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ABELIAN CATEGORIES ARISING FROM CLUSTER TILTING SUBCATEGORIES

YU LIU AND PANYUE ZHOU

Abstract. For a triangulated category T , if C is a cluster-tilting subcategory of T , then the quotient
category T /C is an abelian category. Under certain conditions, the converse also holds. This is an very
important result of cluster-tilting theory, due to Koenig-Zhu and Beligiannis.

Now let B be a suitable extriangulated category, which is a simultaneous generalization of triangulated
categories and exact categories. We introduce the notion of pre-cluster tilting subcategory C of B, which
is a generalization of cluster tilting subcategory. We show that C is cluster tilting if and only if B/C is
abelian.

1. Introduction

Cluster tilting theory gives a way to construct abelian categories from some triangulated categories.
Let T be a triangulated category and C a cluster tilting subcategory of T . Then the quotient category
T /C is abelian. This is due to Koenig and Zhu [KZ, Theorem 3.3]. Cluster tilting theory is also permitted
to construct abelian categories from some exact categories. Demonet and Liu [DL, Theorem 3.2] provided
a general framework for passing from exact categories to abelian categories by factoring out cluster tilting
subcategories.

We recall the definition of cluster tilting subcategories, which was introduced by Iyama [I, Definition
2.2]. Let T be a triangulated category or exact category and C a subcategory of T . C is called cluster
tilting if it satisfies:

• C is contravariantly finite and covariantly finite;
• C = C⊥1 = ⊥1C, where C⊥1 = {M ∈ B | Ext1(C,M) = 0} and ⊥1C = {M ∈ B | Ext1(M, C) = 0}.

Now we consider the opposite direction: if we have an ideal quotient T /D which is abelian, can we get any
information of D? When does D become a cluster tilting subcategory? Beligiannis proved the following
characterization of cluster tilting subcategories which complements, and was inspired by Koenig and Zhu.

Theorem 1.1. [B, Theorem 7.3] Let T be connected triangulated category with a Serre functor S and C
be a non-zero functorially finite rigid subcategory of B. Then the following statements are equivalent:

(a) C is cluster tilting;
(b) C is a maximal extension closed subcategory of T such that SC = C[2];
(c) T /C is abelian and SC = C[2].

It is very natural to ask if the similar theory holds on exact category, which also plays an important
role in representation theory. For example the extension closed subcategories of module categories of
k-algebras (where k is a field) are exact categories. Since we usually do not have Serre functors on exact
categories, we are also interested in the case for triangulated categories which do not have Serre functors.
Hence in this article, we will study a similar case as [B] on a more generalized setting: a category called
extriangulated category. The notion of an extriangulated category was introduced in [NP] (please see
section 2 for detailed definition of extriangulated category), which is a simultaneous generalization of
exact category and triangulated category. For examples of extriangulated categories which are neither
exact categories nor triangulated categories, please see [NP, ZZ]. We can also define cluster tilting
subcategory on extriangulated categories. Liu and Nakaoka [LN, Theorem 3.2] showed that any quotient
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2 YU LIU AND PANYUE ZHOU

of a extriangulated category modulo a cluster tilting subcategory carried an induced abelian structures,
which generalizes both [KZ, Theorem 3.3] and [DL, Theorem 3.2].

In this article, let (B,E, s) be a Krull-Schmidt extriangulated category over a field k. Any subcategory
we discuss in this article will be full and closed under isomorphisms.

Remark 1.2. If B is a k-linear, Hom-finite extriangulated category with split idempotents, then it is a
Krull-Schmidt category.

Now we introduce the notion of pre-cluster tilting subcategory.

Definition 1.3. A subcategory B′ of B is called contravariantly finite if any object in B admits a right
B′-approximation. Moreover, it is called strongly contravariantly finite if any object in B admits a right
B′-approximation which is also a deflation. Dually we can define strongly covariantly finite.

Definition 1.4. We call C a pre-cluster tilting subcategory of B if it satisfies the following conditions:

• C is closed under direct sums and summands;
• C is rigid, that is to say, E(C, C) = 0;
• C is strongly contravariantly finite and strongly covariantly finite.
• C⊥1 = ⊥1C. where C⊥1 is the subcategory of objects X ∈ B satisfying E(C, X) = 0 and ⊥1C is the

subcategory of objects X ∈ B satisfying E(X, C) = 0.

A subcategory C of B is called cluster tilting if C is a pre-cluster tilting and C = C⊥1 = ⊥1C.

We give an example of pre-cluster tilting subcategory.

Example 1.5. Let Λ be the the k-algebra given by the quiver
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with relation x3 = 0. Then the AR-quiver of B := modΛ is given by
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where the first and the last column are identical. We denote by “◦” in the AR-quiver the indecomposable
objects belong to a subcategory and by “·” the indecomposable objects do not belong to it. Through direct
calculation, we know that
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is pre-cluster tilting.

Cotorsion pair is a generalization structure of cluster tilting subcategory on both triangulated and
exact categories [N1, DL], now it is also defined on the extriangulated categories [NP]. We recall its
definition, which will be used frequently.

Definition 1.6. [NP, Definition 2.1] Let U and V be two subcategories of B which are closed under direct
summands. We call (U ,V) a cotorsion pair if it satisfies the following conditions:

(a) E(U ,V) = 0.
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(b) For any object B ∈ B, there exist two E-triangles

VB → UB → B
δ

99K, B → V B → UB σ
99K

satisfying UB, U
B ∈ U and VB , V

B ∈ V.

By definition of a cotorsion pair, we can immediately conclude:

Proposition 1.7. Let U be a subcategory of B. Then (U ,U) is a cotorsion pair if and only if U is a
cluster tilting subcategory.

