X(ℓ2) are compatible

if the right endpoint of x1 matches the left endpoint of x2, i.e. if ρ0(x1) � λ0(x2). Thus
X satisfies the sheaf axiom for the above coverage if, whenever x1 and x2 are compatible,
there is a unique section x1 ∗ x2 ∈ X(ℓ1 + ℓ2), called the gluing of x1 and x2, such that
λℓ1(x1 ∗ x2) � x1 and ρℓ2(x1 ∗ x2) � x2.

We refer to an Int-presheaf satisfying the sheaf axiom as a continuous interval sheaf, or
simply Int-sheaf. We denote by Ĩnt the full subcategory of sheaves; it has the structure
of a topos. Similarly, we define discrete interval sheaves or IntN -sheaves and the topos ĨntN

thereof.
Each of the inclusions U : Ĩnt ֒→ Psh(Int) and ĨntN ֒→ Psh(IntN) has a left adjoint. In

each case we denote it asSh and call it the associated sheaf or sheafification functor.

6In fact, [Joh99, 3.6] explains that C being factorization linear is stronger than necessary to define a coverage

on Ctw. However, this stronger condition is necessary for Corollary A.2.2 to hold.
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The category of Int-sheaves is certainly more complex than that of IntN -sheaves; indeed
the latter is just the category of graphs.
Proposition 3.2.3. There is an equivalence of categories ĨntN ≃ Grph, between the category of

discrete interval sheaves and the category of graphs.

Proof. To every sheaf X ∈ ĨntN , we associate the graph G � (V, E, src, tgt) with V :� X(0),
E :� X(1), src :� X(Tr0), and tgt :� X(Tr1), where Tr0 , Tr1 : 0 → 1 are the two inclusions;
see Definition 3.1.2. To every graph G we associate the IntN -sheaf Path(G) for which
Path(G)(n) is the set of length-n paths in G with the obvious restriction maps. This is
indeed a sheaf because two paths match if the ending vertex of one is the starting vertex
of the other, in which case the paths can be concatenated.

The above constructions are clearly functorial; we need to check that these functors
are mutually inverse. The roundtrip functor for a graph G returns a graph with the
length-0 and length-1 paths in G, which is clearly isomorphic to G. For an IntN -sheaf
X, the roundtrip is again X because the coverage on IntN ensures that every section is
completely determined by the length-0 and length-1 data. �

Remark 3.2.4. Proposition 3.2.3 is closely related to the classical nerve theorem for cate-
gories, as presented by [Ber02] and generalized by [Lei04b, Web07, BMW12]; see [Koc11,
§2.01] for a clear and concise summary of this approach to nerve theorems.

Our category IntN is equivalent to the subcategory—written ∆0 in [Koc11]—of the
simplicial category ∆ containing all objects and all ‘free’ morphisms (called immersions

in [Ber02]). A morphism φ : [m] → [n] is free if φ(i + 1) � φ(i) + 1, i.e. if φ is distance
preserving. In those sources, it is shown that the classical Segal condition characterizing
which simplicial sets arise as the nerve of some category can be nicely phrased in terms
of ∆0: a presheaf f : ∆ → Set is the nerve of a category if and only if the restriction of
f to ∆0 is a sheaf for a certain coverage, and moreover the category of sheaves for this
coverage on ∆0 is equivalent to Grph. This site ∆0 is equivalent to the Johnstone site IntN .
We thank one of our reviewers for pointing out this connection.

Example 3.2.5. We do not include numerous examples of IntN-sheaves, assuming the
reader is familiar with graphs; the following construction will be used later.

For any set S, consider the complete graph K(S) :� (S×S ⇒ S) ∈ Grph, having a vertex
for each s ∈ S and an edge from s → s′ for each (s , s′) ∈ S × S. By Proposition 3.2.3,
there is a canonical way to view any graph G as an IntN -sheaf, under which K(S) becomes
the IntN -sheaf whose length-n sections are S-lists 〈s0, . . . , sn〉 of length n + 1, namely
K(S)(n) � Sn+1. This induces a functor K : Set→ ĨntN .

Example 3.2.6. We collect some useful examples of Int-sheaves.
(1) For any ℓ ∈ Int, we have the representable presheaf Yonℓ � HomInt(−, ℓ). For each

object ℓ′ we have Yonℓ(ℓ
′) ∼� {p ∈ �≥0 | p ≤ ℓ − ℓ

′}, so in particular Yonℓ(ℓ
′) � ∅ if

ℓ′ ≥ ℓ. For each morphism Trq : ℓ′→ ℓ, we have Yonℓ(p) � p + q. The coverage on
Int is sub-canonical, meaning that for any ℓ, the representable presheaf is in fact a
sheaf, i.e. Yonℓ ∈ Ĩnt. One can think of Yonℓ as the sheaf whose length ℓ′ sections
are all ‘placements of a length ℓ′ interval inside of a length ℓ interval’.
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(2) For any set S, the sheaf of functions Fnc(S) assigns to each interval ℓ the set of
functions Fnc(S)(ℓ) � { f : [0, ℓ] → S}, with the obvious restriction maps. The
functor Fnc : Set→ Ĩnt is a right adjoint, see Proposition 3.2.7.

(3) For any set S, the constant sheaf cnst(S) is defined by cnst(S)(ℓ) :� S for any
ℓ ∈ Int, and identity restrictions maps. The functor cnst : Set → Ĩnt has both
a right adjoint Ĩnt(1,−) : Ĩnt → Set and a left adjoint π0 : Ĩnt → Set, given by
π0(X) :� X(0)/∼, where ∼ is the equivalence relation generated by λ0(x) ∼ ρ0(x)

for any ℓ and x ∈ X(ℓ).
(4) If X is a Cn-manifold, there is a sheaf of Cn curves in X; we just need to be careful

with the length-0 sections. Define a sheaf Cn(X) of Cn curves through X by

(24) Cn(X)(ℓ) :�
{
(ǫ, f ) | ǫ > 0, f ∈ Cn

(
(−ǫ, ℓ + ǫ),X

)}
/∼

where we set (ǫ, f ) ∼ (ǫ′, f ′) if one is the restriction of the other, say f ′ |(−ǫ,ℓ+ǫ) � f .
For ℓ > 0, the closed interval [0, ℓ] is a manifold with boundary, so in fact

the isomorphism Cn(X)(ℓ) ∼� { f : [0, ℓ] → X | f ∈ Cn} is the usual definition of
continuously n-times differentiable functions out of [0, ℓ]. However, (24) makes
sense when ℓ � 0 also: it defines the set of n-jets in X. It should be emphasized
that the length-0 sections of Cn(X) are not the points in X, so the notation Cn(X)

could be considered misleading. However, it is the right definition to define a
sheaf of Cn curves, because gluing two Cn curves whose endpoints have the same
n-jet results in a Cn curve.

Also notice that if m ≤ n, there is a sheaf morphism Cn(X) → Cm(X).
(5) Let 0, 1: Yon0→ Yon1 denote the image under Yon : Int→ Ĩnt of the left and right

endpoint inclusions Tr0, Tr1 : 0→ 1 in Int. Then we define the periodic synchronizing

sheaf to be the quotient Sync :� Yon1/(0 � 1). For an interval ℓ, we may identify

(25) Sync(ℓ) ∼� �/� ∼� {0 ≤ [θ] < 1}

where [θ] denotes the equivalence class modulo � of θ ∈ � and may be called
the phase. One can imagine a length-ℓ section of Sync as a helix of height ℓ; two
different sections differ only by their phase (turning the helix by some angle θ).
Given a subinterval Trp : ℓ′→ ℓ, we have Sync(Trp)(θ) � [θ+p]. That is, we simply
restrict the helix to the subinterval [p , p + ℓ′] ⊆ [0, ℓ]. See Remark 3.3.1 for how
this sheaf arises in our framework.

Some of the above constructions are naturally connected in the following way.
Proposition 3.2.7. Consider the functor Stk0 : Ĩnt → Set, given by Stk0(A) :� A(0). It is the

inverse image of an essential geometric morphism

Set Ĩnt
Fnc

(−)·Yon0

Stk0

i.e. Stk0 is an essential point of the topos Ĩnt.

Proof. The right adjoint of Stk0 is Fnc(−) defined in Example 3.2.6(2). The left adjoint of
Stk0 sends S to the copower S · Yon0 ∈ Ĩnt, where Yon0 is as in Example 3.2.6(1). �
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The following notions of extension for a section and a sheaf will be of central importance
in Chapter 4.

Definition 3.2.8. Let A ∈ Ĩnt be a sheaf, and ǫ ≥ 0. For a section a ∈ A(ℓ), if a′ ∈ A(ℓ+ ǫ) is
a section with a′ |[0,ℓ] � a, we call a′ an ǫ-extension of a. Moreover, we define the ǫ-extension

sheaf Extǫ(A) of A by assigning to ℓ the set

Extǫ(A)(ℓ) :� A(ℓ + ǫ)

induced by the functor Int→ Int sending ℓ 7→ ℓ + ǫ and Trp 7→ Trp .

Essentially, the extension sheaf of A includes, for each interval of time, information (i.e.
sections) for ǫ-longer intervals; this will be essential when discussing feedback of systems,
later formalized e.g. by Definition 4.2.4.

The above defines an endofunctor Extǫ : Ĩnt → Ĩnt7. There exist two natural transfor-
mations λ, ρ : Extǫ ⇒ idĨnt whose components Extǫ(A) → A are given by applying either
left or right restriction as in Notation 3.1.7,

(26) ExtǫA(ℓ) � A(ℓ + ǫ) A(ℓ).
λℓ

ρℓ

That is, for x ∈ A(ℓ + ǫ) we have λ(x) :� λℓ(x) � x |[0,ℓ] and ρ(x) :� ρℓ(x) � x |[ǫ,ℓ+ǫ].
Similarly for a discrete-interval sheaf A ∈ ĨntN and n ∈ �, we define the extension sheaf
Extn(A) and the natural transformations λ, ρ with components Extn(A) → A.

We finish this section by collecting a few useful lemmas.
Lemma 3.2.9. For any ǫ ≥ 0 the functor Extǫ : Ĩnt→ Ĩnt commutes with all limits.

Proof. Limits in Ĩnt are taken pointwise. �

Lemma 3.2.10. Suppose given a commutative triangle of Ĩnt-sheaves

ExtǫS S′

S

h

λ
k

Then h is an epimorphism (monomorphism) if and only if all components of the underlying presheaf

morphism Uh are surjective (injective).

Proof. First of all, the functor U : Ĩnt ⊆ Psh(Int) is faithful, so if h is any sheaf map and
Uh is an epimorphism (monomorphism) then so is h. Moroever, since U is right adjoint
to the sheafification asSh, it preserves monomorphisms.

Now suppose h is an epimorphism; we will show that hℓ is a surjection, for any ℓ ∈ Int,
so choose s′ ∈ S′(ℓ). Recall that h being an epimorphism means that there exists a cover
0 � ℓ0 ≤ · · · ≤ ℓn � ℓ such that each restriction s′

i
:� s′ |[ℓi ,ℓi+1] � hℓi+1−ℓi (si) for some

si ∈ ExtǫS(ℓi+1 − ℓi). We may assume n � 2. Since the s′
i

are compatible in S′ and since
λ(si) � k(s′

i
), we have that λ(s1) and λ(s2) are compatible sections of S. Thus we can glue

s :� λ(s1) ∗ s2 ∈ S(ℓ2 + ǫ), giving s ∈ ExtǫS(ℓ)with hℓ(s) � s′. �

7It should be clear that this functor Ext has nothing to do with the Ext functor from homological algebra.
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3.3. Synchronization. For what follows, it is essential that we compare the toposes ĨntN

and Ĩnt as the far ends of the time spectrum: from sections over continuous intervals
of time to those over specific, equally-spaced ticks of the clock. The following remark
discusses why the notion of a synchronous sheaf is required for a coherent common time-
framework.

