
Appl Intell (2006) 24: 253–261

DOI 10.1007/s10489-006-8516-5

Architecture and dialogue design for a voice operated information
system
Luis Villarejo · Javier Hernando · Núria Castell ·
Jaume Padrell · Alberto Abad

C© Springer Science + Business Media, LLC 2006

Abstract In this paper we present a real automatic meteo-

rological information system that, not only provides friendly

voice access to real-time data coming from automatic sen-

sors, but also establishes an automatic warning service on the

weather. It aims to extend the availability, personalization and

friendliness of the meteorological information by means of a

reusable easy-to-use friendly oral natural language interface.

This interface takes advantage of the improvements in speech

processing, dialogue handling and the great growth of mobile

telephony. After the description of the functionalities of the

system and its architecture, we present in detail the features

of the dialogue manager. The main goals we have considered

are: to provide the right information and to design a friendly

interface.

Keywords Intelligent interfaces . Natural language

processing . Speech processing and VoiceXML

1. Introduction

Meteorological information has long been provided by tele-

vision and radio as weather reports scheduled at a fixed

timetable giving impersonal information. Nowadays there

are telephonic systems that offer some personalized infor-

mation but in an unnatural way. Usually these systems offer

some menus operated via the telephone keyboard and have

a very limited vocabulary. These features condemn the sys-

tem to failure in the real world due to a lack of naturalness

and fluency in the dialogue. This kind of systems usually

L. Villarejo (�) · J. Hernando · N. Castell · J. Padrell · A. Abad
TALP Research Center, Universitat Politècnica de Catalunya
Campus Nord - A0, Jordi Girona 1-3, 08034 Barcelona, Spain
e-mail: {luisv, javier, castell, jaume, alberto}@talp.upc.es

provide general information and are updated less frequently

than desired.

The interest and research on interactive speech systems

has increased in recent years due to the extended use of tele-

phone information systems. We should mention the TRINDI

[1] (Task-Oriented Instructional Dialogue) project, which fo-

cuses in generic technology for the creation of a dialogue

movement engine. Nowadays there are systems that offer a

good level of interaction during the information exchange.

Some examples are the following: ARISE [2] (Automatic

Railway Information Systems for Europe), TRAINS [3], and

BASURDE [4] (Spontaneous Speech Dialogue System in

a Semantically Restricted Domain), all of them are about

railway information, and ATIS [5] (Air Travel Information

System), is about flights. Some systems are designed to offer

meteorological information in a user-friendly way. A refer-

ence work in this field is the JUPITER [6] project.

The system described here provides personalized real-

time data, in the Catalan language, on a set of meteorological

conditions on each place of the Catalan geography through

an easy-to-use natural language interface. It also provides an

alarm and warning system, based on the same interface, that

keeps the user informed on the variables of his/her interest

whenever they occur. The whole system has been constructed

on the basis of VoiceXML (the voice standard promoted

by the World Wide Web Consortium), specifically the voice

framework and the dialogue manager.

The VoiceXML standard [7] is taking an important role in

giving support to this kind of interactive speech systems de-

velopments which cover a great range of domains. To quickly

review some VoiceXML-based systems we should mention

the INSPIRE [8] (Infotainment management with speech in-

teraction via remote-microphones and telephone intefaces)

project, which focuses on speech dialogue-based assistant for

wireless command and control of home appliances. Also the

Springer

254 Appl Intell (2006) 24: 253–261

FAZ.NET Fonservice [9] (Frankfurter Allgemeine Zeitung)

project, which focuses on giving speech access to this

German newspaper information. By building a voice frame-

work based on VoiceXML, the dialogue manager becomes

independent not only of the voice technology but also of the

application logic facilitating the system reusability. The de-

velopment of this system has been promoted by the Catalan

government, under the name of aTTemps [10] project.

