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Abstract. This paper presents a novel framework for thyroid ultrasound image 

segmentation that aims to accurately delineate thyroid nodules. This 

framework, named GA-VBAC incorporates a level set approach named 

Variable Background Active Contour model (VBAC) that utilizes variable 

background regions, to reduce the effects of the intensity inhomogeneity in the 

thyroid ultrasound images. Moreover, a parameter tuning mechanism based on 

Genetic Algorithms (GA) has been considered to search for the optimal VBAC 

parameters automatically, without requiring technical skills. Experiments were 

conducted over a range of ultrasound images displaying thyroid nodules. The 

results show that the proposed GA-VBAC framework provides an efficient, 

effective and highly objective system for the delineation of thyroid nodules.  

Keywords: Level Sets, Active Contour Models, Genetic Algorithms, 

Segmentation, Thyroid, Ultrasound. 

1   Introduction 

The inherent inhomogeneity of ultrasound medical images poses a challenge to image 

analysis researchers in developing accurate segmentation methods for ascertaining the 

shape features of tissue masses within living organisms. Despite the advantages of 

ultrasonic imaging in medicine [1], the images produced are highly distorted by noise 

and speckle [2], whereas their clinical assessment is subject to the radiologists’ 

expertise. A frequent task assigned to radiologists is the assessment of nodules in 

thyroid ultrasound images. Thyroid nodules are solid or cystic lumps formed in the 

thyroid gland. Their prevalence increases with age and they afflict more than 50% of 



the world's population [3]. The echogenicity, the size and the shape of the thyroid 

nodules comprise a set of malignancy risk factors that should always be considered by 

the clinicians before proceeding to fine needle aspiration biopsy. Epidemiological 

studies have showed that hypo-echoic nodules with irregular borders are more likely 

to be or to evolve into malignant tumors [4]. Therefore, a computational model that 

could accurately delineate thyroid nodules would definitely be an aid, even to 

experienced radiologists, by providing a second opinion for the characterization of 

nodules based on explicit image features.  

In this paper we propose a novel framework that aims to accurately delineate 

thyroid nodules in ultrasound images. It incorporates an image segmentation approach 

that reduces the effects of the intensity inhomogeneity in the thyroid ultrasound 

images and a Genetic Algorithm (GA) that automatically tunes the parameters 

involved.  

The rest of this paper is organized in six sections. Section 2 reviews previous 

ultrasound image segmentation approaches. Section 3 describes the segmentation 

approach we have developed. The proposed framework for automatic delineation of 

thyroid nodules is described in Section 4. The results from the application of the 

proposed framework on real thyroid ultrasound images are apposed in Section 5. 

Finally, Section 6 summarizes the conclusions of this study and suggests future 

research perspectives. 

2   Ultrasound Image Segmentation 

Image segmentation approaches that have been proposed for the delineation of objects 

in ultrasound images, include thresholding [5], region growing [6]-[8], classification 

[9], clustering [10], wavelet analysis [11], mathematical morphology [12], genetic and 

fuzzy algorithms [13],[14].  

Simple intensity thresholding may be sufficient for the segmentation of images 

containing regions with intensity values that exhibit small variance and do not overlap 

with the intensity values of another region. A more sophisticated thresholding 

approach developed for the segmentation of ultrasound images that contain 



homogeneous regions, has been proposed in [5]. It employs a linear combination of 

gray level and local entropy for the delineation of ovarian cysts surrounded by soft 

tissue. The cysts contain transparent fluid and appear as dark homogeneous regions 

characterized by a narrow gray level distribution. The soft tissue appears bright and 

has a much wider intensity distribution. However, ultrasound images commonly 

contain inhomogeneous regions which may cause thresholding approaches to fail 

[15]. 

Region growing image segmentation methods usually involve the definition of an 

initial set of seed pixels and the growing of a uniform and connected region from each 

seed, according to an appropriately selected homogeneity criterion [6]-[8]. Their main 

advantage is that they are insensitive to local perturbations as they test the statistics 

inside the region. Approaches of this class are sufficient for the segmentation of 

homogeneous image regions. Ultrasound images contain speckle noise, tissue texture 

and artifacts which may lead to boundary discontinuities, small holes in the delineated 

regions, as well as to the delineation of incorrect regions [16],[17]. Moreover, the 

resulting segmentation depends on the choice of seed pixels [18], and human 

interaction may be required [19].  