For any subcategory U , we call U ∩ ⊥1U = the coheart of U . We say U is maximal if U is maximal
among those with the same coheart.

Now we assume B has enough projectives and enough injectives. We denote by P the subcategory of
projective objects and by I the subcategory of injective objects. Under this assumption, if we have a
pre-cluster tilting subcategory C, then we can get two cotorsion pairs (C, C⊥1) and (C⊥1 , C) (see Lemma
2.13).

Our first main result is the following.

Theorem 1.8. The maps
U 7→ C := U ∩ ⊥1U and C 7→ U := ⊥1C

give mutually inverse bijections between:

• Maximal subcategories U which admits two cotorsion pairs (U ,V), (V ,U).
• Pre-cluster tilting subcategories C.

In order to introduce the second main result, we need the following definition.

Definition 1.9. Let Bj, j ∈ J be extriangulated subcategories of B. We call that B is a direct sum of
extriangulated subcategories Bj , j ∈ J if it satisfies the following conditions:

• Any object M ∈ B is a direct sum of finitely many objects Mj ∈ Bj;
• Hom(Bi,Bj) = 0, for any i 6= j.

In this case, we write B =
⊕

j∈J
Bj. An extriangulated category is called connected if it can not be

written as direct sum of two non-zero extriangulated subcategories.

By [NP, Proposition 3.30], B/(P∩I) is still an extriangulated category. We will show the second main
result of this article.

Theorem 1.10. Let B/(P ∩ I) be connected and (U ,V), (V ,U) be cotorsion pairs on B. Let C = U ∩ V,
if C ⊃ P ∩ I, then the following statements are equivalent.

(a) C is cluster tilting;
(b) If (S,R), (R,S) are cotorsion pairs such that S ∩ R = C, then S = C;
(c) B/C is abelian.
(d) B/U and B/V are abelian.

Theorem 1.8 and Theorem 1.10 is a generalization of related results of Koenig-Zhu [KZ, Theorem 3.3],
Demonet-Liu [DL, Theorem 3.2] and Beligiannis [B, Theorem 7.3].

This article is organized as follows. In Section 2, we review some elementary definitions and facts of
extriangulated category that we need. In Section 3, we prove our first and second main result.

2. Preliminaries

Let us briefly recall the definition and basic properties of extriangulated categories from [NP]. Through-
out this paper, we assume that B is an additive category.

Definition 2.1. Suppose that B is equipped with an additive bifunctor E : Bop × B → Ab, where Ab is
the category of abelian groups. For any pair of objects A,C ∈ B, an element δ ∈ E(C,A) is called an
E-extension. Thus formally, an E-extension is a triplet (A, δ, C). For any A,C ∈ C, the zero element
0 ∈ E(C,A) is called the spilt E-extension.
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Let δ ∈ E(C,A) be any E-extension. By the functoriality, for any a ∈ B(A,A′) and c ∈ B(C′, C), we
have E-extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C′, A).

We abbreviately denote them by a∗δ and c∗δ. In this terminology, we have

E(c, a)(δ) = c∗a∗δ = a∗c
∗δ

in E(C′, A′).

Definition 2.2. Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be two pair of E-extensions. A morphism (a, c) : δ →
δ′ of E-extensions is a pair of morphisms a ∈ B(A,A′) and c ∈ B(C,C′) in B, satisfying the equality

a∗δ = c∗δ′.

We simply denote it as (a, c) : δ → δ′.

Definition 2.3. Let δ = (A, δ, C) and δ′ = (A′, δ′, C′) be any pair of E-extensions. Let

C
ιC−−−→ C ⊕ C′ ι

C′

←−−− C′

and

A
pA

−−−→ A⊕A′ p
A′

←−−− A′

be coproduct and product in B, respectively. Remark that, by the additivity of E, we have a natural
isomorphism

E(C ⊕ C′, A⊕A′) ≃ E(C,A) ⊕ E(C,A′)⊕ E(C′, A)⊕ E(C′, A′).

Let δ ⊕ δ′ ∈ E(C ⊕ C′, A ⊕ A′) be the element corresponding to (δ, 0, 0, δ′) through this isomorphism.
This is the unique element which satisfies

E(ιC , pA)(δ ⊕ δ′) = δ, E(ιC , pA′)(δ ⊕ δ′) = 0, E(ιC′ , pA)(δ ⊕ δ′) = 0, E(ιC′ , pA′)(δ ⊕ δ′) = δ′.

Definition 2.4. Let A,C ∈ B be any pair of objects. Two sequences of morphisms in B

A
x
−→ B

y
−→ C and A

x′

−→ B′ y′

−→ C

are said to be equivalent if there exists an isomorphism b ∈ B(B,B′) which makes the following diagram
commutative.

A

B

B′

C

x
77♦♦♦♦♦♦♦♦

y

''❖❖
❖❖

❖❖❖
❖

x′ ''❖❖
❖❖

❖❖
❖

y′

77♦♦♦♦♦♦♦

b≃

��

We denote the equivalence class of A
x
−→ B

y
−→ C by [A

x
−→ B

y
−→ C].

Definition 2.5.

(1) For any A,C ∈ B, we denote as

0 = [A

[
1

0

]

−→ A⊕ C
[0 1]
−→ C].

(2) For any [A
x
−→ B

y
−→ C] and [A′ x′

−→ B′ y′

−→ C′], we denote as

[A
x
−→ B

y
−→ C]⊕ [A′ x′

−→ B′ y′

−→ C′] = [A⊕A′ x⊕x′

−→ B ⊕B′ y⊕y′

−→ C ⊕ C′].