In this paper we start by presenting, in Section 2, the

services offered by the system and its meteorological data

source, the Catalan Meteorological Service. In Section 3, the

system architecture is presented and a brief description on

how the system works is done. After that, the issues related

to the dialogue manager are discussed in Section 4. Section 5

introduces the language processing. In Section 6 the evalua-

tion of the system is discussed. At the end of the document,

Section 7, we present the conclusions and further work.

2. Meteorological information and services

The information offered by the system is collected by the

Servei Meteorològic Català (SMC) [11] from four different

sources:

(1) The Meteorological Net and the Atmosferic Pollution’s

Surveillance and Forecasting Net nets consists of ninety

one automatic meteorological ground stations, scattered

over the Catalan geography. These stations are constantly

acquiring information on different variables, such as tem-

perature or direction and force of the wind, in order to

supply measures of each of them every half an hour (via

satellite or modem) to the meteorological centre.

(2) The Meteorological and Oceanographic Instruments Net

net consists of four automatic meteorological buoys, scat-

tered over the Catalan coast. These buoys are constantly

acquiring information on maritime variables, such as the

sea disturbances, the ground swell and the height of the

waves, to supply measures of each of them every sixty

minutes (via radio) to the meteorological centre.

(3) The rain forecast which provides information, updated

twice per day, on the rain intensity and areas for the next

thirty six hours.

(4) The weather alarms which provide information, updated

every half an hour, on risk situations such as hailstorms,

danger of floods, avalanches or risk of fires.

2.1. aTTemps services

As we stated in the Introduction section, the system devel-

oped under the aTTemps project can be used in two ways,

depending on the user needs:

(1) Asking for immediate information: The user needs to

know the values of some meteorological variables or the

rain forecast. The system initiates a dialogue to get the

desired variable and the location of interest in order to

provide the information.

(2) Asking for activation/deactivation of a warning. The user

needs to be notified (with an SMS or a voice message)

on the weather conditions either when some meteorolog-

ical conditions occur or at a certain time of the day. The

system initiates the dialogue and saves the user warning

profile in its database.

(3) In all cases the user can ask for information not only

in all the Catalan municipalities (949), but also in larger

areas (regions, mountains, natural parks, etc.), other spots

which have a particular tourist interest (airport, etc.), and

popular abbreviations of names for a total number of

1376 places availables. In addition, if the system does not

have information from the requested place, information

from the closest place (climatologically speaking) will

be provided.

2.2. aTTemps dialogue examples

In this section we present a typical dialogue example, trans-

lated into English, for each aTTemps service in order to give

an idea of the basic interaction between the user and the sys-

tem. In the first one the user is interested in knowing the

temperature in Barcelona; in the second one, the user is in-

terested in being warned when rainfalls in the city of Blanes

go over a certain threshold.

Dialogue 1: Asking about the temperature.

System: Welcome to the aTTemps meteorological warn-

ing and information system.You can always say help,

correction, repetition or exit. From which Catalan place

do you want information, or do you want to establish a

warning?

User: I am interested in Barcelona, please.

System: From Badalona, which information do you need?

User: I want to correct, not from Badalona.

System: From which Catalan place do you want

information?

User: I want to know the weather right now in Barcelona.

System: From Barcelona, which information do you need?

User: I need the temperature, please.

System: In the last measure at 14:30 h, in the meteo-

rological station of Barcelona, the temperature was

20 degrees. Do you need any other information?

User: No, that’s all. Thanks.

System: Thanks for calling. Good bye.

Springer

Appl Intell (2006) 24: 253–261 255

Fig. 1 System architecture

Dialogue 2: Activating the warning system.

System: Welcome to the aTTemps. . .

do you want to establish a warning?

User: I would like to activate a warning.

System: Tell me, digit by digit, the telephone number

where you want to receive the warning. You can also

dial it on your telephone.

User: 6 6 9 5 1 6 1 5 8

System: To the 669 516 158, about which Catalan place

do you want to receive the warning?.

User: About Blanes, please.

System: About Blanes, in which information are you

interested?

User: I need information on rainfalls.