Image feature extraction approaches followed by classification or clustering of the 

resulting feature vectors have also been applied for the segmentation of ultrasound 

images. The methodology described in [9], involves the extraction of simple gray-

level histograms from square regions of ultrasound images, and their classification by 

an SVM classifier. The size of the considered square regions is selected empirically 

and the optimal values of the SVM parameters are determined according to [20]. The 

resulting feature vectors are large, leading to a rather time consuming segmentation 

phase.  

A k-means clustering approach that utilizes features derived from the wavelet 

transform coefficients of the image for the segmentation of breast ultrasound images 

has been proposed in [10]. This clustering approach can be time efficient [21] but it 

involves empirically determined parameters and, just like thresholding and region 

growing approaches, it tends to fail to segment images that contain inhomogeneous 

regions [6]. 



Noise reduction via pre-processing, is commonly necessary before the application 

of the previously described methods. In [11] it is shown that the segmentation 

performance could be enhanced by nonlinear wavelet filtering of the ultrasound 

images followed by soft thresholding of the wavelet coefficients. 

Morphological filtering involves the modification of the spatial form or structure of 

the objects within an image. Its applications include the segmentation of ultrasound 

images for the measurement of the fetal femur length and the estimation of the 

gestational age [12]. This method preserves the shape information of the objects of 

interest but it requires additional edge-linking operations to improve the connectivity 

of the resulting contours.  

In [13], a genetic algorithm applies for the search of contours in ultrasound images 

of human legs. This algorithm assumes that the contours are modeled by closed cubic 

splines and searches for contours that best fit to this model. It accomplishes automatic 

image segmentation and avoids noise diversions; however, it converges to contour 

solutions that are constrained by the particular model.  

A fuzzy approach to segmentation of ultrasound images has been proposed in [14]. 

This method applies fuzzy logic for edge detection using appropriately selected edge 

membership functions. As with morphological filtering, edge-linking post processing 

is necessary for obtaining continuous contours.  

The application of active contour models for ultrasound image segmentation has 

been gaining increasing interest over the previously described methods. They are self-

adapting models that lead to continuous, closed or open, curves without requiring 

edge-linking operations. Active contour models span two categories: parametric and 

level set. They both share a common underlying idea: initial contours deform towards 

the boundaries of image regions with common features. Parametric active contour 

models are local methods based on an energy-minimizing spline guided by external 

and image forces, which pull or push the spline toward features such as lines and 

edges in the image. Level set active contours are also energy minimization techniques 

that solve the computation of geodesics or minimal distance curves [22]. They can be 

used for the delineation of multiple objects in an image, whereas the parametric active 

contours are not so flexible to allow topological changes of the contour during its 

evolution. The utility of the level set approaches in medical image segmentation is 



becoming clear in various medical applications such as in the automatic quantification 

of the ventricular function [23], in prostate [24] and in cardiac ultrasound image 

segmentation [25].  

A state of the art level set approach to image segmentation is the Active Contour 

Without Edges (ACWE) model [26]. ACWE can be relatively insensitive to noise, as 

it involves integral operators, which provide an inherent noise filtering mechanism 

[15]. Therefore, it does not require any noise reduction pre-processing of the input 

images, the boundaries of the objects of interest are preserved and can be accurately 

detected. Moreover, the ACWE model does not impose any significant initialization 

constraint and allows the detection of objects whose boundaries are either smooth or 

not necessarily defined by gradient. In such cases the standard active contour models 

commonly fail and result in boundary leakage. Although the ACWE model can be 

advantageous for ultrasound image segmentation compared with the previously 

described methods, it is sensitive to intensity inhomogeneity leading to less accurate 

segmentation. 