Definition 2.6. Let s be a correspondence which associates an equivalence class s(δ) = [A
x
−→ B

y
−→ C]

to any E-extension δ ∈ E(C,A). This s is called a realization of E, if it satisfies the following condition

(⋆). In this case, we say that the sequence A
x
−→ B

y
−→ C realizes δ, whenever it satisfies s(δ) = [A

x
−→

B
y
−→ C].
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(⋆) Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, with

s(δ) = [A
x
−→ B

y
−→ C] and s(δ′) = [A′ x′

−→ B′ y′

−→ C′].

Then, for any morphism (a, c) : δ → δ′, there exists b ∈ B(B,B′) which makes the following
diagram commutative.

A B C

A′ B′ C′

x // y //

a

��
b
��

c

��
x′

// y′

//

In the above situation, we say that the triplet (a, b, c) realizes (a, c).

Definition 2.7. Let B,E be as above. A realization of E is said to be additive, if it satisfies the following
conditions.

(i) For any A,C ∈ B, the split E-extension 0 ∈ E(C,A) satisfies

s(0) = 0.

(ii) For any pair of E-extensions δ ∈ E(C,A) and δ′ ∈ E(C′, A′), we have

s(δ ⊕ δ′) = s(δ)⊕ s(δ′).

Definition 2.8. [NP, Definition 2.12] A triplet (B,E, s) is called an extriangulated category if it satisfies
the following conditions.

(ET1) E : Bop × B → Ab is an additive bifunctor.
(ET2) s is an additive realization of E.
(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, realized as

s(δ) = [A
x
−→ B

y
−→ C], s(δ′) = [A′ x′

−→ B′ y′

−→ C′].

For any commutative square

A B C

A′ B′ C′

x // y //

a

��
b
��

x′

// y′

//

in B, there exists a morphism (a, c) : δ → δ′ satisfying cy = y′b.
(ET3)op Dual of (ET3).
(ET4) Let δ ∈ E(D,A) and δ′ ∈ E(F,B) be E-extensions realized by

A
f
−→ B

f ′

−→ D and B
g
−→ C

g′

−→ F

respectively. Then there exist an object E ∈ B, a commutative diagram

A B D

A C E

F F

f // f ′

//

g

��
d

��h // h′

//

g′

��
e

��

in B, and an E-extension δ′′ ∈ E(E,A) realized by A
h
−→ C

h′

−→ E, which satisfy the following
compatibilities.

(i) D
d
−→ E

e
−→ F realizes f ′

∗δ
′,

(ii) d∗δ′′ = δ,
(iii) f∗δ

′′ = e∗δ′.
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(ET4)op Dual of (ET4).

Remark 2.9. Note that both exact categories and triangulated categories are extriangulated categories,
see [NP, Example 2.13] and extension-closed subcategories of extriangulated categories are again extrian-
gulated, see [NP, Remark 2.18] . Moreover, there exist extriangulated categories which are neither exact
categories nor triangulated categories, see [NP, Proposition 3.30] and [ZZ, Example 4.14].

We will use the following terminology.

Definition 2.10. [NP] Let (B,E, s) be an extriangulated category.

(1) A sequence A
x
−−→ B

y
−−→ C is called a conflation if it realizes some E-extension δ ∈ E(C,A). In

this case, x is called an inflation and y is called a deflation.

(2) If a conflation A
x
−−→ B

y
−−→ C realizes δ ∈ E(C,A), we call the pair (A

x
−−→ B

y
−−→ C, δ) an

E-triangle, and write it in the following way.

A
x
−→ B

y
−→ C

δ
99K

We usually do not write this “δ” if it is not used in the argument.

(3) Let A
x
−→ B

y
−→ C

δ
99K and A′ x′

−→ B′ y′

−→ C′
δ′

99K be any pair of E-triangles. If a triplet (a, b, c)
realizes (a, c) : δ → δ′, then we write it as

A
x //

a

��

B
y //

b
��

C
δ //❴❴❴

c

��
A′ x′

// B′
y′

// C′ δ′ //❴❴❴

and call (a, b, c) a morphism of E-triangles.

(4) An object P ∈ B is called projective if for any E-triangle A
x
−→ B

y
−→ C

δ
99K and any morphism

c ∈ B(P,C), there exists b ∈ B(P,B) satisfying yb = c. We denote the subcategory of projective
objects by P ⊆ B. Dually, the subcategory of injective objects is denoted by I ⊆ B.

(5) We say that B has enough projective objects if for any object C ∈ B, there exists an E-triangle

A
x
−→ P

y
−→ C

δ
99K satisfying P ∈ P. Dually we can define B has enough injective objects.

(6) Let X be a subcategory of B. We say X is extension-closed if a conflation A ֌ B ։ C satisfies
A,C ∈ X , then B ∈ X .

In this article, we always assume B has enough projectives and enough injectives.

By [NP], we give the following useful remark, which will be used later in the proofs.

Remark 2.11. Let A
a // B

b // C //❴❴❴ and X
x // Y

y // Z //❴❴❴ be two E-triangles. Then

(a) In this following commutative diagram

X
x //

f

��

Y

g

��

y // Z

h
��

//❴❴❴

A
a // B

b // C //❴❴❴

f factors through x if and only if h factors through b.
(b) In the following commutative diagram

A
a //

s

��

B

r

��

b // C

t

��

//❴❴❴

X
x //

f

��

Y

g

��

y // Z

h
��

//❴❴❴

A
a // B

b // C //❴❴❴
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fs = 1A implies B is a direct summand of C ⊕ Y and C is a direct summand of Z ⊕B; ht = 1C
implies B is a direct summand of A⊕ Y and A is a direct summand of X ⊕B.

(c) If we have b : B
d1−→ D

d2−→ C and d2 : D
d3−→ B

b
−→ C, then B is a direct summand of A⊕D.

If we have a : A
e1−→ E

e2−→ B and e1 : A
a
−→ B

e3−→ E, then B is a direct summand of C ⊕ E.

