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Abstract In this paper a modelling approach to the dynamics

within a multi-agent organisation is presented. A declarative,

executable specification language for dynamics within an or-

ganisation is proposed as a basis for simulation. Moreover,

to be able to specify and analyse dynamic properties within

an organisation, another declarative specification language

is put forward, which is much more expressive than the exe-

cutable language for simulations. Supporting tools have been

implemented that consist of a software environment for sim-

ulation of organisation models and a software environment

for analysis of dynamic properties against traces of dynamics

within an organisation.

Keywords Organisation modelling . Dynamics .

Simulation

1 Introduction

Cooperative activities of multiple agents often have complex

dynamics, both in human society and in the non-human, com-

putational case. Organisational structure is used as a means

to handle these complex dynamics. It provides a structuring

of the processes in such a manner that an agent involved

can function in a more appropriate manner. For example,

at least partly the behavioural alternatives for the roles that
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other agents play within the organisation are known. Put

differently, the flow of dynamics within a given organisa-

tional structure is much more predictable than in an entirely

unstructured situation. This assumes that the organisational

structure itself is relatively stable, i.e., the structure may

change, but the frequency and scale of change are assumed

low compared to the more standard flow of dynamics through

the structure. Both types of dynamics, dynamics within an

organisational structure, and dynamics of an organisational

structure are quite relevant to the area of organisation mod-

elling. In the research reported in this paper, for reasons of

focussing the former type of dynamics is addressed, leaving

the latter type for future research.

Modelling of dynamics within an organisation has at least

two different aspects of use. First, models for the dynam-

ics can be specified to be used as a basis for simulation,

also called executable models. These types of models can be

used to perform (pseudo-)experiments. Second, modelling

dynamics can take the form of specification of dynamic prop-
erties of the organisation. These properties can be used, for

example, in evaluation of sample behaviours of (real or sim-

ulated) organisations. These two different uses of models of

dynamics impose different requirements on the languages in

which these models are to be expressed.

A language for executable organisation models should be

formal, and not too complex, to avoid computational com-

plexity. Expressivity can be limited to the aim of execution.

Software tools to support such a language serve as simulation
environment. Examples can be found in [27, 29].

A language to specify and analyse dynamic properties of

the flow within an organisation, on the other hand, should be

sufficiently advanced to express various dynamic properties

that can be identified. Expressivity should not be too limited;

executability, however, is not required for such a language.

What is important, though, is that properties specified in
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Fig. 1 An example AGR organisation structure

such a language can be checked for a given sample behaviour

(e.g., a simulation run) without much work, preferably in an

automated manner. Moreover, it is useful if a language to

specify dynamic properties provides possibilities for further

analysis of logical relationships between these properties,

and enables formulation of theories about dynamics within

an organisation. For these reasons, also a language to specify

properties of the dynamics within an organisation should

be formal, and at least partly supported by software tools

(analysis environment).
In this paper, as an extension of the Agent-Group-Role

(AGR) organisation modelling approach (formerly called the

meta-model Aalaadin) introduced in [8] and extended in [11],

two different declarative specification languages for dynam-

ics within an organisation are put forward. It is shown how

these languages can be used for analysis and simulation of

these dynamics, which is illustrated for an example organi-

sation. In Section 2 the AGR modelling approach for organ-

isational structures is briefly introduced. To obtain a useful

specification of an organisation model not only the structural

aspects, but also the dynamics within the organisation have to

be taken into account. Thus, according to our view, an organ-

isation model, on the one hand consists of a specification of

the organisation structure as covered, for example, by AGR

(see Section 2), but on the other hand of a specification of

the dynamics in the form of dynamic properties at different

levels in the organisation. The latter form of specification is

discussed in Section 3.

In Section 4 it is shown how an expressive specification

language can be used to specify these dynamic properties

in a declarative manner. In Section 5, a less expressive exe-

cutable specification language is introduced which allows for

declarative specification of organisation simulation models.

In Section 6 the analysis approach and its supporting soft-

ware environment is discussed for a case study. Section 7 ad-

dresses the simulation environment, for the same case study.

In Section 8 the analysis approach is extended by proposing

a method to perform diagnosis of disfunctioning of the dy-

namics within an organisation. Section 9 concludes the paper

by a discussion.

2 The Agent/Group/Role organisation modelling
approach

To model an organisation, the Agent/Group/Role (AGR) ap-

proach, adopted from [8, 11] is used. The organisational
structure is the specification of a specific multi-agent organi-

sation based on three aggregation levels: (1) the organisation
as a whole, which consists of (2) a set of groups, and each

group consists of (3) the roles in that group. Furthermore,

connections between roles and between groups are possible;

see Fig. 1 for a simple example. Here the smaller ovals indi-

cate roles and the bigger ovals indicate groups. Connections

are indicated by the two types of arrows (dashed indicates

an intergroup interaction, not dashed indicates a transfer be-

tween roles). The information on which role belongs to which

group, is depicted by drawing the smaller role oval within

the bigger group oval. The organisation is realized by agents
allocated to roles. Notice that roles and groups can be consid-

ered as functions of an organisation, whereas agents are the

entities realising these functions. At a functional level the or-

ganisation is described in a generic manner, abstracting from

these agents.

As a simple example, a factory is considered that is or-

ganised at the highest aggregation level according to two

divisions: division A that produces certain components and

division B that assembles these components to (composite)

products. At one aggregation level lower the division A is

organised according to two departments: department A1 (the

work planning department for division A) and department A2

(component production department). Similarly, division B is

organised according to two department roles: department B1

(for assembly work planning) and department B2 (product

assembly department).

The two divisions are modeled as groups (depicted by

the larger ovals), with the departments as their roles (de-

picted by smaller ovals within larger ones). A third group,

the Connection Group C, models the cooperation between

the two divisions. This group consists of the two roles ‘di-

vision A representative’ and ‘division B representative’. In-
tergroup role interactions (depicted by pairs of dotted lines)
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Fig. 2 The AGR-organisation structure for the bank Call Center organisation

are modeled between the role ‘department A1’ in the divi-

sion A group and the role ‘division A representative’ within

the connection group, and between the role ‘department B1’

in the division B group and the role ‘division B representa-

tive’ within the connection group. Intragroup role transfers
model communication between the two roles within each of

the groups (depicted by the arrows). Such transfers have des-

tination roles (indicated by the arrow points) and source roles

(no pointing).

Within this paper examples are taken from a case study

that has been performed in the context of the Rabobank,

one of the largest banks in the Netherlands, see [5]. The

case study addressed design and analysis of a multi-agent

approach for a bank service provision problem using a Call

Centre. However, in the reference mentioned no organisation

modelling approach such as AGR was incorporated. From an

organisation modelling perspective, an organisation model

can be defined using the following two groups: Client Service

(sometimes also called Open Group) and Distribution. The

roles within the groups are as follows:

Client Service: Receptionist, Client

Distribution: Distributor, Participants

Within the Client Service group the service requests of

clients are identified in an interaction between Receptionist

and Client (this takes place within the Call Centre). See

Fig. 2; in this figure� the big ovals denote group instances,� small grey ovals denote role instances within a group in-

stance,

� arrows denote interactions between role instances in one
group instance, and� dashed vertical lines denote relations between role in-

stances in different group instances.

Within a Distribution group, an identified service request

is allocated in mutual interaction between Distributor and

Participants. Actually this process takes place in two steps,

making use of different instantiations of the Distribution

group: once in a first line Distribution group (relating a

Call Centre agent to local bank work manager agents) and

once in second line Distribution groups (work manager

and employees within a local bank). The agents with role

Participant in the first line Distribution group have the role

of Distributor in a second line Distribution group. Similarly

an agent with role Receptionist in the Client Service group

has a role of Distributor in the first line Distribution group.

At the level of the organisation model, this means that

between these pairs of roles within the organisation model,

intergroup role relations are defined.

3 Modelling dynamics within an organisation

An organisation model according to the AGR-approach dis-

cussed above specifies an organisation structure, but provides

no dynamics. In a sense it abstracts from the dynamics. How-

ever, to be able to analyse and/or simulate dynamics within an

organisation, as part of an organisation model, also a specifi-

cation of properties of the dynamics within the organisation is

needed, for short called dynamic properties. Dynamic prop-

erties relate states of the organisation over time. Usually one
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particular dynamic property refers not to the whole state but

to a limited set of specific elements or aspects of these states.

This set can be viewed as the scope of a dynamic property. De-

pending on the property at hand, this scope can be more broad

(or global), or more narrow (or local). For example, global

properties of an organisation as a whole may refer to a num-

ber of different aspects (sometimes such a property is called

integrative), whereas properties on the interaction between

two specific roles within an organisation will refer only to as-

pects related to these roles (e.g., a role interaction protocol).

Related to these differences between types of properties,

partly following and extending [10, 23], in this section six dif-

ferent types of dynamic properties are distinguished: single

role behaviour properties, intragroup role interaction prop-

erties, intragroup transfer properties, global group proper-

ties, intergroup role interaction properties, global organisa-

tion properties. Each of these types is discussed below in

more detail. A specification language for such properties is

discussed in Section 4. How these properties can be used in

an analysis of the dynamics within an organisation is ad-

dressed in Section 6. How to obtain some of these properties

in executable format is addressed in Section 5, and how to

use these executable dynamic properties for simulation can

be found in Section 7.

To be able to specify ongoing interaction between two

roles for which multiple appearances exist, the notion of role
instance is used. This notion still abstracts from the agent

realising the role as actor, but enables to distinguish between

appearances of roles. For example, the role ‘secret agent’

has role instances like ‘secret agent 001’ to ‘secret agent

009’, and the role instance ‘secret agent 007’ is sometimes

realised by the agent James Bond, sometimes by the agent

Jack Jackson (his predecessor), and so on. If R is a role,

then a role instance for R is denoted by I:R; so, for example,

007:secret agent denotes the role instance ‘secret agent 007’.

Throughout this paper the identifiers used to denote instances

are considered to be unique (this leads to better readable

properties). As for roles, also group instances are used. In our

example, the Distributor role instance within the Distribution

group instance has an intergroup role interaction with the

Receptionist role instance within the Client service group

instance.