Motivated by the ACWE model [26] we developed an improved level set approach 

named Variable Background Active Contour model (VBAC). This model utilizes 

variable background regions, to reduce the effects of the intensity inhomogeneity in 

the thyroid ultrasound images, which include speckle noise, tissue texture and 

calcifications. The improved performance of VBAC over the ACWE model for the 

delineation of thyroid nodules has been demonstrated in [27]. 

A drawback in the application framework of active contour models to ultrasound 

images, including that of VBAC, is that it is device dependent; meaning that for the 

segmentation of images acquired from different ultrasound imaging devices, or from 

the same imaging device using different settings (e.g. dynamic range), a set of 

different parameter values is required. In most cases parameter tuning requires 

technical skills and time-consuming manual interaction, which could hardly be 

performed by physicians. Hence, the routine use of active contour models in medical 

image segmentation has been so far limited. The requirement of manual interaction 

can be overcome if we consider automatic parameter tuning. 

Automatic parameter tuning has received very little attention in active contour 

literature, even though the choice of the parameters can be critical for the image 



segmentation performance. For example, in [28],[29] the tuning of the model 

parameters relies basically on empirical observations. There has been only a limited 

number of studies that deal with the problem of parameter tuning in active contour 

models, and these include a bound setting approach [30], an unsupervised method 

based on a minimax criterion [31], and GAs as a supplement to Taguchi approach for 

fine-tuning the parameters of a parametric active contour model for cardiac ultrasound 

image segmentation [32].   

In order to cope with the automatic tuning of VBAC parameters so as to obtain 

accurate delineation of thyroid nodules, we introduce a novel framework that 

combines VBAC with a GA. The proposed framework will be referred to as GA-

VBAC.  

3   Level Set Formulation 

3.1 Active Contour Without Edges 

The ACWE model as posed in [26] has the form of a minimization problem: Let Ω  

be a bounded open subset of 2R  and Ω∂  its boundary. We seek for the infimum of the 

energy functional ),,( CccF −+ ,  
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where  Ru →Ω:0  is the input image,  2]1,0[:)( RsC →  is a piecewise parameterized 

curve, +c  and −c   represent the average value of 0u   inside and outside the curve and 

parameters 0>µ   and 0, >−+ λλ  are weights for the regularizing term and the fitting 

terms, respectively. This problem is a special case of the minimal partition problem, 

for which the existence of minimizers has been proved in [33]. As in the minimum 



energy problem, the minimizer corresponds to the “equilibrium” of the regularizing 

and fitting terms that force the contour to stop.  

In the level set method [34], Ω⊂C  is represented by the zero level set of a 

Lipschitz function ,: R→Ωφ  such that 

}0),(:),{()(
},0),(:),{()(

},0),(:),{(

<Ω∈=
>Ω∈=

=Ω∈=

yxyxCoutside
yxyxCinside

yxyxC

φ
φ

φ

. 

(2) 

Using the one-dimensional Dirac function δ and the Heaviside function H, which 
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where z∈R, the average foreground and background intensities +c  and −c  can be 

determined by 
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By keeping +c  and −c  fixed, and minimizing F  with respect to φ , the associated 

Euler-Langrange equation for φ  is deduced. For this purpose, slightly regularized 

versions of H  and d are considered. The regularized Heaviside function 
εH  is a 

continuously differentiable function for all degrees of differentiation and it is derived 

as follows 
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whereas the corresponding regularized delta function εδ  is derived from 

dzdHεεδ = . As 0→ε , both approximations converge to H  and d. These 

approximations allow the algorithm to compute a global minimizer, as described in 

[26]. 

Parameterizing the descent direction by an artificial time 0≥t , ),,( yxtφ , (with 

),(),,0( 0 yxyx φφ =  defining the initial contour) is determined by the following 

equation 
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where yVxVdiv ϑϑϑϑ 21)( +=V  is the divergence of a vector ),( 21 VV=V  and 

Ω∈∞∈ ),(),,0( yxt ,  

A discretized and linearized version of (7) is: 