System: Do you want to receive the message if it

rains, if it doesn’t rain or depending on rainfalls

quantity?.

User: Notify me when rainfalls are over 5 liters per square

meter.

System: Which kind of warning do you want to receive? at

a specific date and time, every time rainfalls at Blanes

reach over 5 liters per square meter, or just the first

time?

User: I want you to notify me every time, please.

System: Do you want to be notified with an SMS or a

phone call?

User: An SMS will be ok.

System: Ok, you will be notified with an SMS to the

669 516 158 every time rainfalls at Blanes reach over

5 liters per square meter. Is this correct?

User: Yes.

System: The warning has been correctly registered, do you

want any other information?

User: No, I don’t. Thanks.

System: Thanks for calling, good bye.

3. System architecture

Two separate developments were done for the dialogue man-

aging which affected the whole system architecture. The first

one was based on a traditional architecture while the second

one was based on a VoiceXML-oriented architecture. In this

paper we are going to talk about the VoiceXML-oriented

architecture.

The system is made up of four main blocks , as can be

seen in Fig. 1, which correspond with: (1) the VoiceXML

framework, which integrates the speech processing and the

telephony hardware, (2) the VoiceXML dialogue manager

(made up of VoiceXML documents and the application logic

both in the web server), which integrates the dialogue control

and the language generation, (3) the system databases and (4)

the data acquisition module, which provides the real-time

meteorological contents by accessing the SMC server.

A short overview of all modules (excluding the one of the

dialogue manager that is going to be explained in detail in

Section 4) is done in this section. A more detailed overview

of this system can be found in [12].

The VoiceXML framework is made up, as can be seen in

Fig. 2, on the basis of the OpenVXI 2.0 [13] interpreter from

SpeechWorks [14]. This interpreter allows easy integration

of telephony and speech processing components by means

of APIs where specific developments are done in order to in-

tegrate the Dialogic [15] components for telephony purposes

and the Ibervox [16] (cf. Section 4.5) components for speech

processing purposes.

The databases module is composed of two main databases

which store the two kinds of information that the system must

maintain: the meteorological data and the user’s profiles for

warnings. The first one (referred from now on as meteoro-

logical database) is stored in a relational database which is

updated constantly by the data acquisition module. While the

second one (referred from now as user database) is stored in

Springer

256 Appl Intell (2006) 24: 253–261

Fig. 2 VoiceXML framework structure

a LDAP (Lightweight Directory Access Protocol) database

in order to optimize searches. This database is updated every

time that a user activates or deactivates a warning message.

The data acquisition module consists of a process that ac-

quires, every half an hour, the meteorological data in real

time from the SMC databases and updates the local meteo-

rological database. This process guarantees that we get the

new data as soon as there is in the remote database.

The system works as follows:

(1) The framework waits for a telephone call.

(2) When a call is received, the root VoiceXML document

of the dialogue manager is executed by the framework.

(3) This execution causes the reproduction of the welcome

message (by means of the voice technology integrated

in the framework) that gives a little notion about how to

interact with the system.

(4) Then the system asks to the user about which information

he/she wishes.

(5) The grammars that should pick up the user’s answer are

loaded.

(6) When the user answers, his/her reply is given back to the

document. Once the reply is received, the execution of

the document can go on.

(7) Depending on the user needs, the dialogue manager will

ask another question to the user or will do a request on

the server to get data from the database. In that last case,

the query is sent to the database interface and the result

is picked up and used, in the server, to build a document

with dynamic content that will be sent to the framework

for execution.

(8) Once all user requested data has been collected, the sys-

tem provides the meteorological information (contained

in the dynamically generated document) to the user in

natural language or takes record of the warning profile

for that user.

4. The dialogue manager module

The main goals of the dialogue manager are: to provide the

right information in the minimum time, to be a friendly oral

natural language interface that facilitates as much as possible

the interaction with the user, and to guide the user in order

to avoid situations where he/she would be lost. Setting up

the dialogue manager strategy we have to take into account

several factors including the dialogue flow, the confirmation

policy, the amount of data per turn, the helping features and

the language generation.