3.1 Single role behaviour properties

For a given role within a group, role behaviour properties

specify the dynamics of the role within the group. They are

typically expressed in terms of temporal relationships be-

tween the input and output of the role instance, often accord-

ing to a pattern like the following:

if role instance I:R receives as input . . . .
[and in the past as input of I:R it was received . . .

and in the past at the output of I:R it was generated
. . . ]

then some time later role instance I:R generates as
output . . . .

The following are examples of role behaviour properties

(within the Client Service group). Note that the clause ‘some

time later’ can easily be made more specific by referring to

a certain maximal response time. The same applies to the

other examples in this paper. For simplicity of presentation

such more precise references to response times have been left

out.

Client role behaviour
If the Client receives a request for additional

information

then the Client either provides this information

or the Client provides a ‘bye-bye’.

If the Client receives a proposal for a service

requested by him

then the Client either accepts the proposal

or the Client rejects the proposal.

Receptionist role behaviour
If a Receptionist receives a request for a service

from a Client

and the necessary information regarding this

Client is not available

then the Receptionist issues a request for this

information to that Client.

If the necessary information regarding a Client

has become available

then the Receptionist communicates a request to that

Client to wait.

3.2 Intragroup role interaction properties

Intragroup role interaction properties express temporal con-

straints on the dynamics of the interaction protocol between

two roles within a group. Intragroup role interaction proper-

ties between two roles instances I:R1 and J:R2 in one group

instance are typically expressed in terms of the output of both

role instances, often according to a pattern as:

if role instance I:R1 generates as output . . . .
[and in the past at the output of I:R1 it was generated

. . .
and in the past at the output of J:R2 it was generated

. . . ]
then some time later role instance J:R2 generates as

output . . . .
or role instance I:R1 generates as output . . . .
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The last conclusion enables, for example, to specify that a

request from one role instance to another role instance is

withdrawn before the request actually was answered, thus

taking away the urge to answer it. In the simplest situations

no references to the past are made, and the pattern takes the

form of a direct reactivenes relation:

if role instance I:R1 generates as output . . . .
then some time later role instance J:R2 generates as

output . . . .

Client Service group role interaction
The Client role instances interact with Receptionist role in-

stances.

If a Client provides on his output a service request

then some time later:

the Receptionist provides for that Client on his

output a proposal for that request

or that Client provides on his output a

‘bye-bye’.

If a bye-bye has been communicated by a role instance I:R1 to

a role instance J:R2, it is assumed that from that moment on

I:R1 will not listen to communication directed from J:R2 to

I:R1, e.g., because the telephone connection has been closed.

This has impact on the communication successfulness prop-

erties that will be discussed in Section 3.3.

If the Receptionist provides on his output a

request for information to a Client

then some time later:

that Client provides on his output either the

requested additional information

or that Client provides on his output a

‘bye-bye’.

3.3 Intragroup communication successfulness properties

Intragroup role interaction requires communication within

the group. Therefore, in order to function properly, properties

are needed that express that communications are succesful.

These properties have the following pattern:

if role instance I:R1 generates as output a
communication directed to J:R2
[and . . . ]
then some time later role instance J:R2 receives as
input this communication

Such a property may not hold unconditionally; it may as well

be domain and time dependent. In particular, if the other role

instance communicated earlier a bye-bye, then we don’t as-

sume it is listening anymore (it may have put the telephone

off). We also include the condition that the previous commu-

nication of role instance J:R2 was not a request to wait (hold

on); it might be the case that after such a request J:R2 will

not listen until it resumes communication. A Communica-

tion Successfulness property then specifies, for example, the

following:
If communication is directed by a role instance

I:R1 to a role instance J:R2

then role instance J:R2 will always receive this

communication, unless its previous

communication was either ‘hold on’ or

‘bye-bye’.

3.4 Group properties

It is also possible to express dynamic properties within a

group as a whole. For example, such properties may involve

a number of (inputs and outputs of) roles within this group.

An example of such a property for the Distribution group is

as follows.

If a role instance I:Participant exists who has

communicated to the role instance

M:Distributor that he accepted task tid with

deadline tf,

then a role instance J:Participant exists which at

some point in time before tf communicates to

the M:D that the task tid was finished

This property expresses that the group as a whole takes the

responsibility to finish an accepted task before its deadline.

3.5 Intergroup role interaction properties

To express dynamics of connections between groups, inter-

group role interaction properties are used; they specify the

temporal constraints on the dynamics of the interaction pro-

tocol between two role instances within two different group

instances. They are typically expressed in terms of the input
of one of the role instances and the output of the other one,

for example, according to the following pattern, in which I:R1

is a role instance within group instance GI1:G1 of group G1,

and J:R2 is a role instance within group instance GI2:G2 of

group G2:

if role instance I:R1 receives as input . . . .
[ and in the past at the input of I:R1 it was received . . .
and in the past at the output of J:R2 it was generated
. . .

and in the past at the input of J:R2 it was received . . . ]
then some time later role instance J:R2 generates as
output . . . .
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Note that more role instances (of more group instances) may

be involved.

Client Service group - Distribution group role interaction
properties
The interaction between Client Service group and Distri-

bution group is realised by one agent to fulfill both roles.

However, independent of knowledge of the assignment of

agents to roles, the required intergroup role interaction can

be expressed. Here I:C is a Client role instance, J:CR is a

Receptionist role instance within the Client Service group

instance and K:D a Distributor role instance, and L:P a Par-

ticipant role instance within the Distribution group instance.

The first intergroup interaction property between the

Client Service and Distribution group instances states:

If a Receptionist role instance J:CR receives a

service request as input within the Client

Service group instance,

then this request is put forward within the

Distribution group instance cc by the

Distributor role instance K:D to all Participant

role instances L:P.

The second intergroup role interaction property between the

Client Service and Distribution group instance cc states:

If a Distributor role instance K:D receives as input

within the Distributor group instance a

service proposal on a request,

then this proposal will be put forward within the

Client Service group instance by the

Receptionist role instance J:CR that received

the request earlier, and is directed to the

Client role instance I:C from which the

request originates.

3.6 Organisation properties

To be able to express that an organisation as a whole func-

tions properly, dynamic properties for the organisation can

be expressed. Such properties may refer to any part (relating

to any role within any group) of the organisation. An example

of such a global property expresses:

At any point in time,
if the Receptionist communicates to a Client that

a request was accepted,

then at some later time point in one of the

Distribution group instances a Participant

communicates to the Distributor that the task

was finished.

Note that a property may be classified as global, or an organ-

isation property, if only some but not all aspects of the state

of the organisation are involved.

The AGR organisation modelling approach itself does not

make commitments nor provides support for the use of any

particular language to specify the dynamics within the organ-

isation model. In Sections 4 and 5 below two specification

languages are introduced to specify the different types of dy-

namic properties. These languages and the supporting soft-

ware environments can be used as an extension to the AGR

modelling approach.

4 Specification of dynamic properties within an
organisation model

In this section the Temporal Trace Language TTL to specify

and analyse dynamic properties is introduced. This tempo-

ral trace language is adopted from [3, 22] see [17, 18] for

application of this language in the context of requirements

engineering. It is a language in the family of languages to

which also situation calculus [26, 30], event calculus [24],

and fluent calculus [19] belong. See also [13, 14, 15, 20] for

more background in temporal modelling. The language is

defined as follows.

An ontology is a specification (in order-sorted logic) of a

vocabulary, i.e., a signature. A state for ontology Ont is an

assignment of truth-values {true, false} to the set of ground

atoms At(Ont). The set of all possible states for ontology Ont

is denoted by STATES(Ont). The standard satisfaction relation

|= between states and state properties is used: S |= p means

that state property p holds in state S.

To describe behaviour, explicit reference is made to time

in a formal manner. A fixed time frame T is assumed which

is linearly ordered. Depending on the application, it may be

dense (e.g., the real numbers), or discrete (e.g., the set of

integers or natural numbers or a finite initial segment of the

natural numbers), or any other form, as long as it has a linear

ordering. A trace T over an ontology Ont and time frame T

is a mapping

T : T → STATES(Ont)

i.e., a sequence of states

Tt(t ∈ T )

in STATES(Ont). The set of all traces over ontology Ont is de-

noted by TRACES(Ont), i.e., TRACES(Ont) = STATES(Ont)T.

States of a trace can be related to state properties via

the formally defined satisfaction relation |= between states

and formulae. The sorted predicate logic temporal trace lan-
guage TTL is built on atoms referring to traces, time and state
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properties, such as

state(T , t, output(R)) |= p.

This expression denotes that state property p is true at the out-

put of role R in the state of trace T at time point t. Here |= is a

predicate symbol in the language (in infix notation), compa-

rable to the Holds-predicate in situation calculus. Temporal

formulae are built using the usual logical connectives and

quantification (for example, over traces, time and state prop-

erties). The set TFOR(Ont) is the set of all temporal formulae
that only make use of ontology Ont. We allow additional

language elements as abbreviations of formulae of the tem-

poral trace language. Ontologies can be specific for a role. In

Section 4, for simplicity explicit reference to the specific on-

tologies per role are left out; the ontology elements used can

be read from the property specifications themselves. As an

example, the following dynamic property for the dynamics

within the organisation as a whole is shown.

GP2 All accepted jobs are finished
The next property expresses that for all traces and task iden-

tifiers, if at any point in time the receptionist communicates

to a client that a request was accepted, then at some later

time point in one of the Distribution group instances a Par-

ticipant communicates to the Distributor that the task was

finished.

∀ T : TRACES ∀ id : TaskId ∀ t, t1 : T

∀ C: CLIENT: open group ∀ R: RECEPTIONIST:

open group

[ state(T , t1, input(C)) |= comm from to(accepted(id, t),

R, C)

⇒ ∃ t2 : T ∃ P : PARTICIPANT, D : DISTRIBUTOR : DG :

DISTRIBUTION GROUP

[ t2 ≥ t1 & state(T , t2, input(C)) |= comm from

to (finished(id), P, D) ] ]

Another example of a dynamic property is the following.