We first recall the following proposition ([LN, Proposition 1.20]), which (also the dual of it) will be
used many times in the article.

Proposition 2.12. Let A
x
−→ B

y
−→ C

δ
99K be any E-triangle, let f : A → D be any morphism, and let

D
d
−→ E

e
−→ C

f∗δ
99K be any E-triangle realizing f∗δ. Then there is a morphism g which gives a morphism

of E-triangles

A
x //

f

��

B
y //

g

��

C
δ //❴❴❴

D
d

// E
e

// C
f∗δ

//❴❴❴

and moreover, the sequence A
( fx )−→ D ⊕B

( d −g )
−→ E

e∗δ
99K becomes an E-triangle.

We prove the following lemma related to cotorsion pairs.

Lemma 2.13. If C is rigid and strongly contravariantly finite, then (C, C⊥1) is a cotorsion pair.

Proof. Since B has enough injectives, any object A ∈ B admits an E-triangle A // I // B //❴❴❴

where I is injective. Since C is strongly contravariantly finite, the object B admits a conflation

B1
// C0

f0 // B //❴❴❴

where f0 is a right C-approximation of B. The rigidity of C implies B1 ∈ C
⊥1 . We have the following

commutative diagram

A

��

A

��
B1

// X //

��

I //❴❴❴

��
B1

// C0

��✤
✤

✤

f0 // B

��✤
✤

✤
//❴❴❴

where X ∈ C⊥1 . Hence by definition, the pair (C, C⊥1) is a cotorsion pair. �

3. Main results

Let A be an additive category and X be a subcategory of A. We denote by A/X the category whose
objects are objects of A and whose morphisms are elements of HomA(A,B)/X (A,B) for A,B ∈ A, where
X (A,B) the subgroup of HomA(A,B) consisting of morphisms which factor through an object in X . Such

category is called the quotient category of A by X . For any morphism f : A→ B in A, we denote by f
the image of f under the natural quotient functor A → A/X .

We first introduce some notions.
Let B′ and B′′ be two subcategories of B, denote by CoCone(B′,B′′) the subcategory of objects X

admitting an E-triangle X // B′ // B′′ //❴❴❴ where B′ ∈ B′ and B′′ ∈ B′′. We denote by

Cone(B′,B′′) the subcategory of objects Y admitting an E-triangle B′ // B′′ // Y //❴❴❴ where
B′ ∈ B′ and B′′ ∈ B′′.
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Let ΩB′ = CoCone(P ,B′) and ΣB′ = Cone(B′, I). We write an object D in the form ΩB if it admits

an E-triangle D // P // B //❴❴❴ where P ∈ P . We write an object D′ in the form ΣB′ if it

admits an E-triangle B′ // I // D′ //❴❴❴ where I ∈ I.
In the rest of this article, let (U ,V), (V ,U) be cotorsion pairs, we denote U ∩ V by C. We denote

subcategory {direct sums of objects in U and objects in V} by K, and we say K = U + V . Let H =
CoCone(C,U) ∩ Cone(V , C), H/C is called the heart of (U ,V), it is abelian by [LN]. Let H be the

cohomological functor defined in [LN], it sends an E-triangle A
f // B

g // C //❴❴❴ to an exact

sequence H(A)
H(f)
−−−→ H(B)

H(g)
−−−→ H(C) in H/C, moreover, H(B) = 0 if and only if B ∈ K.

Since U ,V are extension closed subcategories of B, they are extriangulated subcategories. Moreover,
C is the subcategory of enough projective-injective objects in U and V , according to [NP], U/C and V/C
are triangulated categories.

Lemma 3.1. H is closed under direct summands.

Proof. Since H = CoCone(C,U) ∩ Cone(V , C), we will show that CoCone(C,U) is closed under direct
summands. By dual, we can show that Cone(V , C) is closed under direct summands.

Assume we have an E-triangle

X ⊕ Y
(x y )

// C1
// U2

//❴❴❴

where C1 ∈ C and U2 ∈ U , then x is an inflation and it admits an E-triangle

X
x // C1

c // U //❴❴❴ .

Since E(U2, C1) = 0, there is a morphism f : C1 → C1 such that f(x y) = (x 0). In particular, we have
fx = x and fy = 0. Hence we have the following commutative diagram

X
x //

( 10 )
��

C1
c // U

a

��

//❴❴❴

X ⊕ Y
(x y )

//

( 1 0 )

��

C1

f

��

// U2

b

��

//❴❴❴

X
x // C1

c // U //❴❴❴ .

It follows that there exists a morphism d : U → C1 such that 1U − ba = cd. Hence U is a direct summand
of C1 ⊕ U2 ∈ U and then U ∈ U . This implies X ∈ CoCone(C,U). �

Proof of Theorem 1.8:

Proof. We show (C,K) is a cotorsion pair, then dually (K, C) is also a cotorsion pair.
Let B be an object in B, since (V ,U) is a cotorsion pair, B admits a commutative diagram of E-triangles

ΩUB
//

f

��

P //

��

UB
//❴❴❴

B // VB
// UB

//❴❴❴
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where UB ∈ U and VB and P ∈ P . We get H(f) is an epimorphism. ΩUB admits the following
commutative diagram

ΩUB
//

��

P //

��

UB
//❴❴❴

U //

��

C //

��

UB
//❴❴❴

V

σ

��✤
✤

✤ V

��✤
✤

✤

where U ∈ U and V ∈ V . From the second column we get C = P ⊕ V ∈ V . From the second row we
get C ∈ U , hence C ∈ C and V is a direct summand of C, then V ∈ C. Now B admits the following
commutative diagram:

ΩUB
//

f

��

U //

��

V
σ //❴❴❴

B g
// K

h
// V

f∗σ //❴❴❴

By applying H we get the following exact sequence H(ΩB)
H(f)
−−−→ H(B)

H(g)
−−−→ H(K)

H(h)
−−−→ H(V ) = 0.