4.1. Dialogue flow

The dialogue is made up of turns in which typically a ques-

tion, as clear as possible, is made to the user guiding him/her

to the kind of answer expected by the system in each turn.

The scope of the turn is defined in such a way that there is no

possible ambiguity in the user utterance. Once the user has

answered, the system processes the input and, if succeeded,

initiates the next turn that can contain another question or a

message to the user. If the system is unable to process the in-

put, then the helpling policy is activated as will be explained

later. As it is seen, the automatic system takes the initiative

guiding the dialogue, but it lets the user to answer with a

great range of syntactic possibilities. This range covers all

the usual expressions in Catalan language for each turn. In

the case of using an unknown expression for a given turn, the

system is able to ignore the expression and parse the input as

long as a key word (e.g. temperature, a time, etc.) has been

recognized. So, the semantic interpretation is made by trying

to match the parser’s output to semantic templates, and, if

this fails, by working directly on the parser’s output look-

ing for key words. An important feature of the system is the

fact that it lets the user to interrupt the system’s messages at

any time in order to ask for help or repetition or even to an-

swer a question before it is finished. This last property, called

barge-in, strengthens the fluency, naturalness and speed of

the dialogue by shortening turns when a mistake is done or

when the system faces an expert user who knows what the

system is going to say, just listening to the beginning of the

message. Taking into account all this factors, the flowchart of

the dialogue was designed in order to improve naturalness,

as can be seen in Fig. 3.

4.2. Confirmation policy

Every utterance got from the user must be confirmed in or-

der to be sure that the system successfully understood what

the user was saying. This is done by means of two different

confirmation policies: explicit and implicit. Explicit confir-

mations are used to confirm either critical information or a

big set of data by means of a direct question to the user,

Springer

Appl Intell (2006) 24: 253–261 257

Fig. 3 Dialogue flow

asking him/her whether the last information acquired was

correct or not. Implicit confirmations can be used to confirm

every data got from the user, the data appear by means of a

short sentence at the beginning of the next question and thus

without penalizing the fluency of the dialogue with an extra

question.

In this work we mixed both policies, using implicit confir-

mations as a general rule, while explicit confirmations were

used to confirm critical information or the final step of a

whole process. Giving as a result not only an effective inter-

face, but also a natural dialogue flow between the human and

the system. Examples of both policies can be seen in Table 1.

4.3. Amount of data per turn

The amount of data captured by the system in one turn is

closely related, on the one hand, to the user’s predisposition

and naturalness in giving more than one data in the same

turn, and on the other hand, to the complexity of the task

associated with each turn. We kept the balance between both

aspects by recognizing more than one data only in turns that

did not involve a high complexity task, like the one of getting

the temperatures between the user wants to be notified, but

isolating hard tasks, such as the one that gets the municipality,

in order to improve its recognition success.

4.4. Helping features

The helping features have been focused on two points. Firstly,

a set of Catalan key words/expressions, as it can be seen in

Table 2, has been defined in order to help the user to interact

with the system. This key words can be accessed by saying the

exact word or just an expression containing a key word (e.g.

“Help”, “Help me, please”, “I need some help”). Secondly,

an automatically adaptable helping message policy has been

set up.

During the preliminary evaluation of the system, we de-

tected that the users missed more messages telling them what

they could do in every moment. However, repeating in each

turn helping information involves penalizing the fluency of

the dialogue because we could substantially increase the time

spent in most dialogues. So we decided to take an inter-

mediate solution. In the beginning, the system provides an

initial message where welcomes the user, introduces itself

Table 1 Confirmation policies
used Implicit confirmations Explicit confirmations

User: I am interested in Barcelona. System: Do you want to delete this warning?

System: About Barcelona, which User: Yes.

information do you want?.