Remark 3.3.1. Suppose X is a discrete-interval sheaf and we want to translate it into a
continuous-interval sheaf X′. What should the X′-sections of length 1.5 be? Taking
them to be X(1) does not give rise to any reasonable sort of restriction map. Instead, the
adjoint to the obvious forgetful functor from continuous to discrete sheaves, denotedΣi in
Proposition 3.3.3, naturally adds a notion of phase—a number between 0 and 1—so as to
enable arbitrary real-number restrictions. In particular,Σi(1) of the terminal discrete sheaf
is the sychronizing sheaf of Example 3.2.6,(5). Thus while there is a left adjoint functor
from discrete- to continuous-time sheaves that preserves pullbacks (because sections of
matching phases can be glued), it does not preserve the terminal object: this means it can
be replaced by a geometric morphism into the slice topos Ĩnt/Σi(1), which can later be
used as a type-changing functor (9) for wiring diagram algebras.

Let us explicitly establish the above observations. If i : IntN → Int is the evident
inclusion, it induces an adjunction between the respective toposes of sheaves as follows.
Proposition 3.3.2. The functor i : IntN → Int preserves covering families.

Proof. This follows directly from Definition 3.2.2. �

Let i∗ : Psh(Int) → Psh(IntN) denote the functor given by pre-composing a presheaf
X : Intop → Set with iop, and let asSh denote the sheafification as in Definition 3.2.2; the
following fact is well-known.
Proposition 3.3.3. The functor i : IntN → Int induces an adjunction Σi ⊣ ∆i between sheaf

toposes

(27)

ĨntN Ĩnt

Psh(IntN) Psh(Int)

U⊥

Σi

⊥

U⊥

∆i

asSh

Lani

⊥

asSh

i∗

such that U ◦ ∆i � i∗ ◦U, hence also Σi ◦ asSh ∼� asSh ◦ Lani .

Proof. Because i preserves covers (Proposition 3.3.2), the composite Ĩnt
U
−→ Psh(Int)

i∗

−→

Psh(IntN) factors through ĨntN , defining ∆i. Since U is fully faithful and has a left adjoint
asSh, it can be seen that the composite Σi :� asSh ◦ Lani ◦U is left adjoint to ∆i . �

We will see in Corollary 3.3.6 that Σi ⊣ ∆i is not in general a geometric morphism
because the left adjoint Σi does not preserve the terminal object (nor binary products).
However, what is important for our purposes is to see that it preserves pullbacks, thus
is a pre-geometric morphism in the sense of [Joh02, A4.1.13]. This fact will be deduced
from a direct formula calculation for Σi as a coproduct (denoted using ⊔). For any x ∈ �,
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let ⌊x⌋ , ⌈x⌉ ∈ � denote the floor (resp. ceiling) of x, i.e. the largest integer ⌊x⌋ ≤ x (resp.
the smallest integer ⌈x⌉ ≥ x).
Proposition 3.3.4. For any discrete-interval sheaf X ∈ ĨntN , there is an isomorphism

(28) ΣiX(ℓ) ∼�
⊔

r∈[0,1)

X
(
⌈r + ℓ⌉

)

Moreover, Σi commutes with the forgetful functor U in (27), i.e. U ◦ Σi
∼
� Lani ◦U.

Proof. The pointwise left Kan extension C :� ΣiX � LaniX is computed as a colimit

(29) C(ℓ) � colim
n∈IntN

(i(n)→ℓ)∈Intop

X(n) �

∫ n∈IntN

Intop (i(n), ℓ) × X(n).

The indexing category (iop ↓ ℓ) is a poset with the property that every element maps to
a unique maximal element. Such maximal elements correspond to maps r : ℓ→ n in Int,
for which 0 ≤ r < 1 and 0 ≤ n − (r + ℓ) < 1, i.e. n � ⌈r + ℓ⌉. Thus for each ℓ, the set C(ℓ)

is exactly as in the formula (28): an element of C(ℓ) is a pair (r, x), where 0 ≤ r < 1 and
x ∈ X(n). We need to show that C is a sheaf, but to do so we must better understand the
restriction maps; see Example 3.3.5 for intuition.

So suppose given (r, x) as above. Given a map p : ℓ′→ ℓ, let a :� ⌊p+ r⌋, b :� ⌈p+ r+ ℓ′⌉,
n′ :� b−a, and r′ :� p+r−a, so 0 ≤ r′ < 1. We have a : n′→ n in IntN such that r◦p � a◦r′.
Given a section x ∈ X

(
⌈r + ℓ⌉

)
, the restriction map for C is given by

(30) C(p)(r, x) �
(
r′, x |[a,b]

)
.

Suppose given sections (r, x) ∈ C(ℓ) and (r′, x′) ∈ C(ℓ′), where x ∈ X(n) and x′ ∈

X(n′). If they are compatible then, by the above restriction formula (30), we must have
r′ � ℓ + r − ⌊ℓ + r⌋ and

x |[
⌊ℓ+r⌋ ,⌈ℓ+r⌉

]
� (r, x)|[ℓ,ℓ] � (r

′, x′)|[0,0] � x′ |[
⌊r′⌋ ,⌈r′⌉

] .

If we denote by n0 the length of this section, then n0 is either 0 or 1, depending on whether
ℓ + r � ⌊ℓ + r⌋ or not. Either way, x and x′ are compatible sections of X and can be glued
to form x ∗ x′ ∈ X(n − n0 + n′). Thus we have shown that C � LaniX is a sheaf. It follows
that U ◦ asSh ◦ Lani � Lani , so U ◦ Σi � Lani ◦U. �

Example 3.3.5. Given a discrete sheaf X, a length ℓ section of the continuous sheaf C :�
Σi(X) is given by choosing a phase r ∈ [0, 1) and an element x ∈ X(n), where n :� ⌈r + ℓ⌉.
Thus x is a section of X on the smallest discrete interval containing the continuous interval,
when embedded to start at r. In black is a picture of a map r : ℓ → n in Int, where n � 6,
r �

2
3 , ℓ � 29

6 , and r + ℓ � 11
2 :

r r + ℓp+r
|
0

|
1

|
2

|
3

|
4

|
5

|
6

therefore a section in C
( 29

6

)
could be a pair

( 2
3 , x ∈ X(6)

)
.

Suppose we want to restrict (23 , x) to the blue interval. In this case we visually we see
that p + r � 2.5, so we first take the new phase to be its fractional part, r′ :� 0.5. We then
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restrict x to the smallest discrete interval containing the blue interval when embedded to
start at 0.5, i.e. x |[2,5].

The periodic synchronizing sheaf Sync from Example 3.2.6(5) arises asΣi of the terminal
IntN -sheaf.
Corollary 3.3.6. The functor Σi preserves pullbacks but not the terminal object; indeed we have

Σi(cnst{∗}) ∼� Sync.

Proof. The fact that Σi preserves pullbacks can be checked by hand from (28); formally,
it is due to the fact that the indexing category (iop ↓ ℓ) in (29) is a coproduct of filtered
categories, see [ABLR02, Ex. 1.3(vi)].

The fact that Σi(cnst{∗}) ∼� Sync can again be checked by hand, e.g. its set of length ℓ
sections is given by the coproduct

⊔
r∈[0,1) 1 ∼� [0, 1). Another approach is to note that Σi

can be regarded as a functor Σi : Grph → Ĩnt by Proposition 3.2.3. Using (29) one can
check that the image of the single-vertex graph • is the sheaf Yon0 and that the image

of the walking edge graph E � •0→ •1 is Yon1, from Example 3.2.6(1). The terminal
IntN -sheaf 1 � cnst{∗} corresponds to the quotient graph E/(0 � 1). Since Σi preserves
colimits, we indeed have Σi(cnst{∗}) ∼� Sync. �

Our next goal is to compare the discrete-interval sheaf topos ĨntN with the slice topos
Ĩnt/Sync over the synchronizing sheaf (25), whose objects X → Sync we sometimes call
synchronous sheaves. An object X → Sync of this should be visualized as an ordinary
Int-sheaf X, where every section of X has been assigned a section of Sync, i.e. a helix at
some phase θ ∈ [0, 1) or a watch-hand at some position. Two sections x , y are ‘in sync’ if
they both have the same phase.
Proposition 3.3.7. The adjunction Σi ⊣ ∆i between Ĩnt and ĨntN from Proposition 3.3.3 factors

through a geometric morphism

(31) ĨntN Ĩnt/Sync
Σ′

i

⊥

∆′
i

in which the left adjoint Σ′
i
is fully faithful.

Proof. Define a functor Σ′
i

which sends X ∈ ĨntN to the synchronous sheaf Σi(X
!
−→ 1).

Because Σi preserves pullbacks, it can be verified that Σ′
i
preserves all finite limits.

We now construct its right adjoint. First note that ∆i : Ĩnt → ĨntN is given by pre-
composing with the inclusion i : IntN → Int. Applying it to Sync results in the constant
sheaf ∆i(Sync) ∼� cnst(�/�) ∈ ĨntN ; indeed, it is constant because restricting Sync along
maps in IntN does not change the phase. Hence, given a synchronous sheaf Y → Sync,
define ∆′

i
(Y) to be the following pullback in IntN :

∆′
i
(Y) ∆i(Y)

cnst{∗} ∆i(Sync)

y
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where the bottom map is the unit cnst{∗} → ∆iΣi(cnst{∗}); see Corollary 3.3.6. Since
cnst{∗} ∈ ĨntN is a terminal object, it follows immediately that ∆′

i
is right adjoint to Σ′

i
.

The adjunctionΣi ⊣ ∆i can be verified to be the composite ofΣ′
i
⊣ ∆′

i
with the adjunction

(32) Ĩnt/Sync Ĩnt
ΣSync!

⊥

∆Sync!

between slice categories as induced by the unique map Sync! : Sync→ {∗} in Ĩnt. That is,
ΣSync!(X→ Sync) � X and∆Sync!(Y) � (Y×Sync→ Sync). Finally, using Proposition 3.3.4,
one checks that the unit η : X→ ∆′

i
Σ′

i
X is an isomorphism, so Σ′

i
is fully faithful. �

Having introduced and related the toposes of interval sheaves in order to appropriately
capture behaviors as sections over lengths of time, we now proceed to the formalization
of abstract systems as algebras for wiring diagram operads, typed in those sheaves.

4. Machines as generalizations of dynamical systems

In this chapter, we turn to this work’s basic goal: the explicit description of general sorts
of processes, called machines, in terms of interval sheaves. These machines take on many
forms, from discrete and continuous dynamical systems to more general deterministic or
total systems, to even more abstract objects. What all these examples have in common
is that a collection of machines can be interconnected to form a new machine, and this
operation is coherent with respect to nesting of wiring diagrams. In other words, all of
our machines will be algebras on an operad of wiring diagrams, as defined in Chapter 2.
Subsequently, in Chapter 5 we produce algebra maps that relate all of these various
examples.

Each machine will have an interface consisting of input and output ports, where each
port carries a sheaf of ‘possible signal behaviors’, as in

SA B

The possible behaviors of the whole machine—including what occurs on its ports—is also
represented by a sheaf S. We first give a very general definition: a machine is a span
A ← S → B. Then we restrict our attention to total processes, which have the property
that for any initial state and compatible input behavior, there exists a compatible state
evolution. We also consider deterministic processes, which have the property that the state
evolution is unique given any input. Total and deterministic machines are discussed in
Section 4.2, and their compositionality is proven in Section 4.3. In the next chapter, we
will see that while discrete dynamical systems as defined in Definition 2.3.1 are always
both total and deterministic, this is not the case for continuous dynamical systems of
Definition 2.3.3 (basically because solutions to general ODEs on unbounded domains
may not exist and may not be unique; see Remark 5.1.3).

In Section 4.5 we discuss another related notion, namely that of contracts on machines—
which may or may not be satisfied by a given machine—that express behavioral guarantees
in terms of inputs and outputs. We will show that contracts also form a wiring diagram
algebra.
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4.1. Continuous machines. We begin with the most general notion of process that we
will use. It primarily serves the purpose of being all-inclusive, so that the various systems
of interest can be seen as special cases. The type of information handled is formalized by
continuous interval sheaves, Definition 3.2.2, whereas the algebraic structure is formalized
by our preliminary work on span algebras in Section 2.4. While such machines ostensibly
have a notion of input and output, the definition is in fact symmetric, so it fits in with the
work of [WP13].

Definition 4.1.1. Let A, B ∈ Ĩnt be continuous interval sheaves. A continuous (A, B)-

machine is a span

S

A B

pi po

in the topos Ĩnt; equivalently, it is a sheaf S together with a sheaf map p : S→ A × B.