[ ]]))(())(([)(

]))(())(([)(

2
,,0

2
,,0,,

1
,

2
,,0

2
,,0,

,
1

,

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

cucuKt

cucuK
t

φλφλµφδφφ

φλφλµφδ
φφ

−−+++

−−++
+

−+−−⋅+⋅∆=

⇒−+−−⋅=
∆

−
 (8) 

where t∆  is the time step, ),( ji yx  are the grid points for Mji ≤≤ ,1 , M represents 

the number of points on each side of grid, ),,(, ji
n

ji yxtn∆= φφ  and ),(0,,0 jiji yxuu =  

are approximations of ),,( yxtφ  and ),(0 yxu  respectively, with 0≥n . The curvature K 

of φ   is obtained from 
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where x∂∂ /φ , y∂∂ /φ  are calculated by sji
x ∆∆ /,φ , sji

y ∆∆ /,φ , jijiji
x

,,1, φφφ −=∆ + , 

jijiji
y

,1,, φφφ −=∆ +  and s∆  is the step between two consecutive grid points of the 

discrete space. 

In a practical implementation, a criterion should force the algorithm to stop when a 

stationary solution is reached. This criterion can be expressed as follows: 
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and 'M  is the number of grid points for which sm
ji ∆<|| ,φ .  

A limitation of the ACWE model is that it assumes approximately piecewise 

constant intensities for object and background regions. This assumption is violated in 

thyroid US images where intensity inhomogeneities are present in the background 

image region with a consequent negative impact on the delineation of hypo-echoic 

nodules. 

3.2 Variable Background Active Contour Model  

Aiming to surpass the limitation of the ACWE model resulting from its assumption of 

approximately piecewise constant image intensities and in order to enhance the 

delineation accuracy of hypo-echoic nodules in the presence of intensity 

inhomogeneities, we introduce the Variable Background Active Contour (VBAC) 

model. This model utilizes a variable background from which inhomogeneities are 

excluded. The remaining background regions are expected to be approximately 

constant and thus the assumption of constant background intensities used in the 

ACWE model is better approximated.  

The intensity inhomogeneity affects −c , which is defined in (5) as the average 

background intensity. The VBAC model incorporates a new −c  which is calculated 

as the average of the remaining background from which inhomogeneity regions are 

excluded.  

We define the difference )),(( yxD φ  as 

)),(()),(()),(( yxHayxHyxD φφφ −+=   (12) 

where α  is a positive constant. Its value is determined so that ]0,[ a−  defines the 

acceptable range of ),( yxφ  for a point ),( yx  to be included in the variable 



background. Equations (6) and (12) imply that the points ),( yx  for which 

]0,[),( ayx −∉φ  result in 0)),(( ≈yxD φ . These points that correspond to intensity 

inhomogeneities within the region of interest, cause abrupt changes of φ , and result in 

)),(()),(( yxHayxH φφ =+ . Moreover, we assume that the initial contour as traced by 

0φ  corresponds to a region of interest within the thyroid gland and we employ )( 0φH  

to restrict the calculation of the average foreground and background intensities +c  

and −c  over this region. Equations (4) and (5) are reformulated as follows 
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Equation (14) imposes that a point Ω∈),( yx  is not included in the calculation of −c  

if 0)),(( =yxD φ . The VBAC model is finally described by (7),(12)-(14). 

 
[FIGURE 1] 

 
The VBAC algorithm can be summarized as follows 

 

Step 1.  Initialize 0←n , 0
0 φφ ←  

Step 2.  Calculate )( nD φ  by (12) 

Step 3.  Calculate )( nc φ+  and )( nc φ−  by (13) and (14) 

Step 4.  Calculate 1+nφ  by (8) 

Step 5.  If inequality (10) is true Then End 

Step 6.  1+← nn  

Step 7.  Repeat Steps 2 to 6. 

 



As the algorithm proceeds the term −c  varies, resulting in a variable background. 

For example, Fig. 1(a) illustrates a snapshot of the contour, Fig. 1(b) the pixels 

considered as background and Fig. 1(c) the function ),( yxφ  at a random iteration of 

the algorithm. The sparsity of the background in Fig. 1(b) reveals the selectivity of 

VBAC. Pixels belonging to calcifications and other inhomogeneities in the thyroid 

ultrasound image have been excluded from the background. The 3-dimensional 

diagram illustrated in Fig. 1(c) displays ),( yxφ  crossing the zero-level plane on which 

the image resides. The active contour is formed by the set of pixels belonging to the 

cross-section of ),( yxφ  with this plane. 