Since H(f) is an epimorphism, we have H(g) = 0, hence H(K) = 0, which implies K ∈ K. B admits

an E-triangle ΩB // PB
// B //❴❴❴ where PB ∈ P , by the previous argument, ΩB admits an

E-triangle ΩB // K ′ // C′ //❴❴❴ where K ′ ∈ K and C′ ∈ C, hence we get the following commu-
tative diagram

ΩB

��

// K ′

��

// C′ //❴❴❴

PB
//

��

PB ⊕ C′ //

��

C′ //❴❴❴

B

��✤
✤

✤ B

��✤
✤

✤

Since PB ⊕ C′ ∈ C and E(C,K) = 0, by definition (C,K) is a cotorsion pair.
Hence C is pre-cluster tilting. Now if U is maximal, U has to be K.
On the other hand, if C is pre-cluster tilting, by Lemma 2.13 and its dual, we have cotorsion pairs
(K, C), (C,K) where K is maximal by the previous argument. �

Lemma 3.2. Let A
f
−→ B be a morphism in B such that A,B do not have direct summand in V. Then

(a) If f is a monomorphism in B/V and B ∈ U , then A ∈ U .
(b) If f is an epimorphism in B/V and A ∈ U , then B ∈ U .

Proof. Since A admits an E-triangle A // V A // UA //❴❴❴ where V A ∈ V and UA ∈ U , and B

admits an E-triangle UB
// VB

// B //❴❴❴ where UB ∈ U and VB ∈ V , we have the following
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commutative diagram

UB
// K ′

g′

//

��

A //

f

��

V A

��

// UA

UB
// VB

// B g
// K // UA.

We only prove (a), since (b) is similar.
(a) If f is a monomorphism in B/V , then g′ = 0, which implies g′ factors through V . If B ∈ U , we have

an exact sequence H(K ′)
H(g′)=0
−−−−−→ H(A)

H(f)
−−−→ H(B) = 0, which implies H(A) = 0, hence A ∈ K. Since

K = U + V and A has no direct summand in V , we get A ∈ U . �

Proposition 3.3. If B/V is abelian, then U/C is abelian.

Proof. Note that a morphism in U factors through V if and only if it factors through C. Since B/V is
abelian, then by Lemma 3.2, U/C has kernels and cokernals. Now it is enough to show any monomorphism
in U/C is also a monomorphism in B/V , the case for epimorphism is by dual.

Let k : U1 → U2 be a monomorphism in U/C, it has a kernel f : X → U1 in B/V . By Lemma 3.2,

X ∈ U , then kf = 0 implies f = 0, which means k is a kernel in U/C. Then k is the kernel of its cokernel
l : U2 → Y in B/V . By Lemma 3.2, Y ∈ U , hence k is the kernel some morphism in U/C. This shows
that U/C is abelian. �

Remark 3.4. Since U/C is also triangulated, it is semi-simple, which means any monomorphism is a
section and any epimorphism is a retraction.

Corollary 3.5. If B/V is abelian, assume that f : U1 → U2 is a morphism where U1, U2 are indecom-
posable objects in U , then f is an isomorphism in B or factors through C.

Proof. If f 6= 0, then f = hg where 0 6= g : U1 → B is an epimorphism and 0 6= h : B → U2 is a
monomorphism. By Lemma 3.2, B lies in U . Since U/C is semi-simple, g splits, then B ≃ U1 in B/V .

By the same method we can get B ≃ U2. Hence f : U1
≃
−→ U2 in B/V . Since U1, U2 are indecomposable,

then f is an isomorphism in B. �

Let K̃ (resp. Ũ , Ṽ) be subcategory of objects which do not have direct summand in C.

Lemma 3.6. Let D be a rigid subcategory, D
s // C

t // K //❴❴❴ be an E-triangle where K ∈ K̃
and t be a right C-approximation (resp. P or I-approximation). Then

(a) If K is indecomposable, we have D = C0 ⊕X where C0 ∈ C (resp. P or I) and X is indecom-
posable and X does not belong to C. Moreover, if t is right minimal, then D = X.

(b) K is indecomposable if D is indecomposable.

Proof. We only show the case when C ∈ C, the others are similar. Since K ∈ K̃, D does not belong to C.
(a) Let X be an indecomposable direct summand of D that does not belong to C, we have the following

commutative diagram

X
x //

α

��

C
c // K ′

a

��

//❴❴❴

D
s //

β

��

C

f

��

t // K

b
��

//❴❴❴

X
x // C

c // K ′ //❴❴❴ .

where βα = 1X . This diagram implies that K ′ is a direct summand of K ⊕ C. If K ′ is also a direct
summand of C, the first row splits, hence X ∈ C, a contradiction. This means K ′ = K⊕C′ where C′ ∈ C.
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Hence we have the following commutative diagram

D
s //

β′

��

C
t //

c

��

K
(

1K
0

)

��

//❴❴❴❴

X
x //

α′

��

C
c // K ⊕ C′

( 1K 0 )

��

//❴❴❴

D
s // C

t // K //❴❴❴❴

This diagram implies that D is a direct summand of C ⊕ X . Since D does not belong to C, we have
D = C0 ⊕X .

If t is right minimal, from the diagram above get c is an isomorphism, hence α′β′ is also an isomorphism.
Since X is indecomposable, D is also indecomposable and D = X .