IaRI1 Client-Receptionist Intragroup Role Interaction
As an example of a more local property, within the Client

Service group (or open group) instance the following role

interaction property is shown. It specifies that within this

group proper co-operation takes place: if a client communi-

cates a request, then some time later, either the request will

be rejected or accepted.

∀ T : TRACES, ∀ tid : TaskId ∀ t1, tf : T ∀ C: CLIENT:

open group,

∀ R: RECEPTIONIST: open group

[ state(T , t1, output(C)) |= comm from

to(requested(tid, tf), C, R)

⇒ ∃ t2 : T [ t2 ≥ t1 &

[ state(T , t2, output(R)) |= comm from to(rejected(tid),

R, C)

∨ state(T , t2, output(R)) |= comm from to(accepted(tid),

R, C) ] ] ]

Note that this property is a relevant property, but is not of a

format that can be executed easily within a simulation. Al-

though it generates properties of future states out of current

states, it entails nontrivial complexity since, due to the dis-

junction in the consequent, two possibilities would have to

be considered. To avoid this, the executable sub-language

introduced in the next section is more restrictive.

The temporal trace language TTL used in our approach

is much more expressive than standard temporal logics in

a number of respects. In the first place, it has order-sorted
predicate logic expressivity, whereas most standard temporal

logics are propositional. Furthermore, the explicit reference

to time points and time durations offers the possibility of

modelling the dynamics of real-time phenomena, as often

are essential in organisations where real-time constraints are

important, or organisations with dynamics that are adaptive

in a continuous manner. Another feature of the language TTL

is that it is possible to define local languages for parts of an

organisation. For example, the distinction between internal,

external and input and output languages is crucial, and is sup-

ported by the language, which also entails the possibility to

quantify over organisation parts; this allows for specification

of organisation modification over time.

A further, more sophisticated feature of TTL is the possi-

bility to quantify over traces (which are considered first class

citizins in the language) allows for specification of more com-
plex types of dynamics. As within most temporal logics, re-

activeness and pro-activeness properties can be specified. In

addition, in our language also properties expressing different

types of adaptive behaviour can be expressed. For example

a property such as ‘exercise improves skill’, which is a rel-

ative property in the sense that it involves the comparison

of two alternatives for the history. This type of property can

be expressed in our language, whereas in standard forms

of temporal logic different alternative histories cannot be

compared.

In the current paper only part of the features of the lan-

guage as discussed above are exploited. Due to simplicity of

the chosen example, for this focus the job could also be done

by a less expressive language. However, then the approach is

less generic and will not be extendable to more complex dy-

namics, such as, for example, relative adaptive organisational

behaviours. The language used is meant to support a more

generic perspective and anticipates on these types of more

complex behaviours which are in the focus of our further

research.
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5 Declarative specification of organisation simulation
models

Temporal specifications of dynamic properties can some-

times be used as a basis for simulation. To this end the

properties have to be expressed in a specific (sometimes

called executable) format. This perspective has been devel-

oped within the paradigm of executable temporal logic; cf.

[1]. A temporal formula in executable format is one accord-

ing to the pattern

past and current implies future

Here the time frame is assumed to be discrete. A simple

example of an executable temporal formula is (with C the

current operator and X the next operator)

Ca ∧ Cb → Xc

which states that always if in a state the state properties a and b

hold, then in the next state property c holds. Simulation based

on such a temporal formula can be performed by executing

it in the following inductive sense:

1. Check the antecedents on the last generated state of the
simulation trace: If a trace has been generated up to time

point t, determine whether the conditions a and b hold in

the state at t.

2. Collect the consequents for those antecedents that hold at
the last generated state: Examining in an exhaustive man-

ner all temporal formulae in executable format defining a

specification, a number of properties for the state at time

t + 1 are determined; e.g., if a and b hold, then for the

state at the next time point t + 1 the property c is to hold.

3. Build the next state by derived state properties: All col-

lected consequents together provide a (partial) description

of the next state at time t + 1.

4. Complete the next state: By some form of completion

(e.g., by a closed world assumption, making state proper-

ties false that are not derivable in a positive manner), this

description can be made complete, obtaining the complete

next state of the trace for t + 1.

An advantage of this paradigm of Executable Temporal Logic

is that simulation models are specified not in an algorithmic

manner, but in a declarative logical manner. The relation be-

tween the specification and the constructed trace is that the

trace is a model (in the logical sense) of the theory defined

by the specification, i.e., all temporal formulae of the speci-

fication hold in the trace. A disadvantage of the discrete time

frame assumption is that it does not allow specification of

simulation models where variable real-valued time periods

between the transitions play a role.

The language TTL described in Section 4 is a very expres-

sive declarative language. This expressivity makes it inap-

propriate for simulation. To obtain an executable language,

in comparison with the temporal trace language discussed

above some constraints have to be imposed on what can be

expressed. However, some of its advantages can be kept, such

as the use of real-valued time periods between transitions.

The constraints imposed define a temporal language within

a real-valued time extension of the paradigm of executable

temporal logic. Roughly spoken, in this executable language

it can only be expressed that if a certain state property holds

for a certain time interval, then after some delay another state

property should hold for a certain time interval. This specific

temporal relationship •→→ (leads to) is definable within the

temporal trace language TTL. This definition is expressed in

two parts, the forward in time part and the backward in time

part. Time intervals are denoted by [x, y) (from and including

x , to but not including y) and [x, y] (the same, but includes

the y value).

Definition(The •→→ relationship)
Let α and β be state properties, and let P1 and P2 refer to parts

of the organisation model (e.g., input or output of particular

roles). Then β follows α, denoted by

P1:α →→e, f, g, h P2:β

with time delay interval [ e, f] and duration parameters g and

h if and only if:

for all traces and time points t1,

if α holds in P1 for the interval [t1 - g, t1),

then a delay λ ∈ [e, f] exists such that β holds in P2 for

the interval [ t1 + λ, t1 + λ + h).

Formally:

∀ T ∈ TRACES ∀ t1: [∀t ∈ [t1 - g, t1) :

state(T , t, P1) |= α ⇒
∃λ ∈ [e, f] ∀t ∈ [t1 + λ, t1 + λ + h) : state(T , t, P2) |= β]

Conversely, the state property β originates from state prop-

erty α, denoted by

P1:α •—e, f, g, h P2:β

with time delay in [e, f] and duration parameters g and h if

and only if:

for all traces and time points t2,

if β holds in P2 for the interval [t2, t2 + h),

then a delay λ ∈ [e, f] exists such that α holds in P1 for

the interval [ t2 - λ - g, t2 - λ).

Formally:

∀T ∈ TRACES ∀ t2: [∀ t ∈ [t2, t2 + h) :

state(T , t, P2) |= β ⇒
∃λ ∈ [e, f] ∀ t ∈ [t2 -λ - g, t2 - λ) state(T , t, P1) |= α]

If both P1:α →e,f,g,h P2:β, and P1:α •—e,f,g,h P2:β hold, this

is called a leads to relation and denoted by P1:α•→→e,f,g,h
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notion α  
notion β  

actual delay

duration g

duration h

minimum delay

maximum delay

additional duration

additional duration

Fig. 3 Temporal relationships for longer durations

P2:β. Sometimes also conjunctions or negations on one of

the sides (or both) of the arrow are used.

The definition of the relationships as given above, can

be applied to situations where the sources hold for longer

than the minimum interval length g. The result for a longer

duration of α for P1:α•→→P2:β is depicted in Fig. 3. The

additional duration that the source holds, is also added to the

duration that the result will hold, provided that the condition

e + h ≥ f holds. This is because the definition can be applied at

each subinterval of α, resulting in many overlapping intervals

ofβ. The end result is that the additional duration also extends

the duration that the resulting notion β holds.

The procedure used for simulation is a variation on the

procedure for Executable Temporal Logic shown above. For

example, for step 1 not the last generated state is taken, but

the past time interval is considered. Moreover, in step 3 and 4.

the state properties are fixed for certain future time intervals

instead of one state. For more details, see [2] and Section 7.3

below.

To use the language for simulation of organisations only

role behaviour, intergroup role interaction and transfer prop-

erties are specified in the executable language. The other

types of properties emerge during the simulation process.

An example property in the executable language is:

IrRI2 Distributor-Receptionist Intergroup Role
Interaction
This expresses that any information regarding the request of

a client that the distributor instance of the distribution group

instance cc receives is forwarded to the client by the recep-

tionist role instance of the client server group instance (also

called open group). In the example, for reasons of presenta-

tion we assume that only one client exists. For more clients

an additional condition can be used.

∀ R : RECEPTIONIST:open group: OPEN GROUP,

∀ C : CLIENT:open group:OPEN GROUP,

∀ info:TASKINFORMATION

∀ D : DISTRIBUTOR:cc:DISTRIBUTION,

∀ P:PARTICIPANT:cc:DISTRIBUTION,

INTERGROUP ROLE RELATION(R, D) ⇒
[input(D):comm from to(info, P, D) •→→5,5,10,10

output(R):comm from to(info, R, C)]

Role behaviour properties specify the behaviour of a role

within a group. For each role within a group, and for all

groups, the role behaviour properties must be specified. Ex-

amples are:

E1 Accepting jobs
If a Participant of a local bank group instance is asked to

perform some task, and he has time to do so, then he com-

municates to his Distributor of the local bank group instance

that he accepts the task.

∀ tid : TASKID, ∀ tf : COMPLETIONTIME, ∀ f : FIFOSLOTS,

∀ GI : DISTRIBUTION,

∀ D : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P : PARTICIPANT:GI:DISTRIBUTION

[GI �= cc] ⇒ [input(P):comm from to(requested(tid, tf), D, P)

& internal(P):fifo empty(f) •→→0,0,10,10

output(P):comm from to(accepted(tid), P, D) ]

E2 Rejecting jobs
If a Participant of a local bank group is asked to perform some

task, and he has no time to do so, then he communicates to

his Distributor of the local bank group that he rejects the task.