We refer to A as the input sheaf, to B as the output sheaf, and to S as the state sheaf. Their
sections of arbitrary lengths ℓ should be thought of as all possible information inputted,
worked out and outputted by the machine, during a length of time ℓ. We call pi the
input sheaf map and po the output sheaf map; they are given by functions pi

ℓ
: S(ℓ) → A(ℓ),

po
ℓ
: S(ℓ) → B(ℓ) on sections of length ℓ. We denote by Mch(A, B) :� Ĩnt/(A × B), or

sometimes by MchC(A, B), the topos of all continuous (A, B)-machines.

Example 4.1.2. Here we collect some examples of continuous machines.
(1) If f : A → B is a morphism of Int-sheaves, there is a continuous (A, B)-machine

given by (idA , f ) : A→ A × B.
(2) If A and B are Int-sheaves, the identity span A × B → A × B corresponds to the

machine for which input and output are completely uncoupled.
(3) For any sheaf A and ǫ > 0, there is a machine (described in Example 4.2.8), which

acts as an ǫ-delay: the A input at any time is output after a delay of ǫ-seconds.
(4) In Section 2.3 we discussed discrete and continuous dynamical systems. In Propo-

sitions 5.1.1 and 5.1.2, we will give algebra maps realizing them as machines.

LetWĨnt denote the category of Ĩnt-labeled boxes and wiring diagrams, as in Section 2.2.
As in the case of discrete and continuous dynamical systems, the important aspect of
these newly-defined machines is that they can be arbitrarily wired together to form new
continuous machines, i.e. they are algebras for the wiring diagram operad WĨnt. The
following proposition is a corollary of Proposition 2.4.1, for C � Ĩnt the finitely complete
category of continuous interval sheaves.
Proposition 4.1.3. Continuous machines form a WĨnt-algebra Mch : WĨnt→ Cat.

Proof. Recall from (4) that to each object (box) X ∈ WĨnt we can associate two sheaves,

X̂in, X̂out ∈ Ĩnt, by taking the product of the types of the input and output Ĩnt-typed sets.



DYNAMICAL SYSTEMS AND SHEAVES 31

The algebra is

(33)

Mch : WĨnt Cat

(Xin ,Xout) Ĩnt/X̂in × X̂out

(Yin , Yout) Ĩnt/Ŷin × Ŷout

φ Mch(φ)

where Mch(φ)maps the span (pi , po) : S→ X̂in × X̂out to the span (qi, qo) : T → Ŷin × Ŷout

formed by first taking the pullback of (pi , po) along φ̂in and then postcomposing with

φ̂out, as showed in (20). Since limits in Ĩnt are formed pointwise, we can describe the set
of length-ℓ sections of the new state sheaf T explicitly:

(34) T(ℓ) ∼�
{
(s , y) ∈ S(ℓ) × Ŷin(ℓ) | pi

ℓ(s) � φ̂
in
ℓ

(
y , po

ℓ (s)
)}
.

Roughly, T represents state evolutions of the machine (S, pi, po) inhabiting the inside box
X, together with φin-compatible sections of Y-input. With this representation, the input

sheaf map of the formed machine is qi
ℓ
(s , y) � y, and the output sheaf map is qo

� φ̂out◦po.
The symmetric monoidal structure is as in (19). �

Therefore the above algebra of continuous machines is in fact the algebra of Ĩnt-span
systems of Definition 2.4.2. Notice that even though for the topos Ĩnt, the functor Mch(φ)

(21) has a right adjoint and preserves pullbacks, it does not preserve the terminal object,
so it is again the inverse image part of a pre-geometric morphism but not of a geometric
morphism.

4.2. Total, deterministic, and inertial machines. Our goal in this section is to describe
certain subclasses of continuous machines, Definition 4.1.1. Suppose a continuous ma-
chine is in a state germ s0 ∈ S(0) corresponding to a certain input germ a0 :� pi(s0) ∈ A(0);
these can be thought as initial instantaneous values for the state and input of the machine.
If a0 is extended to some longer input behavior a ∈ A(ℓ), e.g. information flows into the
machine, s0 may or may not extend to some state behavior s that accommodates that input
a, i.e. with pi(s) � a, meaning that the machine ‘runs’. There may be more than one such
extension, or none at all.

(35)

0 ℓ

•s0

•a0

s′

s

a

A(ℓ)

S(ℓ)

pi
ℓ

The idea is that a machine is total if there is at least one state extension, and it is
deterministic if there is at most one; their formal description (Definition 4.2.2) will be
accomplished by imposing conditions on the input and output sheaf maps. In particular,
continuous machines are generally neither total nor deterministic.



32 DYNAMICAL SYSTEMS AND SHEAVES

Recall the ǫ-extension functor Extǫ : Ĩnt → Ĩnt introduced after Definition 3.2.8, where
for a sheaf A we have ExtǫA(ℓ) � A(ℓ + ǫ), as well as the two natural transformations λ
and ρ (26) of left and right restriction. For any continuous machine (pi , po) : S → A × B,
the pullback

S′ S

ExtǫA A

y
pi

λ

has as elements pairs (a , s0) of inputs over some length ǫ and state germs in the pi-fibre
of the left restriction a |[0,0]. Therefore this already formalizes the initial state germ - input
section situation of (35). We employ this to formally express the desired conditions on pi.
Proposition 4.2.1. Let p : S → A be a continuous sheaf map. For any ǫ ≥ 0, consider the outer

naturality square for λ in Ĩnt

(36)

ExtǫS

S′ S

ExtǫA A

λS

Extǫp

hǫ

y
p′ p

λA

where hǫ is the universal map to the pullback S′. The following are equivalent:

(1) for all ǫ > 0, the sheaf map hǫ : ExtǫS→ S′ is an epimorphism (resp. monomorphism);

(2) for all ǫ > 0, the function hǫ0 : S(ǫ) → S′(0) is surjective (resp. injective);

(3) there exists δ > 0 such that for all 0 ≤ δ′ ≤ δ the sheaf map hδ
′
: Extδ′S → S′ is an

epimorphism (resp. monomorphism);

(4) there exists δ > 0 such that for all 0 ≤ δ′ ≤ δ the function hδ
′

0 : S(δ′) → S′(0) is surjective

(resp. injective).

Proof. When ǫ � 0, we have that λA � id and λS � id, so hǫ � id. Thus it is clear that
1⇒3 and that 2⇒4, e.g. choose δ :� 1. By Lemma 3.2.10, the sheaf map hǫ is an epi (resp.
mono) if and only if for all ℓ ∈ Int the function hǫ

ℓ
is epi (resp. mono). In particular, taking

ℓ � 0 we have 1⇒2 and 3⇒4.
It thus suffices to prove 4⇒1; so assume 4 holds for some δ > 0, and choose ǫ > 0. Any

s′ ∈ S′(ℓ) can be identified with a pair (s , a) ∈ S(ℓ) × A(ℓ + ǫ) such that p(s) � a |[0,ℓ]. For
the surjectivity claim, we have that hδ

′

0 is surjective for all 0 ≤ δ′ ≤ δ, and the goal is to
show hǫ

ℓ
is surjective; it suffices to find an extension s̄ ∈ S(t + ǫ) of s over a.

Since � is a Euclidean domain, there exists a unique N ∈ � and 0 ≤ δ′ ≤ δ such
that ǫ � Nδ + δ′. Then (a |[ℓ,ℓ+δ′] , ρ0(s)) ∈ S′(0) and since hδ

′

0 is surjective, there exists
an extension s′0 ∈ S(δ′) emanating from ρ0(s) above a |[ℓ,ℓ+δ′]. Gluing this to s we obtain
s0 :� s ∗ s′0 ∈ S(ℓ + δ′) extending s over a0 :� a |[0,ℓ+δ′].

If N � 0 we are done, so we proceed by induction on N . Given sn ∈ S(ℓ + δ′ + nδ),
extending s over an :� a |[0,ℓ+δ′+nδ] we use the surjectivity of hδ0 to extend it, exactly as
above, to find s′n emanating from λ0(sn) over an . At the end, we have the desired lift
sN ∈ S(ℓ + ǫ).
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Assume now that hδ
′

0 is injective for all 0 ≤ δ′ ≤ δ. Then there is at most one extension
s′0 ∈ S(δ′) emanating from ρ0(s) over a |[ℓ,ℓ+δ′]. Thus there is at most one s0 ∈ S(ℓ +

δ′) extending s over a |[0,ℓ+δ′]. The proof concludes analogously to the surjective case
above. �

A generalization and purely formal proof of the above result is given in Lemma 5.2.7.

Definition 4.2.2. We will say that a sheaf morphism p : S→ A is total (resp. deterministic)
if it satisfies the equivalent conditions of Proposition 4.2.1.

Remark 4.2.3. In Appendix A, we discuss an equivalence of categories between Int-sheaves
and discrete Conduché fibrations over the monoid �≥0. Under that correspondence, a
morphism p : S → A in Ĩnt is both total and deterministic if and only if its associated
functor p : S→ A is a discrete opfibration; see Appendix A.3.

It would be reasonable to define a continuous machine (pi , po) : S → A × B to be total
(resp. deterministic) if and only if the input map pi is, as this matches our intuitive notion
(35). Indeed, condition 2 says that for every pair (s0 , a) ∈ S(0) × A(ǫ) with a |[0,0] � pi

0(s0),
there exists some s ∈ S(ǫ) above a which extends s0, for every ǫ > 0. However, such a
definition turns out to not be closed under feedback composition. In order for total or
deterministic machines to form a W-algebra, we must add an extra condition, this time
on their output map. We introduce a notion of inertia, in which a machine’s current state
determines not only its current output, but also a small amount of its future output.

Definition 4.2.4. A sheaf map p : S→ B is called ǫ-inertial when there exists a factorization

(37)
ExtǫB

S B

λ

p

p

through the ǫ-extension of B via a sheaf map p; it is called inertial when it is ǫ-inertial for
some ǫ > 0. Explicitly, pℓ(s)|[0,ℓ] � pℓ(s) ∈ B(ℓ) for any section s ∈ S(ℓ).

We say a continuous machine (pi , po) : S → A × B is inertial (resp. ǫ-inertial) if the
output map po is. Inside Mch(A, B), the full category of inertial (resp. ǫ-inertial) machines
is denoted Mchin(A, B) (resp. Mchǫ-in(A, B)).

The following expression of inertiality via a lifting in a naturality square is equivalent,
and may look more intuitive.
Lemma 4.2.5. A sheaf map p is ǫ-inertial when there exists a lift p as in

(38)
ExtǫS ExtǫB

S B

Extǫp

λB λS

p

p

Proof. By Definition 4.2.4, it suffices to show that if p is ǫ-inertial then the top triangle
commutes. Since (Extǫp)ℓ � pℓ+ǫ for ℓ ∈ Int, we need to show that the lower triangle in
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the following square commutes:

B(ℓ + 2ǫ)

S(ℓ + ǫ) B(ℓ + ǫ)

S(ℓ)

λℓ+ǫ
pℓ+ǫ

pℓ+ǫ

λℓ
pℓ

The top triangle commutes because p is ǫ-inertial, and the outer square commutes because
p is a sheaf map, therefore has natural components; thus the lower triangle does too. �

Remark 4.2.6. In most cases of interest, if a map p : S → B is inertial then the lift p in (37)
is unique. Indeed, suppose λ : ExtǫS → S is surjective, meaning that any short section
can be extended in some way; we refer to such sheaves S as extensible. In this case, by (38),
there is at most one p with p ◦ λ � Extǫp.

Note that if p is ǫ-inertial and δ ≤ ǫ, then p is δ-inertial as well. Thus, for any pair of
sheaves A, B there is a fully faithful functor Mchǫ-in(A, B) → Mchδ-in(A, B) given by left
restriction, and the colimit of the directed system is Mchin:

(39) Mchin(A, B) ∼� colim
ǫ>0

(
Mchǫ-in(A, B)

)
.

We are now ready to define total and deterministic machines, in such a way that they
are closed under all wiring diagram operations (Proposition 4.3.2).

Definition 4.2.7. A continuous machine (pi , po) : S→ A × B is total (resp. deterministic) if
• the input map pi is total (resp. deterministic) in the sense of Definition 4.2.2; and
• the output map po is inertial in the sense of Definition 4.2.4.