(b) If t = 0, we have that C is a direct summand of D, hence D ≃ C ∈ C, a contradiction. We can
assume

C
t=

(

t1
t2

)

−−−−−→ K1 ⊕K2 = K

where K1 is indecomposable and t1 6= 0, then we have the following commutative diagram

D
s //

α1

��

C

(

t1
t2

)

// K1 ⊕K2

( 1K1
0 )

��

//❴❴❴

D1
//

β1

��

C
t1 //

��

K1

(

1K1

0

)

��

//❴❴❴❴

D
s // C

(

t1
t2

)

// K1 ⊕K2
//❴❴❴

If β1α1 is invertible, then D1 ≃ D ⊕D0. By (a) we have D1 ≃ X1 ⊕C0 where X is indecomposable and
C0 ∈ C, hence D is a direct summand of X1 ⊕ C0, which implies X1 ≃ D. Then D1 ≃ D ⊕ C0. Now we
have the following commutative diagram.

D ⊕ C0

(

s 0
0 1C0

)

//

γ1 ≃

��

C ⊕ C0

(

t1 0
t2 0

)

//

��

K1 ⊕K2

η1

��

//❴❴❴

D1
//

γ2 ≃

��

C
t1 //

��

K1

η2

��

//❴❴❴❴

D ⊕ C0(
s 0
0 1C0

)

// C ⊕ C0 (

t1 0
t2 0

)

// K1 ⊕K2
//❴❴❴

where γ2γ1 = 1D⊕C0
, then 1K−η2η1 factors through C⊕C0, hence K is a direct summand ofK1⊕C⊕C0.

Since K ∈ K̃, we have K = K1, hence it is indecomposable. If β1α1 is not invertible, since EndB(D) is
local, there is a natural number n such that (β1α1)

n = 0, this implies

0 =
(
1K1

0
0 0

)n ( t1
t2

)
=

(
1K1

0
0 0

) (
t1
t2

)
=

(
t1
0

)
,

hence t1 = 0, a contradiction. �

The following lemma plays an important role in the rest of the paper.

Lemma 3.7. If B/V is abelian and Ũ 6= 0, then any indecomposable object K ∈ Ũ admits the following
two E-triangles:

(a) K ′ // P // K //❴❴❴ ,
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(b) K // I // K ′′ //❴❴❴

where P, I ∈ P ∩ I and K ′ and K ′′ ∈ Ũ are indecomposables.

Proof. Let A ∈ Ũ be an indecomposable object, it admits an E-triangle KA
// CA

// A //❴❴❴

where CA ∈ C and KA ∈ U , by assumption we get KA /∈ C. Let K ∈ Ũ be an indecomposable direct
summand of KA, let KA = K ⊕K1. Then we have the following commutative diagram.

KA
// CA

��

// A

a1

��

//❴❴❴❴

K ⊕K1

( 1 0 )

��

// IKA

��

// ΣKA

a2

��

//❴❴❴

K // IK // ΣK //❴❴❴

where β is split epimorphism and IKA
, IK ∈ I. By Lemma 3.6, K admits an E-triangle

K ′ ⊕ C′
1

// C′ // K //❴❴❴

where C′, C′
1 ∈ C and K ′ ∈ Ũ is indecomposable. By the dual of Lemma 3.6, K ′ admits an E-triangle

K ′ // IK′
// X ⊕ I ′ //❴❴❴ where X is indecomposable and IK′ , I ′ ∈ I. Then X admits an E-

triangle KX
// IK′

// X //❴❴❴ . Hence we have the following commutative diagram

KX
//

��

IK′
//

��

X

( 10 )
��

//❴❴❴❴

K ′ //

��

IK′
// X ⊕ I ′

( 1 0 )

��

//❴❴❴

KX
// IK′

jX // X //❴❴❴❴

Now KX is a direct summand of K ′ ⊕ IC′ , hence KX ∈ U . Since C′
1 also admits an E-triangle

C′
1

// I ′1 // ΣC′
1

//❴❴❴ where I ′1 ∈ I, let I ′ ⊕ ΣC′
1 = D,then we get the following commuta-

tive diagram

K ′ ⊕ C′
1

// C′ //

��

K
(

kX

k2

)

��

//❴❴❴❴

K ′ ⊕ C′
1

// IK′ ⊕ I ′1 // X ⊕D //❴❴❴

where morphism kX does not factors through I, otherwise
(
k1

k2

)
factors through I and then K ′ is a direct

summand of C′, a contradiction. Then we have the following commutative diagram

KA
// CA

��

// A

a1

��

δ //❴❴❴❴

K ⊕K1

( 1 0 )

��

// IKA

��

// ΣKA

a2

��

//❴❴❴

K //

kX

��

IK //

��

ΣK

a3

��

//❴❴❴

X // IX
j // ΣX

σ //❴❴❴
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where IX ∈ I. Let a = a3a2a1, we claim that a does not factors through j. Otherwise, a factors through
j, then (kX , 0) factors through CA. Hence it factors through jX , this means k1 factors through I, a
contradiction.
Since a∗σ = kx∗δ, we have the following commutative diagram

KA

kX

��

// CA
cA //

c

��

A
δ //❴❴❴

X
g // B

��

f // A

a

��

a∗σ //❴❴❴

X // IX
j

// ΣX
σ //❴❴❴

(I) We show B ∈ C.

Let f : B
l
−→ D

k
−→ A be an epic-monic factorization of f in B/V , then we have f − kl : B

v1−→ VA
v2−→ A

where VA ∈ V . Since E(VA,KA) = 0, we have v2 : VA
v3−→ CA

cA−−→. Hence f − lk = v2v1 = cAv3v1. By
Lemma 3.2, D ∈ U . Then by Corollary 3.5, D ∈ C or D ≃ A.