∀ tid : TASKID, ∀ tf : COMPLETIONTIME,

∀ GI : DISTRIBUTION,

∀ D : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P : PARTICIPANT:GI:DISTRIBUTION

[GI �= cc] ⇒ [ input(P):comm from to(requested(tid, tf), D, P)

& not(internal(P):fifo empty(fifolast)) •→→0,0,10,10

output(P):comm from to(rejected(tid), P, D) ]

6 Analysis of dynamic properties

By means of the example it is shown how dynamic properties

can be analysed. First, in Section 6.1 an overview is presented

of the dynamic properties involved in the example organisa-

tion. Next, in Section 6.2 the logical relationships between

these properties are shown. Finally, in Section 6.3 it is dis-

cussed how these propereties can be automatically checked

for given traces of organisation dynamics, and how proper-

ties in ‘leads to’ format can be proven from an executable

specification.

6.1 Overview of dynamic properties

The dynamic properties are presented starting at the level of

the organisation as a whole.

6.1.1 Global properties

At the level of the organisation as a whole the following

properties can be identified:
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cepting and finishing it)� No accepted jobs are lost: for every accepted job there is a

time that that job is finished.� Every accepted job is finished before its deadline

These global properties can be formalised as follows.

The first property specifies that at any point in time, if a client

communicates a request to the receptionist, then at some

later time point the receptionist will communicate either a

rejection of the request or a notification that it was accepted

to that client.

GP1 All requests answered

∀ T : TRACES ∀ tid : TaskId ∀ t1,tf : T ∀ C: CLIENT:

open group ∀ R: RECEPTIONIST: open group

[state(T , t1, output(C)) |=
comm from to(requested(tid, tf), C, R)

⇒ ∃ t2 : T [ t2 ≥ t1 &

[ state(T , t2, input(C)) |=
comm from to(rejected(tid), R, C)

∨ state(T , t2, input(C)) |=
comm from to(accepted(tid), R, C) ] ]

The next property expresses that if at any point in time the

receptionist communicates to a client that a request was ac-

cepted, then at some later time point in one of the Distribution

group instances a Participant communicates to the Distribu-

tor that the task was finished.

GP2 All accepted jobs are finished

∀ T : TRACES ∀ id : TaskId ∀ t, t1: T ∀ C: CLIENT:

open group ∀ R: RECEPTIONIST: open group

[ state(T , t1, input(C)) |=
comm from to(accepted(id, t), R, C)

⇒ ∃ t2 : T ∃ P : PARTICIPANT, D : DISTRIBUTOR :

DG : DISTRIBUTION GROUP

[ t2 ≥ t1 & state(T , t2, input(D)) |=
comm from to(finished(id), P, D)] ]

Property GP3 expresses that if at any point in time the recep-

tionist communicates to a client that a request was accepted,

then at some later time point, but before the deadline, the

receptionist communicates to the same client that the task

was finished.

GP3 Meeting deadlines of accepted jobs

∀ T : TRACES ∀ id : TaskId ∀ t, t1 : T ∀ C: CLIENT:

open group ∀ R: RECEPTIONIST: open group

[ state(T , t1, input(C)) |=
comm from to(accepted (id, t), R, C)

⇒ ∃ t2 : T [ t ≥ t2 ≥ t1 & state(T , t2, input(C)) |=
comm from to(finished(id), R, C) ] ]

In the next four subsections the different properties on parts

of the organisation are identified. In Fig. 3 below an overview

can be found. In this figure three group instances are depicted,

together with two role instances in each of them. Properties

of different types are depicted by arrows. The position from

which an arrow starts indicates the role instance to which

the if-part of the property refers. Whether the if-part refers

to input or output is indicated by the start position of the

arrow (resp. at the left hand side of the role instance or at

the right hand side). In a similar manner the end point of an

arrow indicates to which role instance the then-part of the

property refers. The properties distinghuished in Fig. 3 and

specified in detail below are selected in order to be able to

derive global property GP1 from them. For briefness sake

the other properties have been left out. In Sections 6.2 and

6.3 the logical relationships between the properties specified

below and global property GP1 will be addressed in more

detail.

6.1.2 Intragroup role interaction properties

Intragroup role interaction properties specify the cooperation

within a group. Within each group instance at least one in-

tragroup role interaction property is specified. The first one,

within the Client Service group (or open group) instance,

specifies that within this group proper co-operation takes

place: if a client communicates a request, then some time

later, either the request will be rejected or accepted.

IaRI1 Client-Receptionist Intragroup Interaction
∀ T : TRACES, ∀ tid : TaskId ∀ t1, tf : T ∀ C: CLIENT:

open group,

∀R: RECEPTIONIST: open group

[ state(T , t1, output(C)) |=
comm from to(requested(tid, tf), C, R)

⇒ ∃ t2 : T [ t2 ≥ t1 &

[ state(T , t2, output(R)) |=
comm from to(rejected(tid), R, C)

∨ state(T, t2, output(R)) |=
comm from to(accepted(tid), R, C) ] ] ]

The next property expresses that within the distribution

groups proper interaction takes place: if a request is commu-

nicated to a participant (by a distributor), then the participant

will respond (eventually) by rejecting it or accepting it.

IaRI2/IaRI3 Distributor-Participant Intragroup
Interaction

∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T ∀ GI: DISTRIBUTION

∀ D: DISTRIBUTOR: GI: DISTRIBUTION

∀ P: PARTICIPANT: GI: DISTRIBUTION

[ state(T , t1, output(D)) |=
comm from to(requested (tid,tf), D, P)
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⇒ ∃ t2 : T [ t2 ≥ t1 &

[ state(T , t2, output(P)) |=
comm from to(rejected(tid), P, D)

∨ state(T , t2, output(P)) |=
comm from to(accepted(tid), P, D) ] ] ]

6.1.3 Intergroup role interaction properties

Intergroup role interaction properties specify connectivity

between the groups. This is achieved by an association

between a role instance of one group and a role in-

stance in another group, specified by the relation inter-

group role relation(R, D). The first intergroup role interaction

property specifies that an intergroup role relation between

role instances of RECEPTIONIST and DISTRIBUTOR in

open group and cc exists, and, in particular that every re-

quest received by the role instance of RECEPTIONIST within

open group leads to a similar request of the role instance

DISTRIBUTOR within cc.

IrRI1 Receptionist-Distributor Intergroup Interaction

∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T ∀ R:

RECEPTIONIST: open group ∀ C: CLIENT: open group

∀ D: DISTRIBUTOR: cc ∀ P: PARTICIPANT: cc

[ [ intergroup role relation(R, D)

& state(T , t1, input(R)) |=
comm from to(requested(tid, tf), C, R) ]

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T, t2, output(D)) |=
comm from to(requested(tid, tf), D, P) ] ]

The next intergroup role interaction property specifies that

also the return path from group instance cc to group instance

open group is guaranteed. This is achieved by an intergroup

role relation from the distributor instance to the reception-

ist instance. The explanation of this property is as follows.

If within the distribution group instance cc the distributor

role instance gets information communicated by a partici-

pant, then within the open group instance the related recep-

tionist role instance will communicate this information to

the client. In this property (and some of the other, subse-

quent properties) info ranges over {finished(tid), rejected(tid),

accepted(tid)}.

IrRI2 Distributor-Receptionist Intergroup Interaction

∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T ∀ D:

DISTRIBUTOR: cc ∀ P: PARTICIPANT: cc

∀ R: RECEPTIONIST: open group ∀ C: CLIENT: open group

[ [ state(T , t1, input(D)) |=
comm from to(info, P, D) & intergroup role relation(D, R) ]

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T , t2, output(R)) |=
comm from to(info, R, C) ] ]

Similarly intergroup relations between the local bank group

instances and the distributor group instance cc are specified:

IrRI3 Participant-Distributor Intergroup Interaction
∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T

∀ D1: DISTRIBUTOR: cc ∀ P1: PARTICIPANT: cc

∀ GI: DISTRIBUTION ∀ D2: DISTRIBUTOR: GI:

DISTRIBUTION ∀ P1: PARTICIPANT: GI:

DISTRIBUTION

[ [ state(T , t1, input(P1)) |=
comm from to (requested(tid, tf), D1, P1)

& intergroup role relation(P1, D2) ]

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T , t2, output(D2)) |=
comm from to(requested(tid, tf), D2, P2)] ]

IrRI4 Distributor-Participant Intergroup Interaction

∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T

∀ D1: DISTRIBUTOR: cc ∀ P1: PARTICIPANT: cc

∀ GI: DISTRIBUTION

∀ D2: DISTRIBUTOR: GI: DISTRIBUTION

∀ P1: PARTICIPANT: GI: DISTRIBUTION

[ [ state(T , t1, input(D2)) |= comm from to(info, P2, D2)

& intergroup role relation(D2, P1) ]

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T , t2, output(P1))

|= comm from to(info, P1, D1) ] ]

6.1.4 Transfer properties

Successful cooperation within a group requires that commu-

nication takes place when needed. In particular this means

that the two cooperating roles within the open group instance

have to communicate successfully about requests, i.e., if a

request is communicated by a client to the receptionist, this

request will be received by the receptionist.

