Skip to main content

Advertisement

Log in

An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes a novel Memetic Algorithm consisting of an Adaptive Evolutionary Algorithm (AEA) with three Intelligent Mutation Local Searchers (IMLSs) for designing optimal multidrug Structured Treatment Interruption (STI) therapies for Human Immunodeficiency Virus (HIV) infection. The AEA is an evolutionary algorithm with a dynamic parameter setting. The adaptive use of the local searchers helps the evolutionary process in the search of a global optimum. The adaptive rule is based on a phenotypical diversity measure of the population. The proposed algorithm has been tested for determining optimal 750-day pharmacological protocols for HIV patients. The pathogenesis of HIV is described by a system of differential equations including a model for an immune response. The multidrug therapies use reverse transcriptase inhibitor and protease inhibitor anti-HIV drugs. The medical protocol designed by the proposed algorithm leads to a strong immune response; the patient reaches a “healthy” state in one and half years and after this the STI medications can be discontinued. A comparison with a specific heuristic method and a standard Genetic Algorithm (GA) has been performed. Unlike the heuristic, the AEA with IMLSs does not impose any restrictions on the therapies in order to reduce the dimension of the problem. Unlike the GA, the AEA with IMLSs can overcome the problem of premature convergence to a suboptimal medical treatment. The results show that the therapies designed by the AEA lead to a “healthy” state faster than with the other methods. The statistical analysis confirms the computational effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams BM, Banks HT, Davidian M, Kwon H-D, Tran HT, Wynne SN, Rosenberg ES (2005) HIV dynamics: modeling, data analysis, and optimal treatment protocols. J Comput Appl Math 184(1):10–49

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonhoeffer S, Rembiszewski M, Ortiz GM, Nixon DF (2000) Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection. AIDS 14(15):2313–2322

    Article  Google Scholar 

  3. Perelson A, Kirschner D, de Boer R (1993) The dynamics of HIV infection of CD4+ T cells. Math Biosci 114:81–125

    Article  MATH  Google Scholar 

  4. Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41(1):3–44

    Article  MATH  MathSciNet  Google Scholar 

  5. Wodarz D, Nowak MA (1999) Specific therapy regimes could lead to long-term immunological control of HIV. Proc Natl Acad Sci 96(25):14464–14469

    Article  Google Scholar 

  6. Wodarz D (2001) Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance. J Theor Biol 213(3):447–459

    Article  Google Scholar 

  7. Wodarz D, Nowak MA (2002) Mathematical models of HIV pathogenesis and treatment. BioEssays 24(12):1178–1187

    Article  Google Scholar 

  8. Tan W-Y, Wu H (2005) Deterministic and stochastic models of AIDS epidemics and HIV infections with intervention. World Scientific, Hackensack

    Google Scholar 

  9. Alvarez-Ramirez J, Meraz M, Velasco-Hernandez JX (2000) Feedback control of the chemotherapy of HIV. Int J Bifur Chaos 10(9):2207–2219

    Article  MATH  Google Scholar 

  10. Butler S, Kirschner D, Lenhart S (1997) Optimal control of chemotherapy affecting the infectivity of HIV. In: Arino O, Axelrod D, Kimmel M, Langlais M (eds) Advances in mathematical population dynamics: molecules, cells, man. World Scientific, Singapore, pp 104–120

    Google Scholar 

  11. Culshaw R, Ruan S, Spiteri RJ (2004) Optimal HIV treatment by maximising immune response. J Math Biol 48(5):545–562

    Article  MATH  MathSciNet  Google Scholar 

  12. Fister KR, Lenhart S, McNally JS (1998) Optimizing chemotherapy in an HIV model. Electron J Differ Equ 1998(32):1–12

    MathSciNet  Google Scholar 

  13. Shim H, Han SJ, Chung CC, Nam S, Seo JH (2003) Optimal scheduling of drug treatment for HIV infection: continuous dose control and receding horizon control. Int J Control Autom Syst 1(3):401–407

    Google Scholar 

  14. Kirschner D, Lenhart S, Serbin S (1997) Optimal control of the chemotherapy of HIV. J Math Biol 35(7):775–792

    Article  MATH  MathSciNet  Google Scholar 

  15. Ledzewicz U, Schättler H (2002) On optimal controls for a general mathematical model for chemotherapy of HIV. In: Proceedings of the 2002 American control conference, vol 5, pp 3454–3459

  16. Zurakowski R, Messina MJ, Tuna SE, Teel AR (2004) HIV treatment scheduling via robust nonlinear model predictive control. In: Proceedings of the 5th Asian control conference

  17. Zurakowski R, Teel AR (2003) Enhancing immune response to HIV infection using MPC-based treatment scheduling. In: Proceedings of the 2003 American control conference, vol 2, pp 1182–1187

  18. Zurakowski R, Teel AR, Wodarz D (2004) Utilizing alternate target cells in treating HIV infection through scheduled treatment interruptions. In: Proceedings of the 2004 American control conference, vol 1, pp 946–951

  19. Zurakowski R, Teel AR (2006) A model predictive control based scheduling method for HIV therapy. J Theor Biol 238(2):368–382

    Article  MathSciNet  Google Scholar 

  20. Adams BM, Banks HT, Kwon H-D, Tran HT (2004) Dynamic multidrug therapies for HIV: optimal and STI control approaches. Math Biosci Eng 1(2):223–241

    MATH  MathSciNet  Google Scholar 

  21. Banks HT, Kwon H-D, Toivanen J, Tran HT (2006) An state dependent Riccati equation based estimator approach for HIV feedback control. Optim Control Appl Methods 27(2):93–121