We denote the full subcategory of Mch(A, B) of total, resp. deterministic, (A, B)-machines
by Mcht(A, B), resp. Mchd(A, B). Their intersection Mchtd(A, B) is the set of machines that
are both total and deterministic, i.e. machines for which the sheaf map hǫ in (36) is an
isomorphism.

Example 4.2.8 (Delay Box). For any sheaf B, we can define a total and deterministic (B , B)-
machine DǫB B that takes input of type B and delays it for time ǫ: it is the span

B
ρ
←− ExtǫB

λ
−→ B

in Ĩnt, where ρ and λ are the right and left restrictions as in (26). It is clear that λ
is ǫ-inertial. To see that ρ is both total and deterministic, one checks that the map
hǫ : Ext2ǫB→ ExtǫB ×B ExtǫB in (36) is an isomorphism.

The following examples show that the conditions of totality and determinism on input
sheaf maps of machines with non-inertial output maps are indeed not closed under
arbitrary machines nesting, as implied earlier.

Example 4.2.9. Consider the wiring diagram φ : X → 0, see (8), shown below

XC
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which consists of (φ̂in : 1 × C
∼
−→ C, φ̂out : C

!
−→ 1) in Ĩnt as in (14), where 1 is the terminal

sheaf. Any inhabitant continuous machine P :� (pi , po) : S → C × C becomes, via (20),
Mch(φ)(P) � T → 1× 1 with new sheaf of states given by T(ℓ) � {s ∈ S(ℓ) | pi

ℓ
(s) � po

ℓ
(s)}

as in (34), namely the collection of all state sections that have the same input and output.
Take C � Fnc(2) to be the sheaf of functions on the set 2 :� {1, 2} as described in

Example 3.2.6(2), given by C(ℓ) � { f : [0, ℓ] → {1, 2}}. The machine (idC , idC) : C→ C×C

is such that its input map is deterministic (and total); indeed, given any input function
f : [0, ℓ] → {1, 2} and an initial state germ above it, namely f (0), then there exists a unique
state extension mapping to f via pi, namely f itself. However, its composite Mch(φ)(P)

has the same state sheaf C since all functions have the same input and output via the
identities, whereas C → 1 × 1 does not have a deterministic input anymore: there are
multiple functions that only agree on 0.

Now take C � Yon1 to be the representable sheaf on the interval 1 � [0, 1] as described
in Example 3.2.6(1), given by Yon1(ℓ) � Int(ℓ, 1). Notice that for lengths ℓ > 1, these
sets are empty. Again, the machine (idC , idC) : C → C × C has total (and deterministic),
however its composite C→ 1 × 1 does not have a total input map anymore: the diagram
(36) would require for example λ : Extǫ(C)(1) � C(1 + ǫ) → C(1) to be surjective, when
C(1 + ǫ) � ∅.

Notice that in both cases above, the output map idC was not inertial. For example,

suppose that there exists a factorization C Extǫ(C) Cp λ of the identity sheaf

morphism of the first machine. Considering the components p1 and p2 for ǫ � 1, naturality
implies the commutativity of

C(2) C(1)

C(3) C(2)

λ1

p2 p1

λ2

where the lower composite is the identity on C(2); that would imply that the left restriction
λ is injective, which is clearly false.

4.3. Closure under feedback. For the remainder of this section, we write W to denote the
symmetric monoidal category WĨnt of Ĩnt-labeled boxes and wiring diagrams. We saw in
Proposition 4.1.3 that continuous machines form a W-algebra Mch : W → Cat; now we
show that inertial (Definition 4.2.4), as well as total machines and deterministic machines
(Definition 4.2.7) do too.
Proposition 4.3.1. Inertial continuous machines (resp. ǫ-inertial machines, for any ǫ > 0) form

a subalgebra Mchin : W→ Cat (resp. Mchǫ-in). Moreover, we have a colimit of algebras

Mchin ∼
� colim

ǫ>0
(Mchǫ-in).

Proof. Given a wiring diagram morphism φ : X→ Y, we restrict (33) to obtain a functor

Mchǫ-in(X) ⊆ Mch(X)
Mch(φ)
−−−−−→ Mch(Y);

we will show that it factors through the full subcategory Mchǫ-in(Y), for the same ǫ > 0.

Suppose that p � (pi , po) : S → X̂in × X̂out is a machine and that po factors as λ ◦ p (37).
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This is shown in the upper-middle square below

(40)

T S Extǫ(X̂out) Extǫ(Ŷout)

X̂in × X̂out X̂out

Ŷin × X̂out Ŷin × Ŷout Ŷout

k

(qi ,pok)

y

q

p
(pi ,po)

Extǫ(φ̂out)
λ

λ
π2

φ̂out

1×φ̂out

(φ̂in ,π2)

π2

The construction for Mch(φ)(S, p) � (T, q) as in (20) is the left-hand pullback, along with

the bottom-left horizontal morphism, thus defining q � (qi, qo) : T → Ŷin × Ŷout. The
bottom (trapezoid-shaped) sub-diagram trivially commutes, and the right-hand diagram
commutes because λ is a natural transformation. Thus the outer square commutes,
exhibiting a factorization of qo through Extǫ(Ŷout). Hence we do have a subfunctor
Mchǫ-in : W→ Cat.

If 0 < δ ≤ ǫ, the following diagram of categories commutes

Mchǫ-in(X) Mchǫ-in(Y)

Mchδ-in(X) Mchδ-in(Y)

Mchǫ-in(φ)

Mchδ-in(φ)

so we have a natural transformation Mchǫ-in ⇒ Mchδ-in, and the colimit of the directed
system is Mchin by (39). It remains to show that all these functors W → Cat, and maps
between them, are monoidal.

It is easy to see that the product (19) of ǫ-inertial machines is ǫ-inertial, because Extǫ

preserves products of sheaves, see Lemma 3.2.9. Thus Mchǫ-in is indeed a W-algebra,
and moreover the natural transformation Mchǫ-in ⇒ Mchδ-in described above is clearly
monoidal. We still need to define a monoidal structure on the colimit Mchin: given output
sheaf maps that factorize through S → Extǫ1(X̂

out) and P → Extǫ2(Ẑ
out) for ǫ1, ǫ2 > 0,

let ǫ :� min(ǫ1, ǫ2). Then by left restriction (if necessary), the product output sheaf map

factorizes through S×P → Extǫ(X̂out×Ẑout) therefore is also inertial for this new ǫ > 0. �

Proposition 4.3.2. Total machines form a subalgebra Mcht : W→ Cat. Similarly, deterministic

machines form a subalgebra Mchd : W → Cat. Their intersection is a subalgebra Mchtd :�
Mcht ∩Mchd.

Proof. Given an object X � (Xin ,Xout), define the full subcategories Mcht(X),Mchd(X) of

Mch(X̂in , X̂out) as in Definition 4.2.7. Given a morphism φ : X → Y, we restrict to obtain
functors

Mcht(X) ⊆ Mch(X)
Mch(φ)
−−−−−→ Mch(Y) and Mchd(X) ⊆ Mch(X)

Mch(φ)
−−−−−→ Mch(Y)

described in Proposition 4.1.3; we need to show that they factor through the respective
full subcategories Mcht(Y) and Mchd(Y), and the result for Mchtd follows trivially.
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A total (resp. deterministic) machine p � (pi , po) : S → X̂in × X̂out is ǫ-inertial for
some ǫ > 0, meaning that po is a composite λ ◦ p : S → ExtǫX̂out → X̂out (37). By

Proposition 4.3.1, its image q � (qi, qo) : T → Ŷin × Ŷout under Mch(φ) is also ǫ-inertial for
the same ǫ, so qo

� λ ◦ q for some q as exhibited by (40). In particular, from the top-right
part of that diagram we deduce that this factorization coincides with one through X̂out,
namely

(41) qo
� T

k
−→ S

p
−→ ExtǫX̂out λ

−→ X̂out
φout

−−−→ Ŷout.

It suffices to check that the resulting input sheaf map qi is total (resp. deterministic). We
use the formulation in Proposition 4.2.1(3); that is, we will show that the sheaf map hǫ

′
in

(36) is an epimorphism (resp. monomorphism) for arbitrary ǫ′ ≤ ǫ. But note that if qo is
ǫ-inertial then it is also ǫ′-inertial, so we may take ǫ′ � ǫ. First of all, the bottom squares
below are pullbacks in a straightforward way; we define S′ and T′ to be the top pullbacks
(42)

S′ S

ExtǫX̂in×ExtǫX̂out X̂in×ExtǫX̂out

ExtǫX̂in X̂in

p′

y

(pi ,p)

y
λ×1

π1 π1

λ

T′ T

Ŷin × S

ExtǫŶin×ExtǫX̂out Ŷin×ExtǫX̂out

ExtǫŶin Ŷin

q′

y
(qi ,k)

1×p

y
λ×1

π1 π1

λ

Note that the map p′ on the left is the one defined in Proposition 4.2.1, and similarly
is q′ if we observe that the top pullbacks are along identities with respect to the second
components. Therefore the outer pullbacks coincide with the ones in (36) for the machines
S and T. Now consider the diagram

T′ S′

T S

Ŷin × S

ExtǫŶin × ExtǫX̂out ExtǫX̂in × ExtǫX̂out

Ŷin × ExtǫX̂out X̂in × ExtǫX̂out

Ŷin × X̂out X̂in × X̂out

Ŷin × Ŷout

k

(qi ,k)

(pi ,p)

1×p

1×λ
(φin ,π2)

1×λ

1×φout

where the two sides are precisely the pullbacks of (42). Notice how the two front vertical

composites describe the ǫ-inertial machine S→ X̂in × X̂out on the right, and its resulting
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(also ǫ-inertial) machine T → Ŷin × Ŷout on the left by (41). Now the front rectangle is
a pullback by definition (20) of machine composition, and one can check that the lower
bottom square is also a pullback. Therefore the back face is a pullback, which we re-write
as the bottom square below:

(43)

ExtǫT ExtǫS

T′ S′

ExtǫŶin × ExtǫX̂out ExtǫX̂in × ExtǫX̂out

y
iǫ hǫ

y

Since Extǫ preserves limits by Lemma 3.2.9, the big rectangle is a pullback, so the top is
too. This diagram takes place in a topos—in particular, a regular category—so if hǫ is epi
(resp. mono) then iǫ is too. Therefore if p is a total (resp. deterministic) machine, so is
Mch(φ)(p).

Finally, it is easy to check that if pi : P → X̂in and qi : T → Ẑin are total (resp. determin-
istic), their product pi × qi is too, so lax monoidality (19) follows. �

Notably, since the above conditions are only sufficient and not necessary — the pullback
(43) may produce an epimorphism or monomorphism iǫ on the left even if the initial hǫ on
the right is not — it could be the case that a composite machine is total and deterministic
without its sub-components being so. Even more, the two cases of Example 4.2.9 coinci-
dentally maintain their totality and determinism respectively, despite not being inertial.
In this work, our goal was to establish sufficient conditions for totality and determinism
to be carried over from subsystems to their composite, and this is what was accomplished
in Proposition 4.3.2.

4.4. Discrete and synchronous variations. One of the central purposes of the current
work is to allow discrete-time and continuous-time systems to be incorporated within the
same framework. In this section, we define discrete analogues of the machines described
so far; all the results go through with nearly identical proofs, so we only provide the
definitions and statements. In the following Chapter 5, we compare the discrete and
continuous machines via wiring diagram algebra maps.

Discrete machines have IntN -sheaves, rather than Int-sheaves, labeling their input
and output ports; see Section 3.2 were continuous and discrete interval sheaves were
introduced. All of the ideas of Sections 4.2 and 4.3 can be modified to this setting, with
the main difference being that the positive real ǫ ∈ �≥0 used in the various extension
sheaves (Definition 3.2.8) is here replaced by the positive integer 1 ∈ �. For example,
compare the following to Proposition 4.2.1 and Definitions 4.2.4 and 4.2.7.

Definition 4.4.1. Let p : S → A be a discrete sheaf map. Consider the outer naturality
square for λ in �IntN
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Ext1S

S′ S

Ext1A A

λ

Ext1p

h1

y
p′ p

λ

where h1 : Ext1S → S′ is the universal map to the pullback S′. Then p is total (resp.
deterministic) if h1 is an epimorphism (resp. monomorphism); p is inertial if it factors
through λ : Ext1A→ A.