TR1 Client-Receptionist communication
∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T

∀ C: CLIENT: open group, ∀ R: RECEPTIONIST: open group

[ state(T , t1, output(C)) |=
comm from to(requested(tid, tf), C, R)

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T , t2, input(R)) |=
comm from to(requested(tid, tf), C, R) ] ]

Moreover, they also communicate about acceptance, re-

jectance or finishing of tasks; here, as before, info can be filled

with any of these, related to tid:

TR2 Client-Receptionist communication

∀ T : TRACES ∀ tid : TaskId ∀ t1: T ∀ C: CLIENT:

open group ∀ R: RECEPTIONIST: open group

[ state(T , t1, output(R)) |= comm from to(info, R, C)

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T , t2, input(C)) |=
comm from to(info, R, C) ] ]

Springer



142 Appl Intell (2007) 27:131–152
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Fig. 4 Overview of non-global properties

Similarly within the distribution groups proper communi-

cation has to take place about requests and what comes

back for them (e.g., acceptance, rejection, or finished no-

tifications; again info can be filled with any of these, related

to tid):

TR3/TR5 Distributor-Participant communication
∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T

∀ GI: DISTRIBUTION

∀ D: DISTRIBUTOR: GI: DISTRIBUTION

∀ P: PARTICIPANT: GI: DISTRIBUTION

[ state(T , t1, output(D)) |=
comm from to(requested(tid, tf), D, P)

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T , t2, input(P)) |=
comm from to(requested(tid, tf), D, P) ] ]

TR4/TR6 Distributor-Participant communication
∀ T : TRACES ∀ tid : TaskId ∀ t1: T ∀ GI: DISTRIBUTION

∀ D: DISTRIBUTOR: GI: DISTRIBUTION

∀ P: PARTICIPANT: GI: DISTRIBUTION

[ state(T , t1, output(P)) |= comm from to(info, P, D)

⇒ ∃ t2 : T [ t2 ≥ t1 & state(T , t2, input(D)) |=
comm from to(info, P, D) ] ]

6.1.5 Single role behaviour properties

In this organisation model many of the roles just earn their

money communicating. But at least at some place in the or-

ganisation the real work has to be done. This is performed

by the participant roles in the local banks. A number of

properties can be specified. As an example, the property ‘if

they do not reject a task, they have to finish it’ is expressed

below:

PB1 Participant behaviour
∀ T : TRACES ∀ tid : TaskId ∀ t1, tf : T ∀ GI: DISTRIBUTION

∀ D: DISTRIBUTOR: GI: DISTRIBUTION

∀ P: PARTICIPANT: GI: DISTRIBUTION

[ state(T , t1, input(P)) |=
comm from to(requested(tid, tf), D, P)

⇒ ∃ t2 : T [ t2 ≥ t1 &

[ state(T , t2, output(P)) |=
comm from to(rejected(tid), P, D)

    IaRI2      IrRI2       TR4       TR1      IrRI1

     IaRI1       TR2

      GP1

     PB1      TR5

     IaRI3       IrRI4       TR6      TR3      IrRI3

Fig. 5 AND-tree of properties of different types

∨ state(T , t2, output(P)) |=
comm from to(finished(tid), P, D) ] ] ]

6.2 Logical relationships between the properties

Figure 5 shows logical relationships between different types

of properties. For example, within the rightmost group in-

stance, the arrows for transfer property TR5 and role be-

haviour property PB1 ‘chain’ in an appropriate manner to in-

tragroup interation property IaRI3. Indeed, logically the latter

property can be derived from the former two.

This obtains a proof pattern (see also Fig. 5).

TR5 & PB1 ⇒ IaRI3

In a similar manner other proof patterns have been identified

and actually proven for the intragroup interaction properties

IaRI1 and IaRI2, making use of inter group interaction prop-

erties, transfer properties, and (other) intragroup properties:

TR3 & IrRI3 &

IaRI3 &

TR6 & IrRI4 ⇒ IaRI2

TR1 & IrRI1 &

IaRI2 &

TR4 & IrRI2 ⇒ IaRI1
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Finally, the global property GP1 can be derived from IaRI1

and TR2.

IaRI1 & TR2 ⇒ GP1

These proof patterns are depicted in Fig. 5 as an AND-tree.

Note that due to these logical relations, the leaves of the

tree together imply the top node. The other nodes in a sense

have no independent staus; they can be considered intermedi-

ate steps. This observation will be exploited in two different

manners. First it will be exploited in Section 7 by specify-

ing a simulation model solely based on the leaves of this

tree. The leaves include all information that is needed for

the simulation. A second manner to exploit the structure of

the AND-tree is in the diagnostic approach put forward in

Section 8. Here the final result of a diagnosis of disfunction-

ing in an organisation is to pinpoint the particular leaf or

leaves of the tree that is or are responsible for the disfunc-

tioning. The other nodes of the tree are used as intermediate

steps in the diagnostic process. This process is explained in

more detail in Section 8.

6.3 Automated support for analysis

Apart from an editor to specify dynamic properties, the anal-

ysis environment includes two parts; all these tools assume

a finite time frame:

1. a tool that, given a set of traces (for example, obtained by

logging the activities over time in a real organisation, or

generated by simulation based on the executable proper-

ties or on another simulation model), checks any dynamic

property of an organisation expressed in the Temporal

Trace Language TTL. In addition, a tool has been devel-

oped that, given a trace checks for any property expressed

in terms of •→→ where exactly in the trace the property

fails, i.e., where the antecedent and the consequent of this

property fail.

2. a tool that, given an executable specification, for any dy-

namic property in ‘leads to’ format proves or disproves

whether it is entailed by the dynamic properties in ‘leads

to’ format of the executable specification.

6.3.1 Checking a dynamic property against a set of traces

To check whether a given behavioural property is fulfilled

in a given trace or set of traces, a software environment

based on some Prolog programmes (of about 500 lines)

has been developed. The temporal formulae are represented

by nested term structures based on the logical connectives.

For example, property GP1 from Section 6.1 is represented

by

forall(M, T1, C:CLIENT, R:RECEPTIONIST, TID, TF,

imp(holds(state(M, T1, output(C:CLIENT)),

communication from to(requested(TID, TF),

C:CLIENT, R:RECEPTIONIST), true),

ex(T2 = T1,

or(holds(state(M, T2, input(C:CLIENT)),

communication from to(finished(TID),

R:RECEPTIONIST, C:CLIENT), true),

holds(state(M, T2, input(C:CLIENT)),

communication from to(rejected(TID),

R:RECEPTIONIST, C:CLIENT), true)

) ) ) )

Traces are represented by sets of Prolog facts of the form

holds(state(m1, t(1), input(role1)), a)), true).

holds(state(m1, t(2), output(role1)), b)), true).

holds(state(m1, t(3), input(role2)), b)), true).

holds(state(m1, t(4), input(role2)), c)), true).

holds(state(m1, t(5), output(role2)), d)), true).

where m1 is the trace name, t(1) et cetera are time points, and

a, b, c, d are state properties in the ontology of the roles’s input

or output states. E.g., in the second line it is indicated that state

formula a is true in role1’s output state within the organisation

at time point 2. The Prolog programme for temporal formula

checking uses Prolog rules such as

sat(and(F,G)) :- sat(F), sat(G).

sat(not(and(F,G))) :- sat(or(not(F), not(G))).

sat(or(F,G)) :- sat(F).

sat(or(F,G)) :- sat(G).

sat(not(or(F,G))) :- sat(and(not(F), not(G))).

that reduce the satisfaction of the temporal formula to the

satisfaction of less complex formulae, and finally to the satis-

faction of atomic state formulae and their negations at certain

time points. The latter satisfactions can be read from the trace.

Another program, of about 4000 lines in C++, has been

constructed that takes an existing trace of behaviour as input

and creates an interpretation of what happens in this trace and

a check whether all leads to relationships in a set of properties

hold in that trace. The program marks any deficiencies in the

trace compared with what should be there due to the temporal

relationships. If a relationship does not hold completely, this

is marked by the program. The program produces yellow

marks for unexpected events. At these moments, the event is

not produced by any temporal relationship; the event cannot

be explained. The red marks indicate that an event has not

happened, that should have happened.

In addition to checking whether the rules hold, the checker

produces an informal reading of the trace. The reading is

automatically generated, using a simple substitution, from
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the information in the given trace. For example, the properties

GP1, GP2, IaRI1 and a number of other properties (not shown

in this paper) have been checked and shown to be valid.

The complexity of checking properties is limited. Let the

number of properties be #p, the length of the properties be

|m|, the number of atoms be #a and the number of value

changes per atom in the trace be #v. The length of properties

is measured by the total number of atoms and connectives in

the antecedent and the consequent. A first inspection of the

complexity of checking is that it is polynomial in #a, #p, #v

and |m|. The complexity of simulation is comparable.

These tools have been used to check a number of traces

of organisation dynamics, both generated by the simulation

environment discussed in Section 7 below, and traces

generated by a Swarm implementation of an organisation

model as described in [21].

6.3.2 Proving properties from an executable specification

A third software tool (about 300 lines of code in Prolog) ad-

dresses the proving of dynamic properties (expressed in terms

of one of the formats →→ , •— or •→→ of an organisation from

an (executable) specification of the dynamics within the or-

ganisation without involving specific traces. This dedicated

prover exploits the executable nature of the specification and

the past/current implies future nature of the property to keep

complexity limited. For example, given the executable spec-

ification of the Call Centre organisation model specified in

Section 7.1, an instantiated form of global level property GP1

(see Section 6.1) can be proven.

Using this prover, dynamic properties of the organisation

can be checked that hold for all traces of the organisation,

without generating them all by subsequent simulation. The

efficiency of finding such a proof strongly depends on the

complexity of the specifications of the role behaviour dynam-

ics for the different roles. Also properties can be disproven.

Then the prover comes up with a trace that is a counter ex-

ample against the disproven property. The efficiency of the

prover is reasonable. The price that is paid to keep complex-

ity limited is that only properties of the overall design can be

proven that can be written in one of the formats →→, •— or�→→.

7 Simulation environment

A simulation environment has been created to enable the

simulation of the executable organisation models with all the

usual benefits of rapid prototyping. In this section first an

example of an executable organisation model is discussed.

Then the simulation software is introduced. Subsequently

the simulation algorithm is presented. Finally, some of the

results of the experiments with the example organisation

model are discussed. Input for the simulation environment

is a set of executable temporal formulae expressed in terms

of the ‘leads to’ relation •→→, i.e., in the format defined

in Section 3.2. Thus, the example executable organisation

model is expressed in terms of such formulae.

7.1 Example of an executable organisation model

The Call Centre example introduced in Section 2.1 is ex-

amined further. For the Call Centre application there is one

instance of the Client Service group (here called the Open

Group), one group instance (cc), and for each local bank one

instance of the Distribution group. In this section part of the

dynamics of that example is determined in executable format.

From a general perspective, as in Section 6, the dynamic prop-

erties that should hold within the Call Centre application are

expressed in terms of single role behaviour properties, intra-

group interaction properties, intragroup transfer properties,

and intergroup interaction properties. However, for simula-

tion, not all these properties are to be used. As already noticed

in Section 6.2 in relation to Fig. 4, the dynamic properties at

the leaves of the AND-tree already include all information

that is needed. The other properties are implied by these leaf

properties. Therefore specification of the simulation model

can be restricted to specification of the leaf properties, i.e.,

intergroup role interaction properties, transfer properties, and

role behaviour properties. These leaf properties are the more

simple properties; they can be specified in ‘leads to’ format,

whereas some of the other, derivable properties cannot. The

three types of properties are discussed subsequently.