User: 669 516 158. System: ok, you will be notified

System: To the 669. . . about which with an SMS to the 669. . . is this correct?.

Catalan place do you want. . . ? User: Yes.

Table 2 Catalan key
words/expressions Key word or expression What the What the system does

(Translated to English) user needs when detects the situation

“I need help”, “Help”. . . Help Throws a helping message

“Could you repeat?”, “Repeat”. . . Repetition Throws the last message

“I want to correct”, “Correction”. . . Correction Asks for the last value given

Springer

258 Appl Intell (2006) 24: 253–261

Fig. 4 Developing IS without
and with voice framework

and notices the user about the key words/expressions and its

use: “Welcome to the Catalan government meteorological
warning and information system. You can always say help,
correction, repetition or exit”. During the dialogue, an auto-

matically adaptable help service only provides help when the

system detects the user did not understand something or has

problems to continue with the dialogue. This help service is

activated when one of the following three different situations

is detected: the user keeps quiet, the user says something that

is not understood by the system, or the user explicitly asks

for help.

4.5. Language generation

The language generation has been done using templates that

are dynamically filled with the adequate data to originate the

final messages reproduced to the user. An example of tem-

plate is “In the meteorological station of [place] the [variable]

at [hour] is [value] [measure]” which, once filled, can result

for instance in “In the meteorological station of Blanes the
temperature at 8:30 is 20 degrees”.

However, in order to introduce variability and more nat-

uralness in the system’s answer, the history of the dialogue

and a set of different templates with the same meaning is

kept. So in each turn of the dialogue the system gives its

answers using different templates for the same kind of in-

formation. In addition, the system is ready to include a com-

plete text generation module [17] designed for aTTemps, and

based on linguistic components. This text generation module

is already integrated in the non VoiceXML-oriented system

development.

4.6. Implementation

Structurally the dialogue has been built by means of a set of

VoiceXML dialogue documents, stored in a web server, that

contained each one a differentiated part of the dialogue. For

example, the initial document gives the welcome message,

gets the first utterances from the user and invokes the doc-

ument containing the part of the dialogue that fits the user

needs. This VoiceXML document has been included in the

Appendix.

As we stated before, we decided to make the develop-

ment of the dialogue manager as independent as possible

from the managing of the speech technology in order to

clarify the dialogue manager, and also to build a dialogue

independent platform that can be easily reused by dialogue

managers for other domains than the meteorological one.

So we built a framework for dialogue managers and the

dialogue manager itself based on the VoiceXML language,

enabling telephony applications to be developed in an open-

standards based environment. In Fig. 4 it is shown how the

portable framework among different domains application

changes the development of this kind of information systems

(IS). Without the voice technology integration framework,

both the voice technology and the dialogue manager de-

velopment had to be mixed. While now, with the frame-

work, we can develop the dialogue manager much more

independently. For a deeper description of the framework

see [18].

5. The language processing

As we stated in previous sections, Ibervox has been used as

the text-to-speech (TTS) and automatic speech recognition

(ASR) engine in the Catalan language. The ASR engine is

based on Hidden Markov Models, uses non-stochastic gram-

mars and filling words, and for every utterance provides a

confidence recognition measure. When this measure reaches

over an empirically tuned value, the utterance is validated

(for more details on how to get this value see [19]). A major

issue here was the grammar management, which involved co-

ordination not only between the VoiceXML interpreter and

the ASR engine, but also between the ASR and TTS engine

to support the barge-in property.

Springer

Appl Intell (2006) 24: 253–261 259

The ASR grammars have been developed following the

Augmented Bacus-Naur Form (ABNF) [20] that is used to

specify languages, protocols and text formats. All grammars

have been designed in order to give the user as much flexi-

bility as possible. A grammar example, inside a VoiceXML

document, can be seen in the Appendix.

Regarding to the interpreter and ASR engine coordination,

we found that the syntactic parser offered by the interpreter

only admits word lists, that is, with no syntactic structure.