If D ≃ A, the f is an epimorphism. If f is also a monomorphism, it is an isomorphism since B/V is

abelian. Since A ∈ Ũ is indecomposable, we get f is a split epimorphism, which implies a factors through
j, a contradiction. Let r : R → B be the kernel of f , since fg = 0, there is a morphism s : X → R such
that rs = g. On the other hand, we have the following commutative diagram

R
c1 //

r

��

V

c2

��
X g

// B
f

// A //❴❴❴

where V ∈ V . Since E(V,KA) = 0, we have c2 : V
c3−→ CA

cA−−→ A. Hence f(r − cc3c1) = 0, then there
is a morphism t : R → X such that gt = r. Hence rst = gt = r, which implies st = 1R. Since X is
indecomposable, s is an isomorphism, hence g is a monomorphism. This implies kX = 0, kX factors
through V , then it factors through CA. Hence A is a direct summand of B, which implies a factors
through j, a contradiction.

If D ∈ C, then we have k : D
d
−→ CA

cA−−→ A, hence we have a morphism cd : D → B such that
fcd = k. This implies f(1B − cdl − cv3v1) = 0, hence there is a morphism m : B → X such that
gm = 1B − cdl − cv3v1. Hence 1B = gm and g is a split epimorphism. Since X is indecomposable,

g : X
≃
−→ B in B/V if B does not belong to V . This means g is a split monomorphism. Then we still

have A is direct summand of B and then a factors through j, a contradiction. Hence B ∈ V . From the
following commutative diagram

KA

kX

��

// CA
cA //

��

A //❴❴❴

X
g //

��

B

��

f // A //❴❴❴

KA
// CA cA

// A //❴❴❴

we get KA is a direct summand of X ⊕ CA, since KA /∈ C, X is direct summand of KA, hence X ∈ U
and B ∈ U ∩ V = C.

(II) We show B ∈ P .
If f factors through an object P ∈ P , then by Remark 2.11, B is a direct summand of X ⊕ P , since

X /∈ C, B is a direct summand of P , hence B ∈ P . We will show f factors through P .
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For an object B, there exists an E-triangle ΩB // PB
// B

δB //❴❴❴ where PB ∈ P , then we
have the following commutative diagram

ΩB

y1

��

ΩB

f ′

��

ΩB

��
KX

y // Y
y2 //

y3

��

ΩA
p //

h′

��

PB

��

// A
δA //❴❴❴

KX
iX // IC′

// X // B

δB

��✤
✤

✤
f // A

where f ′
∗δB = f∗δA. Hence we have the following diagram

ΩB
pf ′

//

f ′

��

PB

��

// B

f

��

δB //❴❴❴

ΩA // PB
// A

δA //❴❴❴

Moreover, y1 is an epimorphism and by Lemma 3.6, ΩA is indecomposable in B/V .
If f ′ = 0, then f ′ factors through pf ′, hence f factors though PB.

If f ′ 6= 0, then y2 6= 0. Consider its epic-monic factorization Y
e
−→ E

m
−→ ΩA. We have ey = 0, then

there is an object VY ∈ V such that ey : KX
s1−→ VY

s2−→ E. Since X ∈ U , E(X,VY ) = 0, then there is
a morphism i : IC′ → VY such that s1 = iiX , we can replace e by e − s2iy3 = e′. then e′y = 0, hence
there is a morphism m′ : ΩA → E such that m′y2 = e′. Since m′me = e, we have m′m = 1E . Since
the endomorphism (in B/V) algebra of ΩA is local, then either mm′ or 1ΩA −mm′ is invertible. In the

first case m is invertible, then f ′ is epic, hence h′ = 0. This implies h′ factor through PB, then A is a
direct summand of B, a contradiction. In the second case, we have (1ΩA −mm′)f ′ = 0, hence f ′ = 0, a
contradiction. This implies f factors through P .

Now we prove that an indecomposable objectK ∈ Ũ admits an E-triangles K ′ // P // K //❴❴❴

where P ∈ P andK ′ ∈ Ũ . Dually we can show it admits an E-triangle K // I // K ′′ //❴❴❴ where

I ∈ I and K ′′ ∈ Ũ .
Now by this argument K ′ also admits an E-triangles K ′ // I ′ // K ′′′ //❴❴❴ where I ′ ∈ I and

K ′′′ ∈ Ũ . Then we have the following commutative diagram

K ′ // P

��

// K

��

//❴❴❴

K ′ // I ′ //

��

K ′′′

��

//❴❴❴

K ′ // P // K //❴❴❴

Then P is a direct summand of K ′ ⊕ I ′, since K ∈ Ũ , P is a direct summand of I ′. Hence P ∈ P ∩ I.
Dually we have I ∈ P ∩ I. �

We can prove the same results for V , hence we have the following corollary.

Corollary 3.8. If B/V and B/U are abelian and K̃ 6= 0, then any indecomposable object K ∈ K̃ admits
the following two E-triangles:

(a) K ′ // P // K //❴❴❴ ,
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(b) K // I // K ′′ //❴❴❴

where P, I ∈ P ∩ I and K ′,K ′′ ∈ K̃ are indecomposables.

Let K̂ be the subcategory of objects which are direct sums of objects in K̃ and P ∩ I. Let HC =
CoCone(C, C), note that HC/C is the heart of cotorsion pair (C,K). Then we have the following corollary.

Lemma 3.9. If any indecomposable object K ∈ K̃ admits the following two E-triangles:

(a) K ′ // P // K //❴❴❴ ,

(b) K // I // K ′′ //❴❴❴

where P, I ∈ P ∩ I and K ′,K ′′ ∈ K̃ are indecomposables, then B/(P ∩ I) = K̂/(P ∩ I)⊕HC/(P ∩ I).

Proof. Let A,K be indecomposable objects where A ∈ H and K ∈ K̃, then A admits an E-triangle

A
c // C1 // C2 //❴❴❴ where C1, C2 ∈ C. K admits E-triangles K ′ // P

p // K //❴❴❴ and

K
i // I // K ′′ //❴❴❴ where P, I ∈ P ∩ I, K,K ′′ ∈ K̃.

