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WORD OPERADS AND ADMISSIBLE ORDERINGS

VLADIMIR DOTSENKO

ABSTRACT. We use Giraudo’s construction of combinatorial operads from monoids to

offer a conceptual explanation of the origins of Hoffbeck’s path sequences of shuffle

trees, and use it to define new monomial orders of shuffle trees. One such order is

utilised to exhibit a quadratic Gröbner basis of the Poisson operad.

INTRODUCTION

In [5], the notion of a shuffle operad was introduced and utilised to develop a for-

malism of operadic Gröbner bases. The latter is indispensable for purposes of linear,

homological, and homotopical algebra for operads. In order to use operadic Gröbner

bases, one has to come up, for each specific application, with a monomial order that ex-

tracts the “correct” leading terms from the defining relations. In the decade that elapsed

since dissemination of [5], most applications of shuffle operads have been using the

path-lexicographic order introduced in that paper, or its minor variations. The purpose

of this short note is to offer a conceptual explanation of the origins of that order which

also leads to a plethora of new orders which have remained unnoticed until now. In

particular, we demonstrate how one of such orders can be used to exhibit a quadratic

Gröbner basis of the Poisson operad; a construction of that sort is required as an inter-

mediate step in one of the arguments in a recent preprint [9].

The main observation at the heart of this note is that the combinatorics of path se-

quences in free shuffle operads [3, 5, 8] can be naturally derived from the the construc-

tion of operads from monoids due to Giraudo [7] (related to previous work of Mén-

dez and Nava [12] and also Berger and Moerdijk [2]). Our definition of an order on

the monoid of “quantum monomials” appears to be new; besides the application we

present, monomial orders based on this monoid can be used to prove freeness of certain

operadic modules, leading to functorial PBW theorems for various universal enveloping

algebras [4, 6].

The word operad construction below applies to either of the three commonly used

types of operads: symmetric, nonsymmetric, and shuffle. We refer to symmetric op-

erads as operads, while the two other types of operads always appear with a specific

adjective. The reader is invited to consult [3, 10] for background information on operad

theory. Most of our constructions utilise operads in the symmetric monoidal category

(Set,×); in the only situation when one has to consider k-linear operads, we state it

explicitly. We denote by µτ(−;−, . . . ,−) the structure maps of a given operad (here τ is

a 2-level tree, and the type of the tree is prescribed by the type of the operad that we

consider, i.e. symmetric, nonsymmetric, or shuffle).

Acknowledgements. The author is grateful to Anton Khoroshkin and Pedro Tamaroff

for useful discussions.

1. WORD OPERADS

The following definition is essentially due to Giraudo [7]; we use the language of

species [1] for clarity.
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Definition 1.1 (Word operad). Suppose that (M ,⋆) is a monoid. The species WM is

defined by the formulaWM (I ) = M I . For each map f : I →n, we have a map

γ f : WM (n)×WM ( f −1(1))×·· ·×WM ( f −1(n))→WM (I )

defined by the formula

γ f (a;b1, . . . ,bn )(i ) := a( f (i ))⋆b f (i)(i ).

By a direct inspection, these maps satisfy the properties required of compositions in an

operad. The resulting operad is called the word operad of M . We can also consider the

associated shuffle word operadWsh
M

, and the associated nonsymmetric word operadWns
M

.

The two crucial combinatorial objects associated to monomials in free shuffle op-

erads are path sequences and permutation sequences [3, 5]. Let us explain how those

arise naturally in the context of word operads.

Definition 1.2. Let X be a sequence of sets with X (0) =∅. We denote

X :=
⊔

n≥1

X (n),

the union of all these sets taken together. We may consider the free shuffle operad

T sh(X ) and the free monoid T (X ). The map of operads

θ : T sh(X )→Wsh
T (X )

is the unique morphism of shuffle operads extending the sequence of maps

θn : X (n)→ T (X )n

with (θn (x))k = x for all 1 ≤ k ≤ n. For an element T ∈ T (X ), the element θ(T ) is called

the path sequence of T .

By a direct inspection, for an element T ∈ T (X )(n), the sequence θn (T ) coincides

with the path sequence of a tree tensor defined by Hoffbeck [8], see also [3, 5]; for exam-

ple,

θ3













1
✽✽

3
✆✆/.-,()*+b
✿✿✿

2
✆✆'&%$ !"#a













= (ab, a, ab).