7.1.1 Intergroup interaction properties within the
executable model

For our example organisation model the following intergroup

interaction properties are part of the executable specification:

IrRI1 Receptionist-Distributor Intergroup Role
Interaction

∀ tid : TASKID, ∀ tf : COMPLETIONTIME,

∀ R : RECEPTIONIST:open group:OPEN GROUP,

∀ r : REGION,

∀ C : CLIENT:open group:OPEN GROUP,

∀ D : DISTRIBUTOR:cc:DISTRIBUTION,

∀ P : PARTICIPANT:cc:DISTRIBUTION

[ INTERGROUP ROLE RELATION(R, D) &

CLIENT REGION RELATION(C, r) &

REGION BANK RELATION(r, P) ] ⇒
[input(R):comm from to(requested(tid, tf), C, R) •→→5,5,10,10

output(D):comm from to(requested(tid, tf), D, P) ]

The above property expresses that if the receptionist of the

open (or Client Service) group instance receives a request
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from a client, then the distributor role instance of cc the group

instance of the distribution group forwards this request to the

participants in his group.

IrRI2 Distributor-Receptionist Intergroup Role
Interaction

∀ tid : TASKID,

∀ R : RECEPTIONIST:open group: OPEN GROUP,

∀ C : CLIENT:open group:OPEN GROUP,

∀ D : DISTRIBUTOR:cc:DISTRIBUTION,

∀ P : PARTICIPANT:cc:DISTRIBUTION,

∀ info : TASKINFORMATION

[ INTERGROUP ROLE RELATION(R, D) ] ⇒
[input(D):comm from to(info, P, D) •→→5,5,10,10

output(R):comm from to(info, R, C) ]

This expresses that any information regarding the request of

a client (i.e., info, that can be filled with acceptance, rejection

and finished information related to tid) that the distributor

instance of the distribution group instance cc receives is for-

warded to the client by the receptionist role instance of the

client server group instance (also called open group). In the

example, for reasons of presentation we assume that only one

client exists. If more clients are handled at the same time, an

additional condition can be included to guarantee that the

right client is notified.

IrRI3 Participant-Distributor Intergroup Role
Interaction

∀ tid : TASKID, ∀ tf : COMPLETIONTIME,

∀ D1 : DISTRIBUTOR:cc:DISTRIBUTION,

∀ P1 : PARTICIPANT:cc:DISTRIBUTION,

∀ GI : DISTRIBUTION,

∀ D2 : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P2 : PARTICIPANT:GI:DISTRIBUTION

[ GI �= cc & INTERGROUP ROLE RELATION(P1, D2) ] ⇒
[ input(P1):comm from to(requested(tid, tf), D1, P1)

•→→0.5,0.5,1,1

output(D2):comm from to(requested(tid, tf), D2, P2) ]

Property IrRI3 denotes that the Distributor of a local bank

group forwards requests to the Participants of that local bank

group.

IrRI4a Distributor-Participant Intergroup Role
Interaction

∀ tid : TASKID, ∀ D1 : DISTRIBUTOR:cc:DISTRIBUTION,

∀ P1 : PARTICIPANT:cc:DISTRIBUTION,

∀ GI : DISTRIBUTION

∀ D2 : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P2 : PARTICIPANT:GI:DISTRIBUTION

[GI �= cc & INTERGROUP ROLE RELATION(P1, D2) ] ⇒

[ input(D2):comm from to(finished(tid), P2, D2)

•→→0.5,0.5,1,1

output(P1):comm from to(finished(tid), P1, D1) ]

When a Distributor of a local bank group instance hears that

a task requested by a client is finished by a Participant of the

local bank group instance, then this notice is forwarded to

the Distributor of the cc group instance.

IrRI4b Distributor-Participant Intergroup Role
Interaction

∀ tid : TASKID, ∀ D1 : DISTRIBUTOR:cc:DISTRIBUTION,

∀ P1 : PARTICIPANT:cc:DISTRIBUTION,

∀ GI : DISTRIBUTION

∀ D2 : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P2 : PARTICIPANT:GI:DISTRIBUTION

[GI �= cc & INTERGROUP ROLE RELATION(P1, D2) ] ⇒
[ input(D2):comm from to(accepted(tid), P2, D2)

•→→0.5,0.5,1,1

output(P1):comm from to(accepted(tid), P1, D1) ]

If a Distributor of a local bank group instance is notified that

a task is accepted by a Participant of the local bank group

instance, then this notification is forwarded to the Distributor

of the cc group instance.

7.1.2 Transfer properties within the executable model

For an executable model, also the transfer of information

between roles is important. Transfer properties are properties

that ensure that information sent by A to B is received by B.

They can easily be written in ‘leads to’ format. In Section 6

a number of transfer properties were identified. Rewritten in

‘leads to’ format they are as follows; here, as before, info can

be filled with any of these, related to tid:

TR1 Client-Receptionist communication
∀ tid : TaskId ∀ t1, tf : T ∀ C: CLIENT: open group,

∀ R: RECEPTIONIST: open group

[ output(C):comm from to(requested(tid, tf), C, R) •→→5,5,1,1

input(R):comm from to(requested(tid, tf), C, R) ]

TR2 Client-Receptionist communication
∀ tid : TaskId ∀ t1: T ∀ C: CLIENT: open group

∀ R: RECEPTIONIST: open group

[ output(R):comm from to(info, R, C) •→→5,5,1,1

input(C):comm from to(info, R, C) ]

TR3/TR5 Distributor-Participant communication
∀ tid : TaskId ∀ t1, tf : T ∀ GI: DISTRIBUTION

∀ D: DISTRIBUTOR: GI: DISTRIBUTION

∀ P: PARTICIPANT: GI: DISTRIBUTION

[ output(D):comm from to(requested(tid, tf), D, P) •→→5,5,1,1

input(P):comm from to(requested(tid, tf), D, P) ]
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TR4/TR6 Distributor-Participant communication
∀ tid : TaskId ∀ t1: T ∀ GI: DISTRIBUTION

∀ D: DISTRIBUTOR: GI: DISTRIBUTION

∀ P: PARTICIPANT: GI: DISTRIBUTION

[ output(P):comm from to(info, P, D)

•→→5,5,1,1 input(D):comm from to(info, P, D) ]

TR7 Workmanager-Employee communication for
assignments

∀ tid : TASKID, ∀ GI : DISTRIBUTION,

∀ D : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P : PARTICIPANT:GI:DISTRIBUTION

[GI �= cc ⇒
[ output(D):comm from to(assigned(tid), P2, D2) •→→5,5,1,1

input(P):comm from to(assigned(tid), P1, D1) ] ]

This last transfer property states that if the Distributor of a

local bank group instance wants to communicate to a Par-

ticipant of the local bank group instance that he is assigned

some task, then this communication will be received by that

Participant of the local bank group instance some time later.

7.1.3 Role behaviour properties within the executable
model

Role behaviour properties specify dynamic properties of the

behaviour of a role within a group. To obtain an executable

specification, for each role within a group, and for all groups,

executable properties of the role behaviour must be specified.

The behaviour of one role can take more than one property

to specify. For brevity, a few of the kernel role behaviours

used for simulations are presented here:

E1 Accepting jobs
∀ tid : TASKID, ∀ tf : COMPLETIONTIME, ∀ f : FIFOSLOTS,

∀ GI : DISTRIBUTION,

∀ D : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P : PARTICIPANT:GI:DISTRIBUTION

[GI �= cc] ⇒
[ input(P):comm from to(requested(tid, tf), D, P) &

internal(P):fifo empty(f) •→→0,0,10,10

output(P):comm from to(accepted(tid), P, D) ]

If a Participant of a local bank group instance is asked to

perform some task, and he has time to do so, then he com-

municates to his Distributor of the local bank group instance

that he accepts the task.

E2 Rejecting jobs
∀ tid : TASKID, ∀ tf : COMPLETIONTIME,

∀ GI : DISTRIBUTION,

∀ D : DISTRIBUTOR:GI:DISTRIBUTION,

∀ P : PARTICIPANT:GI:DISTRIBUTION

[GI �= cc] ⇒

[ input(P):comm from to(requested(tid, tf), D, P) &

not(internal(P):fifo empty(fifolast)) •→→0,0,10,10

output(P):comm from to(rejected(tid), P, D) ]

If a Participant of a local bank group is asked to perform some

task, and he has no time to do so, then he communicates to

his Distributor of the local bank group that he rejects the task.

7.2 The simulation software

A software environment has been made which implements

the temporal formalisation of the dynamics as specified by

an executable organisation model. First the approach is intro-

duced, then the program will be briefly reviewed, after which

some of the results are discussed.

The simulation determines the consequences of the

temporal relationships forwards in time. Remember that α

leads to β, is denoted by P1:α•→→e, f, g, h P2:β where the

time delay λ is taken from the interval [e, f]. The duration

parameter g denotes the time span that α must minimally

hold, and h denotes the duration parameter that β must

minimally hold. In order to make simulation efficient, long

intervals of results are derived when starting from long

intervals. By applying additional conditions (i.e., e + h

≥ f), the derivation of longer intervals becomes possible,

see Section 3, Fig. 2. The logical relationships thus avoid

unnecessary work for the simulation software.

The delay value λ can either be chosen randomly within

the interval [e, f] each time a relationship is used, or the λ

can be fixed to a value. Selecting either a random or fixed

λ enables thorough investigation of the consequences of a

particular model.

Extending the paradigm of executable temporal logic, cf.

[1], a 17000 line simulation program was written in C++
to automatically generate the consequences of the real-value

parameterised ‘leads to’ temporal relationships within the

executable organisation specification. The program is a spe-

cial purpose tool to derive the results reasoning forwards in

time, as in executable temporal logic. Some additional in-

formation is required to define the time frame of simulation,

picture preferences and text for the labels.

The program reads a specification of temporal rules from

a plain text file. The maximum time for derivation is also

specified in that file, the interval [0, MaxTime). In order

to specify facts about the environment (world), (periodic)

intervals can be given. The functions not(), and(,), and or(,)

can be used to make more complex properties from atoms.