That is totally insufficient if real applications are going to be

implemented over this framework. So an ABNF parser was

implemented and coordinated with the ASR engine in order

to accept a wider and richer range of grammatical construc-

tions from the user.

Concerning the ASR and TTS coordination, in order to

give full support to barge-in property, two different repro-

duction policies were applied depending on the property ac-

tivation:

1. With barge-in activated, speech reproduction and recog-

nition must be thrown simultaneously. This means that

grammars must be compiled by the ASR engine before

playing any message. In order to simplify the prompt

management the system stores prompts in a buffer by

means of basic blocks, where a basic block is a sequence

of prompts which are not cut by any play action. There-

fore the prompts are not reproduced as soon as the system

processes them but when a play event is thrown (which is

usually followed by a speech recognition action). Recog-

nition and play functions are stopped when a termination

event from either is detected, letting the user to interrupt

the system messages whenever s/he wanted.

2. With barge-in defused, taking advantage of the TTS

asynchronous capabilities, prompts are reproduced as

soon as they arrive to the buffer in order to avoid uncom-

fortable and unnecessary silences caused by big grammar

processing or long calculus performance. Therefore the

system can go on while reproducing a message.

As a rule, we always maintain barge-in activated except

when an explicit confirmation is required from the user.

6. Evaluation

Two evaluations campaigns were done while developing the

system in order to accomplish three general objectives: to

assess the effectiveness of the user-machine communication,

to evaluate the global performance of the system, and to

identify the possible lacks of the system that may have kept

unnoticed to the people involved in the project. These evalu-

ations became a part of the development process that helped

to improve the system having into account the user opinion.

Each evaluation consisted in giving user satisfaction sur-

veys to the users, who answered filling a form on a web site.

We decided to carry out an opinion poll letting two different

groups of users interact with the system and polling them

afterwards in order to determine which were the lacks of

the system. The first group was made up of 17 colleagues

not involved directly in this work; and the second one, with

general public (19 persons). In the web site, the users were

asked to specify the degree in which they agree (from 1 for

“completely disagree” to 6 for “completely agree”) with 14

statements about the system. The form was divided into two

parts: a mandatory one, with 6 statements; and an optional

one, with 8 more statements. These statements were oriented

to determine whether the speech recognition and the text-to-

speech component were working properly, the flow of the

dialogue and the behaviour of the system were natural and

predictable, the user knew in every moment the actions that

he/she could take, the help provided was useful, the repair

strategy was useful and easy, and which were the parts of the

dialogue where the user had a higher difficulty to success. In

this preliminary evaluation we obtained an average of 3.68

and 3.43 (over 6) for each evaluation campaign. These results

are good enough taking into account that have been obtained

while developing the system.

7. Conclusions and future work

We have described a working automatic information system

that provides two different services: on one hand, to obtain

information about real-time and personalized meteorologi-

cal data, and on the other hand, to manage a meteorological

warning service. Both services are accessed through a natu-

ral language interface, in the Catalan language, and help is

provided when needed.

The main advantages of the architecture of our system

are: it separates the dialogue control, not only from the man-

aging of the voice technology but also from the application

logic, it provides a portable dialogue manager among dif-

ferent voice technologies, it provides an easily changeable

interface, and it provides a portable voice framework among

different domains application. All this occurs as a result of

the VoiceXML standard based design and its architecture that

clearly encapsulates every functional area in an independent

component empowering the system reusability.

There are some points that can be improved. Firstly, the

grammars can be enriched to recognize a greater range of

utterances from the user. Secondly, regarding extensibility,

system messages and grammars can be translated to other

languages in order to incorporate speech tools in other lan-

guages satisfying tourists needs. And finally, the text gen-

eration module [17] should be included to introduce more

naturalness in the system answer.