Our set-up somewhat clarifies the key feature of Hoffbeck’s construction, informally ex-

pressed by the statement “path sequences of tree tensors behave well under operadic

compositions”.

Definition 1.3. Let X be a sequence of sets with X (0) =∅. The map of operads

σ : T sh(X )→ Asssh

is the unique morphism of shuffle operads extending the sequence of maps

σn : X (n)→ Ass(n)

with (σn(x)) = id. For an element T ∈ T (X ), the element σ(T ) is called the permutation

of T .

By a direct inspection, for an element T ∈ T (X )(n), the elementσn (T ) coincides with

the permutation sequence of a tree monomial defined in [5]; for example,

σn













1
✽✽

3
✆✆/.-,()*+b
✿✿✿

2
✆✆'&%$ !"#a













=

(

1 2 3

1 3 2

)

.
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Remark 1.4. Neither the map σ nor the map θ are equivariant with respect to the sym-

metric group actions: they only make sense in the universe of shuffle operads.

The reason permutations of shuffle trees are useful is that the map from the free shuf-

fle operad into the Hadamard product of the operadsWT (X ) and Ass is injective [3, 5].

This allows one to reduce the more intricate combinatorics of trees to various familiar

features of words and permutations.

To state the main result of this section, we need the definition of an ordered shuffle

operad.

Definition 1.5 (Ordered shuffle operad). A shuffle operad O is said to be ordered, if

each component Γ(n) is equipped with a partial order ≺ for which every structure map

µT is an increasing function of its arguments: if we replace one of the arguments of any

structure map µT (−;−, . . . ,−) by an element from the same component of O which is

greater with respect to ≺, the result is also greater with respect to ≺.

For instance, the two-level tree
1 3 2 4

❄❄❄ ⑧⑧⑧

✴✴ ✎✎
✴✴ ✎✎

represents the composite α(β1(a1, a3),β2(a2, a4)) in a shuffle operad. One of the impli-

cations of the above definition is that if β1 ≺β′
1, then we must have

α(β1(a1, a3),β2(a2, a4)) ≺α(β′
1(a1, a3),β2(a2, a4)).

A particular case of an ordered set operad is an ordered monoid: an ordered monoid

is an ordered operad concentrated in arity one. More classically, one can say that an

ordered monoid is a monoid (M ,⋆) equipped with a partial order ≺ for which a ≺ a′

implies a⋆b ≺ a′
⋆b and b⋆a ≺ b⋆a′. It turns out that theW-construction satisfies the

following remarkable property.

Proposition 1.6. Suppose that M is an ordered monoid. ThenWsh
M

with the lexicographic

order of tuples is an ordered shuffle operad.

Proof. The proof of a very particular case of this result (where both the set operad and

the monoid are free) given by Hoffbeck [8, Prop. 3.5] works verbatim in full generality.

Conveniently, even the terminology used in that proof “word sequence” suits our for-

malism perfectly. �

2. QUANTUM MONOMIALS AND THE POISSON OPERAD

The toy example we consider in this section is not very deep, but it indicates a pos-

sible universe of applications of word operads. Namely, we shall use word operads to

show that the Poisson operad has a quadratic Gröbner basis. Of course, the Poisson

operad is one of the most famous operads ever considered, and both obvious applica-

tions of Gröbner bases (determining normal forms and proving Koszulness) do not give

anything new for it. However, much more complicated operads [4, 6] can be studied by

similar methods; also, results of [9, Sec. 3.3] substantially rely on a version of this result.

Recall that the Poisson operad Pois is generated by a symmetric binary operation

a1, a2 7→ a1 · a2 and a skew-symmetric binary operation a1, a2 7→ {a1, a2} which satisfy

the identities

(a1 ·a2) ·a3 = a1 · (a2 ·a3),

{a1, a2 ·a3} = {a1, a2} ·a3 + {a1, a3} ·a2,

{a1, {a2, a3}} = {{a1, a2}, a3}− {{a1, a3}, a2}.