A discrete machine is a span p � (pi, po) : S → A × B in ĨntN . The machine is inertial if
the output map po is. The machine total (resp. deterministic) if both the output map po is
inertial and the input map pi is total (resp. deterministic).

Remark 4.4.2. By an argument similar to that in Proposition 4.2.1, we can simplify Defini-
tion 4.4.1 a great deal. Recall from Proposition 3.2.3 that p : S→ A can be identified with

a graph homomorphism; write S � ( S1 S0
src

tgt
) where we let Sn :� S(n) denote the set

of length-n sections of S, and similarly for A. Consider the diagram of sets

(44)

S1

S′ S0

C1 C0

src

p1

h

y
p0

src

where S′ is the pullback and h is the induced function. Then p is total (resp. deterministic)
if and only if h is surjective (resp. injective). Notice that h � h1

0 from above.

The proof of Proposition 4.4.3 follows that of Propositions 4.1.3, 4.3.1 and 4.3.2. In
particular, MchN : WĨntN

→ Cat is the algebra of ĨntN -span systems of Definition 2.4.2.
Proposition 4.4.3. Discrete machines form aWĨntN

-algebra MchN : WĨntN
→ Cat. Inertial, total,

deterministic discrete machines form subalgebras Mchin
N

, Mcht
N

, Mchd
N

(and Mchtd
N

).

To compare discrete and continuous systems in Chapter 5, it will be useful to have a
mediating construct that handles ‘synchronization’ in continuous systems. Recall the syn-
chronizing sheaf Sync ∈ Ĩnt (25) and the synchronous sheaves X→ Sync from Section 3.3.
Given an object (resp. map, span) in Ĩnt/Sync, we refer to its image under the forgetful
Ĩnt/Sync→ Ĩnt as the underlying object (resp. map, span) in Ĩnt.

Definition 4.4.4. A morphism p : S→ A in Ĩnt/Sync is inertial (resp. total, deterministic) if
the underlying map in Ĩnt is.

A synchronous machine is a span p � (pi , po) : S → A × B in Ĩnt/Sync. It is inertial (resp.
total, deterministic) if the underlying continuous machine p in Ĩnt is.

Again, the proof of Proposition 4.4.5 is similar to the analogous results proven above,
and in particular MchSync : WĨnt/Sync → Cat is the algebra of Ĩnt/Sync-span systems of
Definition 2.4.2.
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Proposition 4.4.5. Synchronous machines form aWĨnt/Sync-algebra MchSync : WĨnt/Sync → Cat.

Inertial, total, deterministic synchronous machines form subalgebras Mchin
Sync, Mcht

Sync, Mchd
Sync

(and Mchtd
Sync).

Evidently, continuous machines receive input information continuously through time,
discrete machines receive information in discrete ‘ticks’ 0, 1, 2, .. of a global clock, whereas
synchronous machines also have a continuous input flow, this time together with an as-
signed phase θ ∈ [0, 1). In Corollary 5.2.1 we will show that there are algebra morphisms
realizing any discrete or continuous machine as a synchronous machine.

4.5. Safety contracts. We conclude this chapter by a short discussion on contracts that we
can impose on machines. Intuitively, a contract for a machine should be a set of logical
formulas that dictate what sort of input/output behavior is valid for it. If the machine
inhabits some labeled box X, its contract should be expressed relatively to the sections of

the input and output sheaves X̂in, X̂out.
For example, suppose we have a box X and consider the following natural language

contract for a discrete machine inhabiting X: “if I ever receive two True’s in a row, I will

output a False within 5 seconds”. For any input/output pair (i , j) ∈ X̂in(n) × X̂out(n), we
can evaluate whether the machine satisfies the contract, at least on the interval [0, 6]: if
the first two inputs are True, i |[0,1] � 〈True, True〉, then the last five outputs j |[2,6] should
include a False. For any section s of longer length n ≥ 6, we say the machine satisfies the
contract if it does on every subinterval [a , a + 6] ⊆ [0, n].

But on shorter sections, it is unclear what to do: should one say the contract is satisfied
on short intervals or not? One choice is what is sometimes called a safety contract. These
have the property that if a section validates the contract, then so does any restriction

of it. Thus we formalize safety contracts on X as sub-presheaves C ⊆ U(X̂in × X̂out) ∼�

UX̂in×UX̂out where U is the forgetful functor into presheaves; namely if a section x � (i , j)

is in C then it is valid.8 Thus we arrive at the following definition.

Definition 4.5.1. Let A, B ∈ Ĩnt be continuous interval sheaves, and U : Ĩnt → Psh(Int)

the forgetful functor. A safety contract is a sub-presheaf C ⊆ UA × UB. We say a section
(a , b) ∈ A × B validates the contract if (a , b) ∈ C.

Recall that images exist in any topos, in particular in Psh(Int). If p � (pi , po) : S→ A×B

is a continuous machine as in Definition 4.1.1, we say that it validates the contract, denoted
p |� C, if the image im(Up) is contained in C, or equivalently Up factors through it:

C

US UA ×UB
Up

8Using sheaves, rather than presheaves, for safety contracts does not have the intended semantics, because

the sheaf condition would imply that the concatenation of any two valid behaviors is valid. It thus effectively

disallows historical context from being a consideration in validity. In the example above, any section of

length 4 is valid, but some sections of length 8 are not so the gluing of two valid sections is not always valid.
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In other words, p validates C if, for every section s ∈ S, the associated input and output
validates the contract as above,

(
pi(s), po(s)

)
∈ C.

The collection of all (A, B)-contracts is a poset—in fact a Heyting algebra; it is denoted

(45) Cntr(A, B) :� SubPsh(A × B) ≡ SubPsh(Int)(UA ×UB).

In what follows, we often elide the forgetful functor U so we may write C ⊆ A × B to
denote C ⊆ UA × UB; in diagrams involving both sheaves and presheaves, everything
should be regarded as a presheaf.

Remark 4.5.2. As mentioned at the beginning of this section, contracts should really be
written in a logical formalism. What we call safety contracts in Definition 4.5.1 are a
reasonable semantics for this formalism; a related logical formalization was later worked
out in [SS17].

Proposition 4.5.3. Safety contracts form a WĨnt-algebra.

Proof. The proof proceeds like the ones for machines or span-like systems earlier, e.g.

Proposition 4.1.3. To any box X ∈ WĨnt, we associate the posetal category Cntr(X̂in , X̂out)

of (45). Given a wiring diagram φ : X → Y and a contract C ⊆ X̂in × X̂out, we form
D :� Cntr(φ)(C)

(46)

C′ C

D Ŷin × X̂out X̂in × X̂out

Ŷin × Ŷout

y

(φ̂in ,π2)

1×φ̂out

as the subpresheaf of Ŷin × Ŷout which the image of the pullback C′. Analogously to (21),
if (∃ f ⊣ f ∗) : Sub(B) → Sub(A) are the induced adjunctions for any f : A→ B in the topos
Psh(Int), the functor Cntr(φ) is the composite

SubPsh(X̂in × X̂out)
(φ̂in ,π2)

∗

−−−−−−→ SubPsh(Ŷin × X̂out)
∃
(1×�φout)
−−−−−−→ SubPsh(Ŷin × Ŷout).

Functoriality and unitality follow. The lax monoidal structure is again given by the
cartesian product like (19), i.e. natural maps SubPsh(X)×SubPsh(Z) → SubPsh(X×Z). �

Finally, we may consider the inhabitant of a wiring diagram box to be a machine
with an associated contract, namely any contract validated by it. These also form an
algebra, essentially combining Propositions 4.1.3 and 4.5.3; the composed inhabitant is
the composite machine, validating the associated composite contract.

Definition 4.5.4. Let A, B ∈ Ĩnt be sheaves. An (A, B)-contracted machine is a pair (S, C) ∈
Mch(A, B) × Cntr(A, B) such that S |� C.

Contracted machines form a full subcategory CM(A, B) of (Mch × Cntr)(A, B).

Proposition 4.5.5. Contracted machines form a WĨnt-subalgebra of Mch × Cntr.
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Proof. For any X � (Xin ,Xout), define

CM(X) :� CM(X̂in , X̂out) ⊆ Mch(X̂in , X̂out) × Cntr(X̂in , X̂out).

Suppose φ : X → Y is a wiring diagram. Given a contracted machine (p : S → X̂in ×

X̂out,m : C ֌ UX̂in×UX̂out) ∈ CM(X̂in , X̂out), applying Mch(φ)×Cntr(φ) produces a pair

(q : T → Ŷin × Ŷout , n : D → UŶin ×UŶout) given by (20) and (46). The following diagram
verifies that q validates n:

T S

C′ C

D Ŷin × X̂out X̂in × X̂out

Ŷin × Ŷout

y∃!

p
y

n

m

The left hand side composite is precisely the new machine q, due to the upper-side
pullback formed; clearly it factors through n. Monoidality is inherited from Mch × Cntr,
essentially given by the cartesian product. �

We could of course replace Mch with any other version of a machine (total, determin-
istic and discrete, synchronous) as described in Sections 4.2 and 4.4, and express safety
contracts on those. The significance of Proposition 4.5.5 can be summarized as follows:
if we arbitrarily interconnect machines which validate specific contracts, the composite
machine they form is forced to satisfy their composite contract, which can be specified
using the wiring diagram algebraic operations. In other words, we could reason about
the expected valid behavior of the total system only by looking at valid behaviors, and
not even state specifications, of the component subsystems.

5. Maps between dynamical systems and machines

In this final chapter of the main text, we describe wiring diagram algebra maps, i.e.
monoidal natural transformations (13), between the various algebras we have considered
so far. More specifically, we are interested in maps from discrete and continuous dy-
namical systems of Section 2.3 to the machines considered in Chapter 4, as well as maps
between the different kinds of machines (continuous, discrete, etc.) and contracts. These
maps, in fact embeddings, allow us to translate one sort of algebra to another, while
ensuring consistency of serial, parallel, and feedback composition.

Let us briefly elaborate on the previous sentence for two W-algebras, i.e. lax monoidal
functors F,G : W → Cat. Recall that, given F-inhabitants of boxes fi ∈ F(Xi) and a
wiring diagram φ : X1, . . . ,Xn → Y like (11), we obtain an inhabitant F(φ)( f1, . . . , fn) ∈

F(Y) of the outer box via (12). Given a monoidal natural transformation α : F ⇒ G, its
components αXi : F(Xi) → G(Xi)map F-inhabitants to G-inhabitants. The axioms dictate
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the commutativity of

F(X1) × ... × F(Xn) F(X1 + ... + Xn) F(Y)

G(X1) × ... × G(Xn) G(X1 + ... + Xn) G(Y)

FX1 ,...,Xn

αX1×...×αXn

F(φ)

αX1+...+Xn αY

GX1 ,...,Xn G(φ)

which explicitly means that whether we first compose the interior systems and then
translate via α (upper composite), or first translate and then compose (lower composite),
the resulting systems are the same.

We explain in Section 5.1 how to translate from various sorts of dynamical systems
to machines, and in Section 5.2 how to translate between various sorts of machines.
Specifically, Corollary 5.2.1 establishes synchronous machines MchSync as the common
framework where discrete and continuous machines can both be mapped.

5.1. Realizing dynamical systems as machines. Understanding how the motivating ex-
amples of discrete and continuous dynamical systems of Section 2.3fit into our generalized
framework of machines, makes the latter much more concrete and accomplishes one of
the main goals of this work.