Springer

260 Appl Intell (2006) 24: 253–261

Acknowledgments This project has been developed in collaboration

with the Catalan Meteorological Service, Mensatec and Atlas compa-

nies, and the Phonetic Group of the Department of Filologı́a Espan̄ola

at the Autonomous University of Barcelona. In the complete de-

velopment of aTTemps system have actively participated Febrer A.,

Rodrı́guez H., Bonafonte A., Marin̄o J.B., Nadeu C. and Fonollosa
J.A.R.

Appendix

This is the VoiceXML application main document which

welcomes the user, asks for some data and redirects the

execution to the appropriate auxiliary documents or cgi’s.

Default treatment for events are defined at the beginning

of the document, and can be overlapped with the ones

defined in each field. Every field has one or more grammar

associated which can be inline or external.

<?xml version=“1.0” encoding=“iso-8859-1”?>

<vxml version=“1.0”>

<property name=“bargein” value=“false”/>

<link event=“correct”>

<grammar type=“application/grammar”

src=“http://localhost/gramatics/correct.grm”/>

</link>

<link event=“help”>

<grammar type=“application/grammar”

src=“http://localhost/gramatics/help.grm”/>

</link>

<link event=“repetition”>

<grammar type=“application/grammar”

src=“http://localhost/gramatics/repetition.grm”/>

</link>

<catch event=“correction”>

<prompt>Correction not available at this part of

the dialogue.</prompt>

<reprompt/>

</catch>

<catch event=“help”>

<prompt> Say help if you need more information

about a turn, say repetition to hear again

the last turn or say correction to modify last turn.

</prompt>

<reprompt/>

</catch>

<catch event=“repetition”>

<reprompt/>

</catch>

<catch event=“nomatch”>

<prompt>Can you repeat, please?</prompt>

<reprompt/>

</catch>

<catch event=“nomatch” count=“2”>

<prompt>Sorry, I can not understand you. Can you

repeat, please?</prompt>

<reprompt/>

</catch>

<catch event=“noinput”>

<prompt>Sorry, I didn’t hear you. You should

answer the question.</prompt>

<reprompt/>

</catch>

<form id=“aTTemps”>

<prompt> Welcome to the aTTemps meteorological

warning and information system. </prompt>

<field name=“place”>

<catch event=“help”>

<prompt> You should say the whole name of the

Catalan place from which you want information.

For example: “Sant Feliu de Guixols”. Or say

“warning” to establish a warning. </prompt>

<reprompt/>

</catch>

<prompt> From which Catalan place do you

want information <break msecs=“100”/> or

do you want to establish a warning? </prompt>

<grammartype=“application/grammar”

src=“http://localhost/gramatics/place.grm”/>

<filled>

<if cond=“place == warning’”>

<assign name=“variable” expr=“false”/>

<else/> <goto nextitem=“variable”/>

</if>

</filled>

</field>

<field name=“variable”>

<catch event=“correct”>

<clear namelist=“place”/>

<reprompt/>

</catch>
<catch event=“help”>

<prompt> You should say the meteorological

variable <break msecs=“100”/> in which you are

interested. For example: “temperature”.</prompt>

Springer

Appl Intell (2006) 24: 253–261 261

<reprompt/>

</catch>

<prompt>About <value expr=“place”/>, which

information do you need?.</prompt>]

<grammar>

#ABNF 1.0 ISO8859-1;

$SIL = “[SIL] ” {} | “[H]” {};

root $variables = $SIL* ([$filler 1] |
la direcció del vent {wind’s direction}

| la velocitat del vent {wind’s speed} |
l alcada de les onades {waves’ height}

| la temperatura {the temperature} |
les precipitacions {the rainfalls}

| l estat de la mar {sea state} |
la mar de fons {groundswell}) | $SIL)

$SIL*;

$filler 1 = (vull {want} | voldria {would like})

((saber {to know} | coneixer{to know})

([quina es {which is}] | [quines son{which are}]) |
informació {information}
[(sobre{about} | de{from})]) | de {from};