Let f : A → K be a morphism, then there is a morphism r : C1 → K such that f = rc, c factors

through p, hence HomB/(P∩I)(HC , K̂) = 0.
Let g : K → A be a morphism, since we have the following commutative diagram

ΩC1

��

ΩC1

��
ΩC2

��

// P
p //

��

C2 //❴❴❴

A
c //

��✤
✤

✤ C1 //

��✤
✤

✤ C2 //❴❴❴

Then we have the following commutative diagram

K

g

��✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷

3

!!

i // I

1

��

2

��

// K ′′

4=c′

��
ΩC2

��

// P

��

p
// C2

A
c // C1

The numbers for the morphisms denote the order that we get them. Since K ′′ also admits an E-triangle

K ′′ i′′ // I ′′ // K ′′′ //❴❴❴

where I ′′ ∈ P ∩ I and K ′′′ ∈ K̃, we get c′ factors through I ′′, then c′ factors through p, hence morphism

3 factors through I, then g factors through I. This means HomB/(P∩I)(K̂,HC) = 0.
Assume that X is an indecomposable object, it admits an E-triangle

X // KX ⊕ C0 // CX //❴❴❴

where KX ∈ K̃ and C0, CX ∈ C. By Lemma 3.7, KX admits an E-triangle

K0
// P0

// KX //❴❴❴
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where K0 ∈ K̃ and P0 ∈ P . Hence we have the following commutative diagram

K0

k0

��

K0

��
Y

��

// P0 ⊕ C0 //

��

CX //❴❴❴

X //

��✤
✤

✤ KX ⊕ C0 //

��✤
✤

✤ CX //❴❴❴

where Y ∈ HC , we have k0 : K0
j1
−→ I

j2
−→ Y where I ∈ P ∩ I, then j1 factors through k0, hence Y is a

direct summand of X ⊕ I. If Y is a direct summand of I, we have X ∈ K. Otherwise Y = X ⊕ I ′. which
implies X ∈ HC by Lemma 3.1. �

Lemma 3.10. If B/(P ∩ I) = K̂/(P ∩ I)⊕HC/(P ∩ I), then K̂/(P ∩ I),HC/(P ∩ I) are extriangulated
subcategories of B/(P ∩ I).

Proof. It is enough to show that K̂ and HC are extension closed.

Let X
x // Y

y // Z //❴❴❴ be an E-triangle where X,Z ∈ K̂. We already have Y ∈ K. If Y has
a indecomposable direct summand C ∈ C. Since HomB/(P∩I)(C,Z) = 0, then C is a direct summand of
some X ⊕ I where I ∈ P ∩ I. Hence C ∈ P ∩ I.

Now let X
x // Y

y // Z //❴❴❴ be an E-triangle where X,Z ∈ HC . We have Y = Y1 ⊕ Y2 where

Y1 ∈ HC and Y2 ∈ K̃. Since HomB/(P∩I)(Y2, Z) = 0, Y2 is a direct summand of some X ⊕ I ′ where
I ′ ∈ P ∩ I. Hence Y2 = 0 and Y ∈ HC . �

Proposition 3.11. Let C be a pre-cluster tilting subcategory of B, then the following statements are
equivalent.

(a) C is the category of projective-injective objects of B.
(b) K/C = B/C.
(c) HC = C.

Proof. (b) =⇒ (c): HC ⊆ K, and HC ∩K = C, hence HC = C.
(c) =⇒ (a): For any object B we have H(B) ∈ HC/C = 0, hence B ∈ K. We know that C is the

category of projective-injective objects of K = B.
(a) =⇒ (b): By definition (C,B) is a cotorsion pair, hence B = K and then K/C = B/C. �

Now we can prove Theorem 1.10.

Proof. By Theorem 1.8, (C,K), (K, C) are cotorsion pairs.
(a) =⇒ (b): when C is cluster tilting, we have C ⊆ U ⊆ K = C, hence C = U .
(b) =⇒ (a): we have cotorsion pairs (K, C), (C,K), hence K = C, which implies C is a cluster tilting

subcategory of B.
(a) =⇒ (d): Since C is cluster tilting, then K = C and U = C = V , by [LN, Theorem 3.2], we know

that B/U = B/V = B/C are abelian.

(d) =⇒ (a): Assume K̃ 6= 0, then by Lemma 3.10, H/(P ∩ I) is an extriangulated subcategory of
B/(P ∩ I). Since C/(P ∩ I) 6= 0, by Proposition 3.11, H/(P ∩ I) is non-zero. Now by Lemma 3.7 and
Lemma 3.10, B/(P ∩ I) is a direct sum of two non-zero extriangulated subcategories, a contradiction.

(a) =⇒ (c) is by [LN, Theorem 3.2].
(c) =⇒ (a): let V = C, the other arguments are the same as “(d) =⇒ (a)”. �

This theorem immediately yields the following important conclusion.
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Corollary 3.12. Let B/(P ∩ I) be connected and C a pre-cluster tilting subcategory of B. Then C is
cluster tilting if and only if B/C is abelian.

Proof. This follows that Proposition 1.7 and Theorem 1.10. �

Theorem 1.10 generalizes [B, Theorem 7.3] for the following reason: If B is a triangulated category with
shift functor [1], then P = 0 = I. The category B has a Serre functor S, then C⊥1 = ⊥1(S[−2]C). The
subcategory C of B is functorially finite and rigid, by Lemma 2.13 we have two cotorsion pairs (C, C⊥1)
and (⊥1C, C). Note that if SC = C[2], then C⊥1 = ⊥1C, which implies C is pre-cluster tilting.
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