 

4   Genetic Optimization Framework 

A naive approach to tuning the four VBAC parameters, namely +λ , −λ , µ  and α , 

for segmentation of images acquired from an ultrasonic imaging device, is the 

exhaustive search of all possible solutions in a discretized parameter space. Such an 

approach can lead to optimal parameter values but it is time consuming, to an extent 

that it could be prohibiting for medical application on routine basis. Also, many 

researchers in the field of active contour applications commonly employ empirical 

approaches to parameter tuning [26],[28],[29]. However, such approaches lack 

scientific foundation, lead to suboptimal solutions, and require specialized technical 

knowledge and experience, that could hardly be found in a physician’s background. 

The GA-VBAC framework proposed in this paper aims to efficient parameter 

tuning of VBAC, based on Genetic Algorithms (GAs). GAs are stochastic non-linear 

optimization algorithms based on the theory of natural selection and evolution 

[35],[36]. They are similar to traditional search techniques such as simulated 

annealing [37], but they differ in that they are parallelized, maintaining a population 

of solutions from which new solutions are generated. Moreover, GAs perform 

crossover operations which generate new solutions by combining existing solutions 

from the solution pool, allowing the algorithm to “jump” within the optimization 



landscape. GAs have been the optimizers of choice in various artificial intelligence 

applications, exhibiting better performance than other non-linear optimization 

approaches to parameter tuning. Such applications include parameter tuning in 

support vector machines [38],[39], tuning of neural network weights for on-line 

training [40], tuning of range image segmentation algorithms [41], and the fine-tuning 

of a parametric active contour model which is supplementary to the Taguchi approach 

[32]. 

Motivated by these studies, we transcribed the parameter tuning optimization 

problem of the level-set VBAC model into a genetic optimization problem. 

Considering that µ , +λ , −λ  are weight terms of the energy functional that regulate 

the relative influence of the terms comprising (1), and that 0>µ , (7) can be rewritten 

as follows 
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and by setting 
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The parameters +k , −k  and α  are encoded into a single bit-string, called 

chromosome. Their values are constrained within discrete, worst-case ranges. The 

minimum and maximum values of these ranges as well as the sampling rate 

considered have been experimentally determined. So, +k  and −k  are represented by 8-

bit variables with values ranging from 0 to 255, whereas a 4-bit variable is used to 

hold the exponents of α , which enumerates the values 01415 10,...,10,10 −− . The length 

of the resulting chromosome sums a total of 20-bits (Fig. 2). 

 
[FIGURE 2] 

 

The GA-VBAC framework is a supervised approach searching for the optimal 

parameters ( +k , −k , α ) that maximize the overlap value f  between a contour A and a 



given ground truth delineation T of a thyroid nodule. The ground truth delineation 

comprises of all pixels falling within at least N/2+1 out of N delineations drawn by N 

expert radiologists [42]. The bias introduced in the ground truth delineation is reduced 

as N increases. The overlap value f  between two delineated areas A and T is defined 

as in [8] 

TA
TA

f
∪
∩

= . (17) 

In case of a perfect match between the two delineated areas A and T, the overlap value 

is maximized (f = 1). 

The GA of the proposed framework proceeds to the reproduction of an initial 

population of R chromosomes by following the steady state approach. According to 

this approach the fittest individuals, i.e. the chromosomes that lead to large overlap 

values f, are maintained in the population of the generations G produced by the 

successive iterations of the algorithm. Comparative studies have showed that steady 

state approaches can find solutions which are as good as, or better than solutions 

generated by generational GAs in much less time [43]. The selection of the 

individuals to survive is based on the tournament approach: a random subpopulation 

of q>1 individuals is taken from the population and the best of these q individuals is 

selected to survive for the next generation [44]. This method was chosen as a 

computationally efficient alternative, and allows for fine-tuning the selective pressure 

by increasing or decreasing the tournament size q. The selection is repeated until all 

the individuals of the current population take part in exactly one tournament.  