It is well known that the free Poisson algebra on a vector space V is isomorphic to

S(Lie(V )), which leads to a convenient choice of normal forms in the Poisson operad: it
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has a basis made of commutative associative products (made of the operation a1, a2 7→

a1 ·a2) of Lie monomials (made of the operation a1, a2 7→ {a1, a2}). However, detecting

those normal forms on the level of Gröbner bases for operads is a tricky task. To explain

why it is the case, let us consider the second relation, the “Leibniz rule” relating the two

operations. In the associated shuffle operad, we have three relations arising from that

one:

{a1, a2 ·a3} = {a1, a2} ·a3 + {a1, a3} ·a2,

−{a1 ·a3, a2} =−{a1, a2} ·a3 +a1 · {a2, a3},

−{a1 ·a2, a3} =−a1 · {a2, a3}− {a1, a3} ·a2.

If we were to find a Gröbner basis leading to the normal forms mentioned above, each

of these relations must have its left-hand side as the leading term. Known orderings of

monomials in the free operad fail to accomplish that, yet it is possible to find such an

ordering. This is exactly where we shall use word operads.

Theorem 2.1. There exists an ordering of shuffle tree monomials in two binary generators

µ and λ (encoding our two binary operations µ : a1, a2 7→ a1 ·a2 and λ : a1, a2 7→ {a1, a2})

for which the left-hand sides of the three Leibniz rules above are the leading monomials.

For that ordering, the defining relations of the Poisson operad form a quadratic Gröbner

basis.

Proof. Let us consider the monoid of “quantum monomials”QM = 〈x, y, q〉/(xq−qx, yq−

q y, y x−x yq). It is immediate to see that each element of that monoid has a unique rep-

resentative of the form xk y l qm where k, l ,m ≥ 0.

We define an order on these representatives by putting xk y l qm ≺ xk ′

y l ′ qm′

if k >

k ′ or k = k ′ and l < l ′, or k = k ′ and l = l ′ and m < m′. (Note the “counterintuitive”

comparison k > k ′.)

Lemma 2.2. This order makes QM into an ordered monoid.

Proof. We should show that for any a,b,c ∈QM, whenever a ≺ b, we have ac ≺ bc and

ca ≺ cb. Let a = xk y l qm , b = xk ′

y l ′ qm′

, c = xk ′′

y l ′′qm′′

. Note that we have

ac = xk+k ′′

y l+l ′′ qm+m′′+lk ′′

,

bc = xk ′+k ′′

y l ′+l ′′ qm′+m′′+l ′k ′′

,

ca = xk+k ′′

y l+l ′′ qm+m′′+kl ′′ ,

cb = xk ′+k ′′

y l ′+l ′′ qm′+m′′+k ′l ′′ .

Thus, if a ≺ b because k > k ′, we have ac ≺ bc and ca ≺ cb, as k + k ′′ > k ′ + k ′′. If

a ≺ b because k = k ′ and l < l ′, we have ac ≺ bc and ca ≺ cb, as k +k ′′ = k ′ +k ′′ and

l + l ′′ < l ′ + l ′′. Finally, if a ≺ b because k = k ′ and l = l ′ but m < m′, we have ac ≺ bc

and ca ≺ cb, as k +k ′′ = k ′+k ′′, l + l ′′ = l ′+ l ′′, while m +m′′+ lk ′′ < m′+m′′+ l ′k ′′ and

m +m′′+kl ′′ < m′+m′′+k ′l ′′. �

We now consider the map ψ from T sh(µ,λ) into the word operad Wsh
QM

defined as

follows:

ψ(λ) := (y, y), ψ(µ) := (x, x).

This makes T sh(µ,λ) into an ordered operad: to compare two shuffle trees T1 and T2,

we compare ψ(T1) and ψ(T2) inWsh
QM

. Let us extend this partial order to a full monomial

order arbitrarily, e.g. via a superposition with the path-lexicographic order. We note that

the left-hand sides of the three Leibniz rules above are the leading monomials. Indeed,

this follows from the fact that each of the elements {x, x y} is smaller than each of the

elements {y, y x} in QM.
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To prove that we obtain a Gröbner basis, we note that the associativity relations for

µ form a Gröbner basis for any ordering, and so does the Jacobi identity for λ. By our

choice of leading terms of the Leibniz rules, we already ensure that commutative as-

sociative products of Lie monomials are normal forms. Thus, no further elements can

possibly belong to the reduced Gröbner basis, since that would create extra linear de-

pendencies between the normal forms. �
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