The properties have and, or and not given in prefix ordering

for the program (instead of infix), i.e., a function is given

before its arguments, e.g.., and(a, b) instead of (a and b). The

+( and +) brackets perform concatenation of their contents, in

order to construct identifiers from variables and strings. The

•→→ relation is specified using LeadsTo, followed by the e,

Springer



Appl Intell (2007) 27:131–152 147

f, g and h values. Note that the program does not use the •—
(originates from) part of the relation as only forward deriva-

tion is performed. First the timing is given, then the variables

are quantified. A restriction is put on the R and D variables;

in this case they must have an intergroup role relation.

Then the antecedent and consequent are given. For clarity,

tokens are displayed boldface, values and identifiers are not.

As an example of a rule, the IrRI2 distributor-receptionist

intergroup interaction property, is presented as follows:

RuleVarLeadsTo delay 5 5 10 10

Var ForAll tid : TASKID

ForAll D : DISTRIBUTOR:cc:DISTRIBUTION

ForAll P : PARTICIPANT:cc:DISTRIBUTION

ForAll R : RECEPTIONIST:open group:

OPEN GROUP

ForAll C : CLIENT:open group:OPEN GROUP

ForAll info : TASKINFORMATION

MemberCheck +(R related D+) :

INTERGROUP ROLE RELATION

EndVar

+(D input comm from to( info (tid), P, D ) +)

o->>

+( R output comm from to( info (tid), R, C) +)

7.3 The simulation algorithm

First a short look at the method of simulation by forward

derivation is presented. In order to derive the consequences of

the temporal relationships within a specific interval of time,

a cycle is performed, starting at time 0. For the set of rules

the earliest starting time of the antecedent for each rule, for

which the consequent does not already hold, is computed. A

rule with earliest start time of the antecedent is chosen. This

rule is then fired at that time, adding the consequent to the

trace. The cycle is restarted, only looking for antecedents at

or after the fire time point, as effects are assumed to occur

simultaneously or after their causes. This continues until no

more rules can be fired, or the fire time is at or after the end

time of the simulation interval. In more detail the algorithm

is as follows. Note that also a closed world assumption is

built in. This avoids the need to specify all facts that should

not hold, which can lead to large executable specifications.

The derivation process uses a point in time called now. It

starts at 0. The derivation will derive the trace from time 0 un-

til a time called the maximum time. The trace is fully unknown

for all atoms for all time points at the start of derivation. The

derivation procedure is as follows:

Step 1. Find earliest eligible rule.
At now in time examine each rule to find the earliest eligi-

ble rule for firing. An eligible rule is a rule, for which the

antecedent holds, and the consequent does not hold yet in

the trace thus far; these rules are eligible to be fired. Eligible

rules are thus rules whose consequent could be added to the

trace under construction. If a rule ‘fires’ it adds its consequent

to the trace. For a more elaborate account of rule selection

see the section on rule selection below. For now, a single,

‘earliest applicable’, rule is selected. Call this rule r, and its

start of the antecedent time t0.

At this point several alternatives exist. Each alternative

must be treated correctly. No rules could be eligible for fir-

ing at all; this is treated in Step 2. If some rules are eligible,

some rule r and some time t0 must have been found. If the

rule fires sometime in the future, t0 > now, time must be

advanced in Step 3. If time does not need to be advanced,

the time t0 could be at the end, t0 > maximum time, and in

this case it should be checked if the trace is already com-

pleted, in Step 4. In all other cases, when t0 ≤ now, the

rule r can be fired in Step 5 and the loop is continued at

Step 1.

Step 2. No rules are eligible for firing.
If there are no eligible rules for firing, no rule r can be found.

Perform the CWA (closed world assumption) procedure from

now till the maximum time. This is done in order to provide

CWA at the end of the trace as well. If tnext, the continua-

tion time that is recommended by the CWA is smaller than

the maximum time, tnext < maximum time, then CWA rules

have fired; the trace is changed and now is set to tnext and the

derivation process is continued at Step 1. If the CWA proce-

dure recommends a continuation time at or after the maxi-

mum time, tnext ≥ maximum time, derivation stops. Since this

indicates that no rules will fire before the maximum time, the

trace is complete.

Step 3. For a rule r, time t0 > now, advance time.
There is a rule r and a time t0 that it can fire. If the time that the

rule will fire is in the future, t0 > now, then by firing this rule

the time would skip to t0. Do not fire rule r in this case yet, it

will be fired in Step 5 at some later time. The closed world

assumption needs to be performed in the meantime, since

no rule is affecting the interval from now to t0. Perform the

CWA procedure from now to t0. The separate CWA procedure

returns a recommended continuation value upon completion,

taking the t0 into account. This is explained in the steps of

the closed world assumption procedure below. Set the now to

the recommended continuation time, tnext, and continue the

derivation at Step 1.

Step 4. For a rule r, t0 > maximum time, finished.
If the time to fire rule r is after the end of time, t0 > maximum

time, then do not fire the rule. The derivation stops, since the

trace is already complete.
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Step 5. For a rule r, t0 ≤ now, fire the rule.
Fire rule r with the antecedent starting at time t0. This entails

applying the consequent of rule r to the trace. Loop back to

Step 1 to continue derivation.

7.3.1 Rule selection

The trace under construction is expanded by firing one rule

at a time. Therefore one rule must be selected for firing. In

theory, each rule must be checked to see if it is applicable. A

rule is applicable if its antecedent holds at a particular time.

The rule must also, however, be eligible, its consequent must

not already hold in the trace, otherwise the system would

loop on adding only the first rule forever. The earliest such

eligible rule must then be fired, its consequent interval must

be added to the trace.

Using this method, all the rules would be checked against

the entire trace to select a rule. This would work, but it would

be inefficient. Since we assume that rules cause their effects

to happen after their causes, we know that the effects of a

rule happen in the future. Thus it is assumed that the delay

values are not negative for any rule. If the rule antecedent

starts at the now moment, then the rule consequent interval

is always after the now moment. Therefore, if you only fire

rules whose antecedent starts at the now moment, the only

changes that will happen are in the future, never in the past.

This can be used to speed up derivation considerably, as

the past need not be checked for applicable rules anymore.

It is already known that all applicable rules in the past are

not eligible, since their consequent will already hold. Their

consequent will hold as it has been added when the rule was

fired in the past, when the now was equal to the start of the

rule’s antecedent. So only some antecedent intervals need to

be checked, starting with the intervals that contain the now

moment.

In derivation then, all antecedent intervals are checked for

each rule, starting from intervals that contain now, and con-

tinuing with intervals after that. An antecedent interval is an

interval where the logical statements of the antecedent of a

leads-to relationship hold, for at least a duration g. See Fig. 6

for an explanatory example of an antecedent interval. These

are applicable, both antecedent intervals in Fig. 6 are applica-

ble. But only eligible rule antecedents are considered further,

for those antecedents the consequent interval does not hold

yet in the trace. For example the second antecedent interval

in Fig. 6 is eligible, but the first antecedent intervals is not.

antecedent

consequent

duration g

duration h

now

t0

Fig. 6 An eligible antecedent interval at time t0

The eligible antecedent of a rule with the start of the an-

tecedent the earliest in time is selected. In Fig. 6, the sec-

ond antecedent interval would be selected, as the first is not

eligible.

7.3.2 Closed world assumption

In order to derive simulation results a closed world assump-

tion (CWA) has been employed. A closed world assumption

assumes that properties at certain intervals that remain un-

known are false. To apply the closed world assumption, a

hypothetical trace is considered. The reason that the closed

world assumption considers a hypothetical trace, is that it

must be avoided that the now is advanced to a point in the

future, where changes in the past (before the now) have to be

made. The closed world assumption could cause changes in

that past, because the trace is changed by applying the closed

world assumption to unknown intervals. These changes in the

past could trigger rules that could change the trace, also (par-

tial) changes to the past. Such changes in the past would then

cause inconsistency. The closed world assumption method

described below will avoid making changes in the past, thus

avoiding inconsistency during computation.

The closed world assumption procedure is performed from

a time called t0 to a time called t2, and returns a recommended

continuation time called tnext. The CWA procedure is:

Step 1. Construct a hypothetical trace.
This hypothetical trace is the same as the currently derived

trace, but in all the time from t0 to t2 all the unknown intervals

are made false. Each rule is examined for this hypothetical

trace, from time point 0 onwards, to see if its antecedent holds

and its consequent does not hold yet in the hypothetical trace.

The rule with earliest start time of the antecedent is selected

again, call this time t1.

Several alternatives exist at this point. If no rules can be

found to fire in the hypothetical trace, the hypothesis is okay,

and can be applied in Step 2. If rules can fire, some time t1

is found. Either t1 ≥ t2, and the hypothesis can be applied as

well in Step 3, or t1 < t2, and a careful application of rules to

avoid inconsistency must be done in Step 4. After handling

the appropriate case, the closed world assumption procedure

returns a continuation time and ceases.

Step 2. No rules can fire in the hypothetical trace.
If no eligible rule can be found, this means no rule will fire

in the hypothetical trace. The closed world assumption is

applied to the main trace (so the hypothetical trace becomes

reality), tnext is set to t2 and the CWA procedure stops.

Step 3. A rule can fire at t1 ≥ t2.
If t1 ≥ t2, then no rules using the closed world assump-

tion will fire before t2. The closed world assumption is
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Fig. 7 Some simulation results
considering only task 1

applied to the main trace (so the hypothetical trace be-

comes reality), and tnext is set to t2 and the CWA procedure

stops.

Step 4. A rule can fire at t1 < t2.
If t1 < t2, then a rule that would use the intervals caused

by the closed world assumption in the interval from t0 to

t2 will fire before t2. The rule would not use only ordinary,

non-hypothetical, parts of the trace as its antecedent. This

must be the case, since the closed world assumption process

is started only when the first rule will ordinarily fire at or

after t2. The (direct and indirect) effects of the rule that fires

at t1 may change the trace, and they may change the trace

before time t2. Thus not all unknown intervals from t0 to

t2 can be made false, since the effects could contradict this,

and create inconsistency.