The winner individuals of all tournaments are maintained in the population and 

they are used to generate offspring individuals by multi-parent diagonal crossover. 

The multi-parent diagonal crossover operator exchanges segments from the selected 

individuals (parents) to generate offspring individuals. Diagonal crossover has been 

introduced as a generalization of 1-point crossover. It generates r offsprings from r 

parents by selecting (r-1) crossover points in the parents and composing the 

offsprings by taking the resulting r chromosome segments from each parent along the 

diagonals (Fig. 3). This approach commonly yields a performance improvement over 



single-parent crossover operators whereas it lowers the probability of premature 

convergence [45],[46].  

 
[FIGURE 3] 

 

Following crossover, a mutation operator is applied, flipping the bit content of the 

chromosomes at random positions from 1 to 0, and vice versa, usually with very low 

probability [47]. Mutation provides a mechanism to keep the solution away from local 

minima [32]. The offspring individuals generated by crossover and mutation replace 

the individuals of the population that lost in the preceding tournament. The GA will 

eventually converge because the fittest individual will take part in exactly one 

tournament and it will be maintained in the population until the algorithm ends after 

Gmax generations [48].  

 
[FIGURE 4] 

 
Figure 4 illustrates a flowchart of the GA-VBAC framework. The algorithm 

proceeds as follows 

 

Step 1.  Initialize 0←G , 0FITTEST ←f  

 Generate Population of R Chromosomes at random 

Step 2. For each Chromosome 

Execute VBAC on input image 

 Calculate f(G) 

 If FITTEST)( fGf ≥  Then  

)(FITTEST Gff ←  

Register fFITTEST 

 End If 

 End For 

Step 3.  1+← GG  

Step 4.  Begin Reproduction 

 Select fittest Chromosomes 

 Maintain fittest Chromosomes in the Population 



  End Reproduction 

Step 5.  Crossover fittest Chromosomes to Generate new Chromosomes 

Step 6.  Mutate Fittest Chromosomes to Generate new Chromosomes 

Step 7. Repeat Steps 2 to 6 Until G = Gmax 

 

The GA-VBAC training procedure, described above, will result in a registered 

optimal set of parameters ( +k , −k , α ). This set of parameters can be used for the 

delineation of nodules in other thyroid ultrasound images acquired from the same 

ultrasound imaging device with the same settings. 

5   Results 

Extensive experimentation was performed over real ultrasound images, in order to 

evaluate the performance of the proposed GA-VBAC framework for the delineation 

of thyroid nodules, and to compare its results with those obtained by individual expert 

radiologists.  

A total of 71 longitudinal in vivo digital images of various thyroid nodule cases 

were acquired at a resolution of 256×256 pixels with a 256 grey-level depth, using a 

digital ultrasound imaging system HDI 3000 ATL with a 5-12 MHz linear transducer. 

The dataset used in the experiments comprised of 45 images of hypo-echoic nodule 

cases. The images were all acquired with fixed settings for the ultrasound imaging 

system. Three expert radiologists (N=3) manually delineated each thyroid nodule in 

the ultrasound images of the dataset and ground truth delineations were obtained by 

following the rule described in Section 4.  

The GA-VBAC framework was implemented in Microsoft Visual C++ and 

executed on a 3.2 GHz Intel Pentium IV workstation. The GA-VBAC parameters 

were kept constant during the experimentation. A typical population of R = 30 

chromosomes was considered in agreement with [49]. A typical value of q = 2 was 

used in the tournament selection process. The crossover probability pc was set at 0.6 

[50] and the mutation probability pm was set at 1/l = 0.05, where l = 20 is the 



chromosomes’ length [46]. A number of 50 generations was considered as Gmax as it 

allows for convergence to the highest attainable fitness value.  

The GA-VBAC framework accepts a single image for training (Fig. 4). In order to 

avoid the sample selection bias that would be introduced if the performance 

evaluation process used a single training image, arbitrarily selected from the available 

set of images, a cross-validation scheme was employed. This scheme involved a total 

of 45 experiments that use independent training and testing images. In each 

experiment, a different image was drawn from the dataset and used for training 

whereas the rest 44 images of the dataset were used for testing.  