To begin with, we realize discrete dynamical systems (Definition 2.3.1) as discrete
machines (Definition 4.4.1), in fact total and deterministic ones. The former are Set-
based—the input and output signals are elements of a set, as are the states—so the first
step is to compare the typing categories of the respective wiring diagram algebras, namely
sets with IntN -sheaves. In Example 3.2.5, for any set S we defined the ĨntN -sheaf K(S),
with length-n sections K(S)(n) � Sn+1

� HomSet({0, . . . , n}, S), i.e. lists of length n + 1 in
S. This mapping extends to a (finite-limit preserving) functor

(47) K : Set→ ĨntN

therefore by (9), there is an induced strong monoidal functor WK : WSet → WĨntN
which

sends a pair of Set-typed finite sets (τ : Xin → Set, τ′ : Xout → Set) to the ĨntN -typed
finite sets (K ◦τ : Xin → ĨntN , K ◦τ

′ : Xout → ĨntN).
Recall from Proposition 4.4.3 the algebra Mchtd

N
: WĨntN

→ Cat of total and deterministic
discrete machines, and from Proposition 2.3.2 the algebra DDS : WSet → Cat of discrete
dynamical systems.
Proposition 5.1.1. There exists a morphism of wiring diagram algebras, i.e. monoidal natural

transformation

WSet

Cat

WĨntN

DDS

WK ⇓ β

Mchtd
N

Proof. We first define the component functor βX : DDS(X) → Mchtd
N(WK(X)) for each

box X � (Xin ,Xout) ∈ WSet, mapping a discrete dynamical system on X to a total and
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deterministic discrete machine on WK(X). We then we check that the βX’s satisfy the
necessary naturality and monoidality conditions.

Recall that a discrete dynamical system on a Set-labeled box X is a tuple F � (S, f upd, f rdt),

where S is a set, and f upd : X̂in × S → S and f rdt : S → X̂out are functions. For simplicity,

denote by Xin :� K(X̂in) and Xout :� K(X̂out) the image of the input and output sets under
K (47), namely the discrete interval sheaves with n + 1-element lists as sections of length
n.

For each discrete dynamical system F, we can construct a discrete interval sheaf S by

(48) S(n) :�
{
(x , s) : {0, . . . , n} → X̂in × S

��� si+1 � f upd (xi , si

)
, 0 ≤ i < n

}

i.e. finite lists of all pairs of input and state elements, in the order processed by the
dynamical system: the (i + 1)th state is determined by the ith state and input. We can
now define βX(F) to be the span (pi , po) : S → Xin × Xout in ĨntN , where pi(x , s) � x

and po(x , s) � f rdt(s); this is the discrete machine that corresponds to F. Notice that if

βX(F) � βX(G) for two (X̂in, X̂out)-discrete dynamical systems, then their state sets and
update, readout functions are the same to begin with.

The machine βX(F) is inertial (37), because we can factor its output sheaf map po

through S→ Ext1X
out, sending (x , s) ∈ S(n) to the sequence

〈 f rdts0, . . . , f rdtsn , f rdt( f upd(xn , sn))〉 ∈ X
out(n + 1).

Since sn+1 � f upd(xn , sn), this factorization is compatible with restrictions. This is due to
the fact that every current state and input decide the subsequent output.

The machine is also total and deterministic, because the square below as in (44) is
already a pullback:

X̂in × X̂in × S X̂in × S

X̂in × X̂in X̂in

(π1 ,π3)

(π1 ,π2)
y

π1

π1

This is the case since, for each current state and input elements, the next input produces a
uniquely determined state of the dynamical system, essentially because f upd is a function.

Having described βF’s mapping on objects, for any map of (X̂in , X̂out)-discrete dynam-
ical systems F1 → F2 described in Definition 2.3.1, the function h : S1 → S2 induces a
machine morphism given by (1× h)n+1 : S1(n) → S2(n), so βX is a (faithful) functor. These
are natural in X: if φ is a wiring diagram from X to Y, then the following commutes (up
to iso, see Remark 2.1.1)

(49)

DDS(X̂in , X̂out) DDS(Ŷin , Ŷout)

Mchtd
N
(Xin ,Xout) Mchtd

N
(Yin , Yout)

DDS(φ)

βX βY

Mchtd
N
(Kφ)

Indeed, given a wiring diagram φ : X→ Y as in (14), the formulas (15) for DDS(φ) can be
applied to a discrete dynamical system (S, f upd, f rdt) to give rise to a new discrete system
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(S, 1upd, 1rdt). This is sent by βY to the machine

T(n) �
{
(y , s) : {0, . . . , n} → Ŷin × S | si+1 � f upd(φ̂in(yi , f rdt(si)), si)

}

and appropriate input and output maps. On the other hand, one can apply the formula
MchN(φ) from (20) to the machine S→ Xin × Xout from (48), i.e. take the pullback along

(φ̂in, π2) and post-compose with 1 × φ̂out. The resulting machines T → Yin × Yout are
isomorphic.

Finally, we can verify that βX+Y ◦ DDSX,Y � (Mchtd
N
)X,Y ◦ (βX × βY) so that the natural

transformation β is monoidal; this uses DDS-monoidality from Section 2.3 and (19). �

Next, we describe an analogous map that transforms continuous dynamical systems
(Definition 2.3.3) to continuous machines (Definition 4.1.1). Because we will be comparing
different sorts of machines, we will denote continuous machines by MchC rather than
simply by Mch.

Let C∞ : Euc → Ĩnt be the functor mapping a space A to the sheaf C∞(A) of C∞-
trajectories in X, as described in Example 3.2.6(4), which has as length-ℓ sections all
smooth functions f : [0, ℓ] → A. This functor preserves all finite limits, and it induces a
strong monoidal functor WC∞ : WEuc→WĨnt again by (9).
Proposition 5.1.2. There exists a wiring diagram algebra map

WEuc

Cat

WĨnt

CDS

WC∞ ⇓ δ

MchC

Proof. We first define the components δX : CDS(X) → MchC(WC∞ (X)) for each box X �

(Xin,Xout) ∈ WEuc, mapping a continuous dynamical system on X to a continuous ma-
chine onWC∞(X). We then check that the δX satisfy the necessary naturality and monoidal-

ity conditions. Denote by Xin, Xout the sheaves C∞(X̂in), C∞(X̂out) associated to the box
WC∞(X) from Example 3.2.6(4).

By Definition 2.3.3 a continuous dynamical system on X is a tuple F � (S, f dyn, f rdt),

where S is a smooth manifold, f dyn : X̂in × S → TS is the dynamics, and f rdt : S → X̂out

is a smooth map. Define a sheaf S ∈ Ĩnt by

S(ℓ) :�

{
(x , s) : [0, ℓ] → X̂in × S

���� x , s are smooth and
ds

dt
� f dyn(x , s)

}

where ds
dt is the derivative of s : [0, ℓ] → S; notice that the trajectory s is a solution to the

differential equation defining the dynamical system. We can now define δX(F) to be the
span Xin ← S→ Xout where the maps send (x , s) to x and to f rdt(s) respectively. Again,
if δX(F) � δX(G) for two continuous dynamical systems, from the above description we
can deduce that F � G.

We next define δX on morphisms, using the chain rule: consider a map of (X̂in , X̂out)-
continuous dynamical systems F1 → F2 as defined in Definition 2.3.3, namely a smooth
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function h : S1→ S2 such that f rdt
1 ◦ h � f rdt

2 and the right-hand square commutes in

[0, ℓ] X̂in × S1 X̂in × S2

TS1 TS2

(x,s)

ds
dt

1×h

f
dyn
1 f

dyn
2

dh
ds

We define a machine morphism δX(F1) → δX(F2), i.e. a sheaf map S1 → S2 over Xin ×Xout

as follows. For any (x , s) ∈ S1(ℓ), the left-hand triangle commutes, i.e. ds
dt � f

dyn
1 (x , s).

Thus the outer shape does too, so we find that (x , h(s)) ∈ S2(ℓ) by the chain rule:

f
dyn
2

(
x , h(s)

)
�

dh

ds

ds

dt
�

d(h ◦ s)

dt
.

This map commutes with the projections to Xin ×Xout, therefore δX is a (faithful) functor.
We will now show naturality and monoidality of δ, similarly to (49). Suppose φ : X → Y

like (14). The new machine T :� MchC(φ)(δX(F)) is defined by

T(ℓ) �

{
(y , s) : [0, ℓ] → Ŷin × S

����
ds

dt
� f dyn (s , φ̂in(y , f rdt(s))

) }

by applying construction (20): first take S’s pullback along (φ̂in , π2) and the post-compose

with (1 × φ̂out). This composite T → Yin × Yout is equal to δX(CDS(φ)(F)) as can be seen
through (16). It can also be verified that δ is a monoidal transformation, by checking that
δX+Y ◦ CDSX,Y � MchX,Y ◦ (δX × δY). �

Remark 5.1.3. Unlike Proposition 5.1.1, the algebra map δ from Proposition 5.1.2 does
not factor through Mchtd

C
, meaning that continuous dynamical systems do not generally

correspond to total and deterministic continuous machines. For example, the dynamical
system Ûy � y2 (inhabiting the closed box � with no inputs and no outputs) is not total.
Indeed, the initial value y(0) � 1 extends to a solution y �

1
1−t that exists only for t < 1.

Similarly, the dynamical system Ûy � 2
√
|y | is not deterministic. Indeed, the initial value

y(0) � 0 has the following solution for any a:
{

y � 0 if t ≤ a

y � (t − a)2 if t ≥ a

5.2. Maps between machines. We begin by providing maps between machines over
the toposes of continuous, discrete, and synchronous sheaves discussed in Chapter 4.
These algebra maps naturally group together according to whether they refer to general
machines, or to total or deterministic variations; in fact they are morphisms of WD-Alg

in the more general setting described in Section 2.4.
As mentioned earlier, for C � Ĩnt, ĨntN , and ĨntSync, the construction SpnC of Propo-

sition 2.4.1 gives the wiring diagram algebras MchC, MchN, and MchSync described at
Propositions 4.1.3, 4.4.3 and 4.4.5. Moreover, since the functors Σ′

i
: ĨntN → Ĩnt/Sync

from (31) and ∆Sync! : Ĩnt→ Ĩnt/Sync from (32) between the respective typing categories
preserve finite limits, they directly induce monoidal natural transformations SpnΣ′

i
and

Spn∆Sync!
by Proposition 2.4.4.
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Corollary 5.2.1. There exist algebra maps realizing any continuous or discrete machine as a

synchronous one:

WĨntN

Cat

WĨnt/Sync

MchN

WΣ′
i
⇓ SpnΣ′

i

MchSync

WĨnt

Cat

WĨnt/Sync

MchC

W∆Sync! ⇓ Spn∆Sync!

MchSync

Essentially, the first algebra morphism maps a discrete machine p : S → X̂in × X̂out to
Σ′

i
p, a synchronous machine whose state, input and output sheaves are obtained from

the old ones by applying Σi((−)
!
−→ 1), see Proposition 3.3.4. Similarly, the second one

gives the mapped span under ∆Sync!, where ∆Sync!(X) � (X × Sync → Sync) for the
synchronizing sheaf (25). Notice that since Σ′

i
and ∆Sync! are both faithful functors (see

proof of Proposition 3.3.7), their respective algebra maps have embeddings as components
as explained after Proposition 2.4.4.

This significant result accomplishes one of the main goals of this work, by bringing
discrete and continuous systems in a common environment, that of synchronous systems.
For example, both discrete and continuous dynamical systems, which can be realized as
discrete and continuous machines respectively by Propositions 5.1.1 and 5.1.2, can now
be further translated under the above algebra maps to synchronous machines. As a result,
their arbitrary interconnections can be studied in this common framework.

Remark 5.2.2. Using Proposition 2.4.4 we can also recover the fact from [Spi15] that extract-
ing the steady states of a dynamical system, and organizing them in terms of matrices,
amounts to an algebra homomorphism. Indeed, this follows from the obvious fact that
for any finitely complete category C and object c ∈ C, the Hom-functor C(c ,−) : C→ Set

is finitely complete, so we get a map of wiring diagram algebras

SpnC(c,−) : SpnC → SpnSet.

For example if C � Ĩnt and c � {∗} is the terminal sheaf (constant on one generator) then
C({∗},−) extracts the set of constant sections from any sheaf, and SpnC({∗},−) is the steady
state extraction from [Spi15]. If instead c � Sync is the synchronizing sheaf, we extract
periodic cycles of length 1.

Turning to maps preserving totality and determinism, recall that total and determinis-
tic machines require a notion of extension: for any extension of input, there exists (or is at
most one) an extension of state to match. We now abstract all the necessary structure to
make sense of this at a higher level of generality. Doing so will allow us to express condi-
tions of inertiality and totality/determinism from Proposition 4.2.1 and Definition 4.2.4,
for general span algebras like Proposition 2.4.1. We begin with a preliminary definition.