The closed world assumption can thus only be safely ap-

plied from t0 until the time point of the first change that the

rule firing at t1 would cause, called time t3. Before this is

applied, all the rules that would fire before time t2 are ap-

plied with a length as determined by the hypothetical trace,

as this speeds up computation. Then in the interval t0 to

t3 the unknown values are changed to false. The hypotheti-

cal trace is discarded. The CWA procedure stops with tnext

set to t3.

After the derivation is complete, the results are output.

An elaborate technical output is generated in a log file with

exact times and intervals, as well as the sequence of rule

firings that happened. A picture is drawn too, saved to a file

and displayed for the user. See Section 7.4 for an example of

pictorial output.

7.4 Some simulation results

Figure 7 shows some of the results of experimenting with

the Call Centre organisation model. Time is on the horizon-

tal axis. The properties are listed on the vertical axis. The λ is

fixed at 0.5. A dark box on top of the line indicates the prop-

erty is true during that time period, and a lighter box below

the line indicates that the property is false during that time pe-

riod. The first line, for example, contains the property that cl

(the client) has on its input a communication from rec (the re-

ceptionist) that task1 has been accepted. This property is false

most of the time, but true from approximately 110 to 120.

Figure 7 shows that the first event is that the client cl

issues a request. The receptionist rec receives this request.

The distributor d forwards the request to participant pcc1

of the cc group instance, as the client is in the region of

pcc1. Participant pcc1 has it on its input, and role instance

lb1 forwards it to its participants of the local bank group

p11, and p12. Both participants accept the task, and thus d

accepts the task. lb1 assigns the task to p11. After finishing

the task, p11 notifies lb1, after which is passed on through

the different group instances, finally reaching the client.

8 Diagnosis of disfunctioning within an organisation

Logical relatioships between properties, as depicted in the

AND-tree of Fig. 5 can be very useful in the analysis of

malfunctioning of the organisation in the following man-

ner. For example, if for a given trace of the organisation the

global property GP1 is not satisfied, then, given the last proof
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pattern, by a refutation process it can be concluded that either

transfer does not function properly or IaRI1 does not hold. If

IaRI1 does not hold, then by one of the other proof patterns

either IaRI2 does not hold, or one of the intergroup interac-

tion properties IrRI1 or IrRI2 does not hold (or transfer fails).

If the intragroup property IaRI2 does not hold, then either

IrRI3, IrRI4 or IaRI3 does not hold (or transfer fails). Finally,

if IaRI3 does not hold, then by the first proof pattern either

role behaviour property PB1 does not hold or transfer is not

properly functioning. By this refutation analysis it follows

that if GP1 does not hold for a given trace, then, skipping the

intermediate properties, the cause of this malfunctioning can

be found in the set (the leaves of the tree in Fig. 5):

{IrRI1, IrRI2, IrRI3, IrRI14} ∪ {PB1}
∪ {TR1, . . . , TR6}.

The logical analysis by itself does not pinpoint which one of

these leaves actually is refuted. However, it shows a set of

candidates that can be examined in more detail.

Returning to the verification of the global organisation

property GP1, if the check shows that it is not satisfied, then

subsequently, the candidate set of causes {IrRI1, IrRI2, IrRI3,

IrRI14} ∪ {PB1} ∪ {TR1,. . . , TR6} generated from the logi-

cal analysis in Section 6.1 can be checked. Due to the log-

ical relationships given by the proof patterns, at least one

of them must be not satisfied. After having them checked

it will be found which one is the culprit. Since the set only

contains specific properties which refer to local situations

within the organisation, this localises the problem. Thus this

approach provides a method of diagnosing malfunctioning

in an organisation. In a more efficient, hierarchical, manner,

based on the tree in Fig. 5 (obtained from the logical analysis

resulting in the proof patterns in Section 6.1), this method

for diagnosis of malfunctioning in an organisation runs as

follows (according to a specific diagnostic method, some-

times called hierarchical classification):

1. First check the global properties

(the top of the tree in Fig. 5)

2. Focus the subsequent checking process on only those more

local properties that in view of the logical dependencies

relate to a more global property that has turned out to be

false

(the branches in the tree under a failed node)

3. Repeat this procedure with the focused more local prop-

erties as top-node

4. The most local properties that fail point at where the cause

of malfunctioning can be found

(one or more of the leaves of the tree)

Note that in step 2 all local properties that do not relate to

a failing global property can be left out of consideration,

which may obtain an advantage in the number of properties

to be checked, compared to simply checking all properties,

of n over 2n (if the property refinement graph would have the

structure of a binary tree with all branches of depth n).

This method has been used to analyse the example organ-

isation simulation model presented above. In the simulation

software environment log files containing the traces were

automatically created that were saved at a place where the

checking software environment can automatically read in the

files and perform the checking process. Thus an overall soft-

ware environment was created that is an adequate tool to

diagnose the dynamics within the organisation simulation

model. As one of its uses, the tool can be used for debugging

of the simulation model. The diagnostic method used is a

simple one. More sophisticated diagnostic methods can be

explored along the same lines, based on established logical

relationships between dynamic properties such as expressed

in the AND-tree of Fig. 5.

9 Discussion

In this paper specification and uses of models of the dy-

namics within an organisation are addressed. A declarative

but executable language is proposed as a basis for simula-

tion. This language, using real-valued time points and du-

rations, extends the class of executable temporal languages;

cf. [1, 12, 13]. In this way organisation simulation models

can be specified in a declarative manner based on a temporal

‘leads to’ relation; within the simulation environment these

models can be executed. Moreover, to specify dynamic prop-

erties of an organisation, another, very expressive declarative

language is put forward: a temporal trace language that be-

longs to the family of languages to which also situation cal-

culus [26, 30], event calculus [24], and fluent calculus [19]

belong. The executable language for organisation simula-

tions is definable within this much more expressive language.

Supporting tools for both languages have been implemented

that consist of:� A software environment for simulation of a multi-agent

organisation model� A software environment for analysis of dynamic properties

against traces for such a model

In the paper a simple example organisation model illustrates

the use of both languages and of the software environments.

In comparison, in [8, 11] no commitment to a specific dy-

namic modelling approach is made. In contrast, the dynamic

modelling approach put forward here, makes a commitment

to particular specification languages, and provides detailed

support of the dynamic aspects, both for (automated) simu-

lation and analysis. The use of a temporal trace language to

specify dynamic properties within an organisation model was

first put forward in [10, 23]. However, there no automated

support of specification and analysis is included, which is
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a main subject of the current paper. Moreover, specification

in executable format and simulation was not addressed. In

[9] a formalisation of the procedural semantic of an AGR-

organisation model in terms of π -calculus (a wellknown gen-

eral semantical technique in Theoretical Computer Science)

is presented. A difference with the approach put forward

here is that in [9] it is not addressed how from this semanti-

cal formalisation adequate dedicated organisation modelling

languages can be developed. For example, the use of formal

languages for simulation or for analysis is not worked out.

A difference with [21] is that in the current paper at a con-

ceptual level an executable declarative temporal language

and an associated simulation environment are introduced,

whereas simulation within [21] is based on an example imple-

mentation using the simulation environment Swarm, without

a conceptual specification language.

The organisation modelling environment SDML [27] has

in common with our work that a declarative language for

simulation is offered. In comparison, our work differs in that

a specific organisation modelling approach, AGR is taken as a

basis, whereas SDML does not make such a commitment, nor

provides specific support for such a more specific modelling

approach enabled by this commitment. Moreover, in contrast

to SDML (which is restricted to simulation), in our case in

addition a specification language for dynamic properties is

provided, and tools to perform analysis of properties. An

interesting extension and connection would be to define a

standard way of representing log files of simulation traces

generated in SDML, so that these log files can be read by our

analysis software. As the multi-agent system design method

DESIRE [4] has a lot of similarities to SDML in perspective

and scope, the approach proposed in the current paper has

the same differences to DESIRE as it has to SDML.

In comparison to temporal logics, the temporal trace lan-

guage TTL used in our approach is much more expressive in a

number of respects than standard or extended modal temporal

logics as described, for example, in [6,7,12,13,16,25,31,32].

See also [14, 15] for a discussion about modal temporal logics

and predicate logic-based temporal logics. In the first place, it

has order-sorted predicate logic expressivity, whereas most

standard temporal logics are propositional. Secondly, the ex-

plicit reference to time points and time durations offers the

possibility of modelling the dynamics of real-time phenom-

ena. These first two points apply only partially to logics where

it is possible to have real numbers for time and arithmetical

operations and order relations to express constraints between

time points, as in [6, 16, 32].

Third, the possibility to quantify over traces allows for

specification of more complex dynamics. As within most

temporal logics, reactiveness and pro-activeness properties

can be specified. In addition, in our language also properties

expressing different types of adaptive behaviour can be ex-

pressed. For example an adaptive property such as ‘exercise

improves skill’, or ‘the better the experiences, the higher the

trust’ (trust monotonicity) which both are a relative property

in the sense that it involves the comparison of two alterna-

tives for the history. This type of property can be expressed

in our language, whereas in standard forms of temporal logic

different alternative histories cannot be compared. The same

difference applies to situation calculus, event calculus, fluent

calculus, and the languages in [6, 16, 32].

Fourth, in TTL it is possible to define local languages for
parts of a system. For example, the distinctions between com-

ponents, and between input and output languages are crucial,

and are supported by the language, which also entails the pos-

sibility to quantify over system parts and describe changing

system parts over time.

In future research, connections will be made to other sim-

ulation approaches, so that traces generated by these ap-

proaches can be analysed in our analysis environment, for

example for SDML, as discussed above. Furthermore, more

extensive support will be developed for the identification and

checking of logical relationships between dynamic properties

specified at different levels within the organisation. More-

over, the use of the approach put forward for the use of

adaptive dynamic properties for role behaviour and role inter-

actions will be explored. In addition, specification and anal-

ysis of organisational configuration dynamics over time will

be addressed; for a first starting point, see (Dastani, Jonker

and Treur, 2001). Another theme that can be considered for

future research is how to incorporate deontic aspects in an

organisation in models of the type discussed here. This can

be addressed by specifying effects of deontic constraints on

role behaviours.
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