The ranges of the overlap values (f-ranges) obtained by the automated GA-VBAC 

framework and by the experts with respect to the ground truth delineations per case 

are illustrated in Fig. 5. The bold vertical bars indicate the f-ranges corresponding to 

the GA-VBAC framework, as obtained by the test results of the cross validation 

process. The plain vertical bars indicate the ranges between the minimum and the 

maximum overlap values obtained by the expert radiologists.  

 
[FIGURE 5] 

 

Figure 5, shows that in 22 cases, GA-VBAC leads to f-ranges that fall within the 

experts’ f-ranges. In 17 cases it leads to f-ranges that exceed the experts’ f-ranges, 

whereas in 6 cases it leads to f-ranges that fall below the experts’ f-ranges. The 

average overlap values obtained by the GA-VBAC and the experts reached 92.5% and 

91.8% respectively. These results imply that the GA-VBAC framework is capable of 

learning from a single training image and of obtaining high delineation accuracies on 

independent sets of images. The obtained delineation accuracy is comparable to or 

even higher than the delineation accuracies obtained by individual expert radiologists. 

The interobserver variability as quantified by the coefficient of variation [51] 

ranges between 1.0% and 9.8%. The coefficient of variation of the overlap values 

obtained with GA-VBAC ranges between 1.0% and 3.3%, and in all the cases, it was 

lower or at most equal to the coefficient of variation of the experts.  

Figure 6 illustrates the delineations for two indicative thyroid nodule cases, as 

drawn by GA-VBAC (Fig.6b,d) in comparison to the corresponding ground truth 



delineations (Fig.6a,c). The average overlap value per generation estimated over the 

44 cross validation repetitions of the GA-VBAC, for the two thyroid ultrasound 

images are illustrated in Fig. 7. In Case 17 the average overlap value achieved at 

convergence was 95.0%, and in Case 32 it was 92.2%. In both cases, the convergence 

was reached in less than 50 generations. 

 
[FIGURE 6] 

 

The average time required for the execution of the VBAC algorithm is approximately 

93 s. The total training time of the GA-VBAC framework is 38.7 h, which is justified 

considering the population size R and the maximum number of generations Gmax used 

in the experiments. This time is reduced to 18.9 h by storing the fitness values so as 

they do not have to be recalculated for the chromosomes maintained in the 

population. It should be noted that: (a) if one had to follow the naive approach of 

exhaustive search in the parameter space, the execution time required would be 

almost 700 times more, and (b) the GA-VBAC framework has to be applied only 

once, for training. The resulting set of optimal parameters ( +k , −k , α ) may be 

applied for the delineation of thyroid nodules in other thyroid ultrasound images 

acquired from the same ultrasound imaging device with the same settings. This means 

that for each new image, only the execution time of VBAC is required.  

6. Conclusions  

We can draw a few important inferences for the proposed GA-VBAC framework. 

This novel framework embodies VBAC combined with a GA. VBAC is a level set 

segmentation approach that copes with the intensity inhomogeneity of thyroid 

ultrasound images by considering variable background image regions. The GA has 

been employed for efficient automatic tuning of VBAC parameters to an optimal set 

of values. The combination of VBAC with GAs leads to accurate delineation of 

nodules in thyroid ultrasound images. The accuracy it provides is comparable to or 

even higher than the delineation accuracies obtained by expert radiologists. 



The results show that the interobserver variability of the expert radiologists is 

higher than the variability of the overlap values obtained with GA-VBAC. Therefore, 

the proposed framework offers a tool for objective medical judgment of the thyroid 

nodule. Moreover, it provides the physicians with a second opinion, without requiring 

technical skills and time-consuming manual interaction for parameter tuning.  

In our future work, the proposed GA-VBAC framework could be enhanced by 

speeding up the training phase, which will contribute to the feasibility of training with 

multiple ultrasound images. Moreover, it could be embedded within an integrated 

system that will combine heterogeneous information to support thyroid nodule 

diagnosis. 
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