</grammar>

<filled>

<submit

next=“http://localhost/cgi-bin/cgi Acimet”

method=“get” namelist=“place variable”/>

</filled>

</field>

<field name=“warning”>

<catch event=“correction”>

<clear namelist=“variable”/>

<clear namelist=“place”/>

<reprompt/>

</catch>

<catch event=“help”>

<prompt> You should say the complete telephone

number <break msecs=“100”/> to which

you want to be notified. You can also dial the

number on the keyboard.</prompt>

<reprompt/>

</catch>

<prompt>Say or dial digit by digit the telephone

number to which you want to be notified.</prompt>

<grammar type=“application/grammar”

src=“http://localhost/gramatics/telf dtmf.grm”/>

<grammar type=“application/grammar”

src=“http://localhost/gramatics/telf voice.grm”/>

<filled>

<submit next=“http://localhost/cgi-bin/

cgi Acimet warnings”

method=“get” namelist=“warning”/>

</filled>

</field>

</form>

</vxml>]

References

1. TRINDI project: http://www.linglink.lu/le/projects/trindi
2. Lamel L, Rosset S, Gauvain JL, Bennacef S (1999) The limsi arise

system for train travel information. In: Proc. of ICASSP, pp. 501–
504

3. Allen JF, Miller BW, Ringger EK, Sikorski T (1996) A robust sys-
tem for natural spoken dialogue. In Proc. of ACL, pp. 62–70

4. Álvarez J, Arranz V, Castell N, Civit M (2001) Linguistic
and logical tools for an advanced interactive speech system in
spanish. In: Proc. Int. Conf. IEA/AIE, LNAI 2070, pp. 519–
528.

5. Cohen M, Rivlin Z, Bratt H (1995) Speech recognition in the ATIS
domain using multiple knowledge sources. In Proc. of the ARPA
Spoken Language Systems Technology Workshop, Austin, Texas,
pp. 257–260

6. Zue V, Seneff S, Glass JR, Polifroni J, Pao C, Hazen TJ,
Hetherington L (2000) Jupiter: A telephone-based conversational
interface for weather information. IEEE Trans. on Speech and Au-
dio Processing, 8(1) 85–96

7. W3C, Voice eXtensible Markup Language (VoiceXML) version
2.0, Feb. 2003. http://www.w3.org/TR/voicexml20

8. INSPIRE project: http://www.inspire-project.org
9. FAZ.NET project: http://www.hltcentral.org/page-1058.shtml

10. Padrell J, Hernando J, aTTemps access to meteorological informa-
tion by telephone. In: Proc. of ICSLP, Denver, EEUU, vol. 4 pp.
2713–2716

11. Servei Meteorològic Català. http://smc.gencat.es
12. Villarejo Mun̄oz L, (2002)Gestor de diálogo de un sistema de in-

formación meteorológica, in Spanish, Master Thesis in Informatics

Engineering, FIB
13. Eberman B, Carter, Meyer D, Goddeau D (2002) Building

VoiceXML J. Browsers with OpenVXI www2002.org/CDROM/
refereed/260/index.html

14. SpeechWorks, provider of over-the-telephone automated speech

recognition solutions. http://www.speechworks.com
15. Dialogic, supplier of computer telephony products. http://www.

dialogic.com
16. Ibervox from Atlas-CTI http://www.atlas-cti.com/es/ibervoxasr.

htm
17. Garcı́a Zorrilla P (2002) Sistema d’accés en llenguatge natural a

informació meteorològica, in Spanish, Master Thesis in Informatics
Engineering, FIB

18. Villarejo L, Hernando J, Castell N (2003) VoiceXML in a real
automatic meteorological information system. Berlin XML Days.
Berlin, Germany

19. Hernando J, Padrell J, Bonafonte A, Castell N, Mariño JB, Nadeu
C, Fonollosa JAR, Rodrı́guez H, Abad A, Villarejo L, aTTemps:
A meteorological information service through the telephone net-
wor, U.P.C. Politechnical University of Catalun̄a, Spain, Internal
Report

20. http://www.w3.org/TR/speech-grammar/

Springer