Definition 5.2.3. We define a Euclidean poset to be a poset (E, ≤) equipped with a symmetric
monoidal structure (+, 0) such that

• the unit is minimal: 0 ≤ e for all e ∈ E
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• for all a , b ∈ E, if b , 0 there exists N ∈ � and r ∈ E such that

a � N · b + r and r ≤ b

where N · b :� b + · · · + b (N times).
A morphism of Euclidean posets is a strong monoidal functor.

Lemma 5.2.4. Suppose ν : E → E′ is a morphism of Euclidean posets. If there exists b , 0 such

that ν(b) � 0 then ν(a) � 0 for all a; such a morphism is called trivial, otherwise it is nontrivial.
To cast totality at this level of generality, we need our categories and functors to be

regular, rather than just finitely-complete; i.e. we restrict our general C-span system
functor Spn(−) : FCCat → WD-Alg (22) to RegCat, the 2-category of regular categories
and functors, with all natural transformations between them. Recall that every topos is a
regular category and every epimorphism in a topos is regular. See [Bar71] or [Joh02] for
more on regular categories and functors.

For any regular category C, (End(C), ◦, 1C) is the monoidal category of regular endo-
functors on C. The following generalize the respective constructions from Section 4.2.

Definition 5.2.5. For C ∈ RegCat, an extension structure on C is a pair (E, Ext), where
(E, ≤,+, 0) is a Euclidean poset and Ext : Eop→ End(C) is a strong monoidal functor.

Spelling out what it means for Ext : Eop→ End(C) to be strong monoidal,
• for all e ∈ E, the functor Exte : C → C preserves finite limits and regular epimor-

phisms;
• Ext0 � idC, and for all a , b ∈ E, we have Exta+b � Exta ◦ Extb ;
• for any e′ ≤ e there is a chosen map which we will denote λe ,e′ : Exte ⇒ Exte′ .

When e′ � 0 we abbreviate λe ,0 by λe : Exte ⇒ idC; and
• for all a , b ∈ E, there exist N ∈ � and r ∈ E such that Exta � ExtN ·b ◦ Extr .

Using these extension structures we can formalize inertiality for the C-span systems
of Definition 2.4.2, generalizing Definition 4.2.4. Notice that we denote the components
(λe)A : ExteA → A of the natural transformation λe by the same name, in order to avoid
double subscripts; the (co)domain should clarify each component.

Definition 5.2.6. Given an extension structure on C, we say that a map p : S → A in C is
Ext-inertial if there exists 0 , e ∈ E such that p factors through λe : Exte(A) → Ext0(A) � A.

For any box X ∈ WC, we say that a C-span (pi , po) : S → X̂in × X̂out is Ext-inertial if po is.
Denote Spnin

C
(X) ⊆ SpnC(X) the full subcategory of all Ext-inertial C-span systems on X.

We can also generalize totality and determinism, using the following lemma (compare
to Proposition 4.2.1).
Lemma 5.2.7. Let C be a regular category with extension structure Ext : Eop → End(C). Given

e ∈ E and p : S → A, define he : Exte S → Se to be the universal map to the pullback denoted Se
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in

(50)

ExteS

Se S

Exte A A

λe

Exte p

he

y

λ′e

pe p

λe

Then the following are equivalent:

(1) for all e ∈ E, the map he : ExteS → Se is a regular epimorphism (resp. a monomorphism,

an isomorphism);

(2) there exists 0 , d ∈ E such that for all d′ ≤ d, the map hd′ : Extd′S → Se is a regular

epimorphism (resp. a monomorphism, an isomorphism).

Proof. Clearly 1⇒2, so assume the latter holds for d , 0. By the assumption that E is a
Euclidean poset, it suffices to show that for any a , b ∈ E and p : S → A, if both ha and
hb have property P, where P is the property of being a regular epimorphism (resp. a
monomorphism, an isomorphism) then so does ha+b .

Consider the two diagrams below, where the left-hand diagram is as in (50):

ExtaS

Sa S

ExtaA A

ha

λ′a

pa

y
p

λa

Exta+bS

ExtbSa ExtbS

Sa+b Sb S

Exta+bA ExtbA A

Extb ha

Extbλa

h
Extb pa

y
hb

λ′a

pa+b

y
pb

λ′
b

y
p

(λa)Extb A (λb)A

For the right-hand diagram, begin by forming the two bottom pullback squares. By
definition of hb (50), we have Extb p � pb ◦ hb , so the vertical rectangle is an application
of Extb to the left-hand diagram, and is thus a pullback because Extb is regular. There is
an induced map h : ExtbSa → Sa+b , and we now have that each indicated square in the
diagram is a pullback.

Since Exta+b p � ExtbExta p � Extb pa ◦ Extb ha is the long vertical map, the universal
property of pullback implies that h ◦ Extb ha � ha+b . If ha and hb have property P then
so does ha+b because its factors h and Extb ha do: P is stable under pullbacks and Extb

preserves P. �

Definition 5.2.8. Let C be a regular category with extension structure Ext : Eop → End(C),
and let p : S → B be a morphism. We say that p is Ext-total (resp. Ext-deterministic, Ext-

total-determinstic) if the map he in (50) is a regular epimorphism (resp. a monomorphism,
an isomorphism) for all e ∈ E.

For any box X ∈ WC, we call an Ext-inertial span system (pi , po) ∈ Spnin
C
(X) (as in

Definition 5.2.6) Ext-total (resp. Ext-deterministic, Ext-total-deterministic) if pi is. Denote
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Spnt
C
(X), Spnd

C
(X), Spntd

C
(X) ⊆ Spnin

C
(X) the full subcategories of all Ext-total (resp. Ext-

deterministic, Ext-total-deterministic) span systems on X.

Example 5.2.9. For any ǫ ≥ 0 the functor Extǫ : Ĩnt → Ĩnt, as in Definition 3.2.8, is a
endomorphism of Ĩnt; we showed it is finitely complete in Lemma 3.2.9, and it is not hard
to check that it preserves epimorphisms (all of which are regular). The poset E � (�>0 , ≥)

of positive reals is a Euclidean poset, and the left restriction maps Extǫ → Extǫ′ for any
ǫ ≥ ǫ′ constitute an extension structure Ext : Eop → End(Ĩnt). This extension structure
can be lifted to one on Ĩnt/Sync. Namely, for every e ∈ �≥0, we define Exte(X → Sync)

to be the composite Exte X→ Exte(Sync)
λe
−→ Sync. There is also an extension structure on

ĨntN , such that Definition 5.2.5 generalizes the definitions in Section 4.4, by taking E � �.
In all the above cases, the notions of inertial, total, deterministic, and total-deterministic

morphisms and span systems generalize the older notions, as aimed.

Proposition 5.2.10. Let C be a regular category with an extension structure Ext : Eop → End(C).

Then there are symmetric lax monoidal functors

Spnin
C
, Spnt

C
, Spnd

C
, Spntd

C
: WC −→ Cat

defined as in Definitions 5.2.6 and 5.2.8 on any X ∈WC, which are subalgebras of SpnC (17).

Proof. The proof for inertiality closely follows that of Proposition 4.3.1, and totality and
determinism follow that of Proposition 4.3.2. �

These subfunctors constitute, on their own right, the mapping of a more general functor
on objects, namely regular categories. Towards that end, we define the following category.

Definition 5.2.11. Let (C, E, Ext) and (C′, E′, Ext′) be regular categories with extension
structures. A morphism between them is a pair (F, ν)where F : C→ C′ is a regular functor,
ν : E → E′ is a nontrivial morphism of Euclidean posets, and such that for all e ∈ E the
following diagram commutes (up to natural isomorphism)

C C

C′ C′

Exte

F F

Ext′
ν(e)

These form the category of regular categories with extensions, denoted RegCate , which
naturally maps to RegCate → RegCat ⊆ FCCat.

Theorem 5.2.12. The restricted functor Spn(−) : RegCate → RegCat ֒→ FCCat→WD-Alg

as in Proposition 2.4.4 has subfunctors

Spnin
(−)
, Spnt

(−)
, Spnd

(−)
, Spntd

(−)
: RegCate →WD-Alg

which map any object Ext : Eop → End(C) in RegCate to the respective algebras of Proposi-

tion 5.2.10.
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Proof. For their mapping on morphisms, given some (F, ν) : (C, E, Ext) → (C′, E′, Ext′) as
in Definition 5.2.11, we need to show that SpnF of (23) appropriately restricts, through its
component functors, to a 2-cell of the form

WC

Cat

WC′

Spnx
C

WF ⇓ Spnx
F

Spnx
C′

where x ∈ {i, t, d, td} stands for are all respective subalgebras of SpnC. Therefore it
suffices to show that in all three cases, a dashed arrow exists for any X ∈ WC, making it
commute in Cat:

(51)

Spnx
C
(X) Spnx

C′
(WFX)

SpnC(X) SpnC′(WFX)
(SpnF)X

For inertial machines, the existence of a dashed arrow is implied by the fact that ν is
nontrivial and FExte

∼
� Extν(e)F for all e ∈ E. For total (resp. deterministic) machines, the

existence of a dashed arrow is implied by the fact that Exte preserves regular epimorphisms
(resp. monomorphisms) for all e. Moreover, notice that if (SpnF)X is an embedding, then
clearly so is (Spnx

F)X . �

We can now apply Theorem 5.2.12 to the regular categories Ĩnt, ĨntN and Ĩnt/Sync
from Sections 3.2 and 3.3, and to the functorsΣ′

i
: ĨntN → Ĩnt/Sync (31) and ∆Sync! : Ĩnt→

Ĩnt/Sync (32), in order to obtain algebra maps between the total and deterministic vari-
ations of continuous, discrete and synchronous machines, as anticipated. Recall that as
defined in Chapter 4, the category of e.g. continuous machines is precisely the category
of Ĩnt-span systems SpnĨnt, denoted MchC; similarly for the rest of terminology.
Corollary 5.2.13. Let x ∈ {i, t, d, td} stand for inertial, total, deterministic, or total-deterministic.

There are algebra embeddings

WĨntN

Cat

WĨnt/Sync

Mchx
N

WΣ′
i
⇓ Spnx

Σ′
i

Mchx
Sync

WĨnt

Cat

WĨnt/Sync

Mchx
C

W∆Sync! ⇓ Spnx
∆Sync!

Mchx
Sync

which translate the specific classes of discrete machines into synchronous machines of the same

class, and similarly for continuous into synchronous.

Proof. First of all, notice that both Σ′
i
: ĨntN → Ĩnt/Sync and ∆Sync! : Ĩnt → Ĩnt/Sync

are inverse image parts of geometric morphisms, so they are regular functors. Clearly
(∆Sync!, id�≥0) is a map in RegCate , so the second algebra maps follow directly from
Theorem 5.2.12.
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Now the inclusion ν : � → �≥0 is a nontrivial morphism of Euclidean posets, so to
complete the proof, we need to show that Σ′

i
◦Extn

∼
� Extν(n) ◦Σ

′
i
for any n ∈ �. It suffices

to show this for n � 1, whence ν(n) � 1. Recall from Proposition 3.3.4 the formula

ΣiX(ℓ) ∼�
⊔

r∈[0,1)

X
(
⌈r + ℓ⌉

)

where the extra data of Σ′
i
X is just the mapΣX → Sync given by r. Thus the result follows

from the equation ⌈ℓ + r + 1⌉ � ⌈ℓ + r⌉ + 1. �

Notice that by construction of the above algebra morphisms, their components com-
mute with the embeddings of each subclass of machines into the general discrete or
continuous ones, as in (51).

Remark 5.2.14. It should be noted that the only reason we need to work with regular
categories and functors rather than finitely complete ones, is for totalness. We can replace
RegCat by FCCat and Theorem 5.2.12 will still hold for inertial, deterministic, and total-
deterministic machines. That is, in Definition 5.2.5, we could ask only that C be finitely
complete, and that endofunctors (C→ C) ∈ End(C) preserve finite limits. Similarly we can
drop condition that our finitely-complete functors F : C→ C′ are regular; going through
with appropriate changes to all constructions above would only exclude totalness results.

The above Corollary 5.2.13 successfully restricts the more general Corollary 5.2.1 to
the total and deterministic variations of continuous, discrete and synchronous machines.
Once again, (total, deterministic) synchronous machines end up being the common frame-
work where their discrete and continuous counterparts can be studied together. The final
proposition below ensures that contracted machines described in Section 4.5 fit in the
same picture.
Proposition 5.2.15. There exists a functor Cntr(−) : RegCat→WD-Alg making the diagram

WD-Alg

RegCat SMC

U
Cntr(−)

W(−)

commute. Moreover, there exists a natural transformation

FCCat

RegCat WD-Alg

Spn(−)

Cntr(−)

⇓Img

whose components translate each machine (therefore any total/deterministic subclass, Theorem 5.2.12)

into its ’maximal’ validated safety contract.

Proof. Similarly to Proposition 2.4.4, this functor maps any regular category C to its al-
gebra CntrC : WC → Cat of safety contracts essentially described in Proposition 4.5.3, i.e.

CntrC(X) :� SubC(X̂in × X̂out) for any box X ∈ WC. For any φ : X → Y in C, the functor
CntrC(φ) is given by the construction (46) (seen inside an arbitrary regular category), and
the symmetric lax monoidal structure follows since products of inclusions are inclusions.
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Now any regular functor F : C→ D preserves epi-mono factorization and pullbacks, so it
induces a map

WC

Cat

WD

CntrC

WF ⇓ CntrF

CntrD

with components functors (CntrF)X : CntrC(X) → CntrD(WF X) for any X ∈ WC being just
application of F on the respective subobjects.

Now the natural transformation Img has components wiring diagram algebra maps
ImgC : SpnC → CntrC, formed by the mappings

SpnC(X) � C/(X̂in × X̂out) → SubC(X̂in × X̂out) � CntrC(X)

which take the image of each S → X̂in × X̂out; these are functorial and symmetric lax
monoidal. Finally, naturality of Img

SpnC SpnD

CntrC CntrD

SpnF

ImgC ImgD

CntrF

is verified when we write the above commutativity inside WD-Alg, i.e. arrows as in (13):

WC WC

WD Cat WC Cat

WD WD

WF

SpnC

⇓ SpnF

SpnC

⇓ ImgC

SpnD

⇓ ImgD

� CntrC

WF ⇓ CntrF

CntrD CntrD

�

This last algebra map has the significant effect of translating machines of any kind
to a safety contract consisting of all its ‘valid’ behaviors, i.e. lists of all possible inputs
and outputs through time; see also Definition 4.5.1. As a result, whenever we have
an interconnection (11) of arbitrary systems, we could directly reason about the valid
behaviors of the composite system without composing the machines first.

Appendix A. Discrete Conduché fibrations

In this appendix, we discuss an equivalent view of interval sheaves from Section 3.2
in terms of discrete Conduché fibrations, elsewhere [BF00] called unique factorization lifting

functors. This view largely follows material found in [Joh99], and allows us to think
of continuous or discrete interval sheaves as categories equipped with ‘length’ functors,
called durations in [Law86], into the monoids (�≥0 , 0,+) and (�, 0,+) viewed as single-
object categories.
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A.1. Discrete fibrations, opfibrations, and Conduché fibrations. For any category C,
consider the diagram of sets and functions

C2 C1 C0◦
s

t

where C0 is the set of objects, C1 is the set of morphisms, and C2 is the set of composable
morphisms in C. The two functions C1 → C0 send a morphism f to its source (domain)
and its target (codomain); the three functions C2 → C1 send a composable pair (1 , f ) to
1, 1 ◦ f , and f . We have left out of our diagram the (i + 1) functions Ci → Ci+1 induced
by identity morphisms. For any functor F : C → D, there is a function Fi : Ci → Di for
each i ∈ {0, 1, 2}, and each is induced by the function F0 on objects and the function F1 on
morphisms.

Definition A.1.1. For a functor F : C→ D, consider the commutative diagrams

C1 C0

D1 D0

t

F1 F0

t

C1 C0

D1 D0

s

F1 F0

s

C2 C1

D2 D1

◦

F2 F1

◦

Then F is called a discrete fibration (resp. a discrete opfibration, a discrete Conduché fibration) if
the first (resp. second, third) square is a pullback.

The first two conditions clearly correspond to the well-known definitions of discrete
(op)fibrations. For example, the first one says that for every morphism h : x → y in the
base category D and every object d ∈ C above y, there exists a unique morphism c → d

which maps to h via F. The third one, on the other hand, says that given a morphism
f : c → d in the domain category C such that F f � v ◦ u factorizes in the base category
D, there exists a unique factorization f � h ◦ 1 with Fh � v and F1 � u. This is also
equivalent, [Law86], to the isomorphism of the factorization categories Fact( f ) ∼� Fact(F f )

from Definition 3.1.5.
Lemma A.1.2. If F is a discrete opfibration (resp. a discrete fibration), then it is a discrete Conduché

fibration.

Proof. The top, bottom, and front of the following cube are pullbacks, so the back is too:

C2 C1

C1 C0

D2 D1

D1 D0

�

Lemma A.1.3. If F : C→ D and G : D→ E are functors and G is a discrete Conduché fibration,

then G ◦ F is discrete Conduché if and only if F is. The same holds if we replace discrete Conduché

with discrete (op)fibrations.

Proof. This is just the pasting lemma for pullback squares. �
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Small discrete Conduché fibrations form a wide subcategory of the category of small
categories, DCF ⊆ Cat . In particular, DCF/A denotes the slice category of discrete
Conduché fibrations over any A ∈ Cat. Our main case of interest is the case A � R,
the additive monoid of reals, which is also the primary example in the development of
[Law86]. Hence a discrete Conduché fibration len : C→ R for any category C amounts to
a commutative diagram as to the left

(52)

C2 C1 C0

�≥0 ×�≥0 �≥0 {∗}

len×len

π1

◦

π2

len

s

t

!
π1

+

π2

!

!

C2 C1

�≥0 ×�≥0 �≥0

◦

len×len

y

len

+

for which the sub-diagram extracted to its right is a pullback in Set. In other words, every
morphism f in C has a length len( f ) ∈ �≥0 and, for any way to write len( f ) � ℓ1 + ℓ2 as a
sum of nonnegative numbers, there is a unique pair of composable morphisms f � f1 ◦ f2

in C having those lengths len( f1) � ℓ1 and len( f2) � ℓ2.
Proposition A.1.4. For any small category C, the slice category DCF/C is reflective in Cat/C.

Moreover, if F : C→ D is any functor, there is a diagram

DCF/C DCF/D

Cat/C Cat/D

UC⊥

ΣF

⊥

UD⊥

∆F

LC

F ◦ (−)

⊥

LD

F∗

which commutes for the right (and hence left) adjoints, where F∗ is given by pullback along F.

Proof. The existence of a left adjoint LC to the inclusion UC : DCF/C → Cat/C is proven
in [Joh99, Prop. 1.3], by showing that UC preserves all limits and satisfies a solution set
condition.

If A→ D is a discrete Conduché fibration, then its pullback F∗(A) → C is also discrete
Conduché by the pasting lemma for pullbacks. Hence ∆F is defined as the restriction of
F∗ on DCF/D, and F∗ ◦UD � UC ◦ ∆F .

Let F! � F ◦(−) : Cat/C → Cat/D be the left adjoint of F∗. We define ΣF : DCF/C →

DCF/D to be the composite LD◦F!◦UC. Using the fact that UC is fully faithful, a calculation
shows that ΣF is indeed left adjoint to ∆F :

[ΣFA,B] � [(LD ◦F! ◦UC)A,B] ∼� [UCA, (F
∗
◦UD)B] ∼� [UCA, (UC ◦∆F)B] � [A,∆FB]. �

A.2. The equivalence Ĩnt ∼� DCF/R. Having discussed discrete Conduché fibrations and
their properties, we are ready to show that the topos of interval sheaves is a special case.
The notion of a factorization-linear category C (Definition 3.1.5) turns out to capture all
the necessary structure for the slice category DCF/C to be a sheaf topos.
Theorem A.2.1. [Joh99, Prop. 3.6] Suppose that C is a factorization-linear category, let Ctw

be its twisted arrow category with its Johnstone coverage (Definition 3.2.1), and let C̃tw be the
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associated sheaf topos. Then there is an equivalence of categories

DCF/C ≃ C̃tw.

Corollary A.2.2. There is an equivalence between the topos of continuous sheaves (resp. discrete-

interval sheaves) and discrete Conduché fibrations over R (resp. over N):

(53) DCF/R ≃ Ĩnt and DCF/N ≃ ĨntN

Remark A.2.3. Note that Proposition A.1.4 does not follow from Proposition 3.3.3, even
though DCF/N ≃ ĨntN and DCF/R ≃ Ĩnt and the upper adjunctions are essentially the
same; this is because discrete Conduché fibrations and sheaves give different perspectives.
Categories emphasize composition, and adding the Conduché condition enforces that
morphisms can be factorized. Conversely, presheaves emphasize restriction, and adding
the sheaf condition enforces that sections can be glued.

These two perspectives compare as follows. Let wGrphdenote the category of weighted
graphs (with nonnegative edge weights), i.e. objects are G � {E ⇒ V, E → �≥0}. If we
define I to be the category with objects �≥0 ⊔ {v} and two morphisms sℓ , tℓ : v → ℓ for
each ℓ ∈ �≥0, then we have wGrph ∼� Psh(I).

There is a functor I→ Int sending v 7→ 0 and ℓ 7→ ℓ for all ℓ ∈ �≥0, and sending sℓ 7→

Tr0 and tℓ 7→ Trℓ , the left and right endpoints. This induces a left Kan extension between
the presheaf categories, wGrph→ Psh(Int). We also have a left adjoint wGrph→ Cat/R,
given by the free category construction, whose functor to R sends a path to the sum of its
weights. The diagram of left adjoints commutes:

Grph Psh(IntN)

wGrph Psh(Int)

Cat/N DCF/N ≃ ĨntN

Cat/R DCF/R ≃ Ĩnt

A.3. The Conduché perspective on interval sheaves and machines. The equivalence (53)
between interval sheaves and discrete Conduché fibrations is in particular expressed as
follows. To every Int-sheaf A, we may associate a category A called its associated category,
as well as a functor len : A → R called its length functor, similarly to (52). Explicitly, the
object set of A is the set ob A :� A(0) of germs in A; morphisms in A are sections a ∈ A(ℓ)

of arbitrary length; composition is given by gluing sections. The functor len assigns to
each morphism a its length len(a) :� ℓ. Moreover, sheaf morphisms F : A→ B correspond
to length-preserving functors F : A→ B over R.

Under the above correspondence, we can view continuous machines, Definition 4.1.1,
as

Mch(A, B) � Ĩnt/(A × B) ≃
(
DCF/R

) / (
A×B

len

−−→R

)
∼
� DCF/A × B,

namely themselves as discrete Conduché fibrations over the product of the associated
categories of the input and output interval sheaves.

Moreover, the notions of totality and determinism for sheaf morphisms defined by
Proposition 4.2.1 also have equivalent expressions in the language of discrete Conduché
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fibrations. Let p : S→ A be a sheaf morphism, let p : S→ A be the associated functor and
s the source map. Then p is total (resp. deterministic) if and only if the induced function
h

S1

S′ S0

A1 A0

s

p1

h

y
p0

s

is surjective (resp. injective); this is precisely condition (2).
Notice that the above conditions of p could in fact be defined for an arbitrary functor

F : C → D. In the spirit of Definition A.1.1, one could define F to be a (discrete) epi-

opfibration (resp. mono-opfibration) if h : C1 → D1×D0 C0 is surjective (resp. injective). These
express whether for each morphism in the base category and object above, say, the target,
there exists at least one, or maximum one, appropriate lifting in the domain category. In
the case h is bĳective, we recover the notion of a discrete opfibration.

Thus, p is total (resp. deterministic) in the sense of Definition 4.2.2 if and only if p is an
epi-opfibration (resp. mono-opfibration). More informally, if and only if for all functors
a , b as shown in the diagram on the left (resp. right), there exists a dotted lift:

•1

•1 •2

X

A

i1 p

∀a

∀b

∃

•1
•2

•2

•1 •2

X

A

i2
p

∀a

∀b

∃

where i1 and i2 are the obvious functors preserving object labels. Finally, p is total and
deterministic if and only if p is a discrete opfibration.
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