    Article  MathSciNet  Google Scholar 

  22. Caetano MAL, Yoneyama T (2002) Short and long period optimization of drug doses in the treatment of AIDS. An Acad Bras Ci 74(3):379–392

    MATH  Google Scholar 

  23. Jeffrey AM, Xia X, Craig IK (2003) When to initiate HIV therapy: a control theoretic approach. IEEE Trans Biomed Eng 50(11):1213–1220

    Article  Google Scholar 

  24. Kutch JJ, Gurfil P (2002) Optimal control of HIV infection with a continuously-mutating viral population. In: Proceedings of the 2002 American control conference, vol 5, pp 4033–4038

  25. Wein LM, Zenios SA, Nowak MA (1997) Dynamic multidrug therapies for HIV: a control theoretic approach. J Theor Biol 185(1):15–29

    Article  Google Scholar 

  26. Bajaria SH, Webb G, Kirschner DE (2004) Predicting differential responses to structured treatment interruptions during HAART. Bull Math Biol 66(5):1093–1118

    Article  Google Scholar 

  27. Brandt ME, Chen G (2001) Feedback control of a biodynamical model of HIV-1. IEEE Trans Biomed Eng 48(7):754–759

    Article  Google Scholar 

  28. Joshi HR (2002) Optimal control of an HIV immunology model. Optim Control Appl Methods 23(4):199–213

    Article  MATH  Google Scholar 

  29. Lisziewicz J, Rosenberg E, Lieberman J, Jessen H, Lopalco L, Siliciano R, Walker B, Lori F (1999) Control of HIV despite the discontinuation of antiretroviral therapy. New Engl J Med 340(21):1683–1684

    Article  Google Scholar 

  30. Eiben AE, Smith JE (2003) Introduction to evolutionary computation. Springer, Berlin

    Google Scholar 

  31. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  32. Fonlupt C, Preux P, Robilliard D (1997) Preventing premature convergence via cooperating genetic algorithms. In: Ošmera P (ed) Proceedings of the 3rd international Mendel conference on genetic algorithms, optimization problems, fuzzy logic, neural networks, rough sets (MENDEL’97), pp 50–55

  33. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flow shop scheduling. IEEE Trans Evol Comput 7(2):204–223

    Article  Google Scholar 

  34. Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic algorithm for on-line and off-line control design of pmsm drives. IEEE Trans Syst Man Cybern Part B, special issue on memetic algorithms (to appear)

  35. Bäck T (1992) The interaction rate of mutation rate, selection, and self-adaptation within a genetic algorithm. In: Proceedings of parallel problem solving from nature (PPSN-II). Elsevier, Amsterdam, pp 85–94

    Google Scholar 

  36. Davis L (1989) Adapting operator probabilities in genetic algorithms. In: Schaffer J (ed) Proceedings of the 3rd international conference on genetic algorithms. Kaufmann, Los Altos, pp 61–69

    Google Scholar 

  37. Smith JE (2001) Modelling GAs with self-adaptive mutation rates. In: Proceedings of GECCO. Kaufmann, Los Altos, pp 599–606

    Google Scholar 

  38. Eiben AE, Hinterding R, Michaelwicz Z (2000) Parameter control. In: Baeck T, Fogel DB, Michaelwicz Z (eds) Evolutionary computation 2, advanced algorithms and operators. Institute of Physics, pp 170–187

  39. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MATH  MathSciNet  Google Scholar 

  40. Magoulas GD, Plagianakos VP, Vrahatis MN (2004) Neural network-based colonoscopic diagnosis using on-line learning and differential evolution. Appl Soft Comput 4(4):369–379

    Article  Google Scholar 

  41. Hart WE, Krasnogor N, Smith JE (2004) Memetic evolutionary algorithms. In: Hart WE, Krasnogor N, Smith JE (eds) Recent advances in memetic algorithms. Springer, Berlin, pp 3–27

    Google Scholar 

  42. Salcedo-Sanz S, Bousono-Calzon C (2005) A hybrid neural-genetic algorithm for the frequency assignment problem in satellite communications. Appl Intell 22:3

    Article  Google Scholar 

  43. Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B 36(1):141–152

    Article  Google Scholar 

  44. Krasnogor N, Smith J (2000) A memetic algorithm with self-adaptive local search: TSP as a case study. In: Whitley D, Goldberg D, Cantu-Paz E, Spector L, Parmee I, Beyer H-G (eds) Proceedings of the genetic and evolutionary computation conference (GECCO-2000), Las Vegas, NE, USA. Kaufmann, Los Altos, pp 987–994

    Google Scholar 

  45. Eiben AE, Smith JE (2003) Hybrid evolutionary algorithms. In: Introduction to evolutionary computing, hybridisation with other techniques: memetic algorithms. Slides of the Lecture Notes, Chapter 10

  46. Houck CR, Joines JA, Kay MG, Wilson JR (1997) Empirical investigation of the benefits of partial lamarckianism. Evol Comput 5(1):31–60

    Google Scholar 

  47. Schwefel HP (1995) System evolution and optimum seeking. Wiley, New York

    Google Scholar 

  48. Callaway DS, Perelson AS (2002) HIV-1 infection and low steady state viral loads. Bull Math Biol 64(1):29–64

    Article  Google Scholar 

  49. Miettinen K (1999) Nonlinear multiobjective optimization. International series in operations research & management science, vol 12. Kluwer Academic, Boston

    MATH  Google Scholar 

  50. Hairer E, Wanner G (1996) Solving ordinary differential equations. II. Stiff and differential-algebraic problems, 2nd edn. Springer series in computational mathematics, vol 14. Springer, Berlin

    MATH  Google Scholar 

  51. Smith JE, Fogarthy T (1997) Operator and parameter adaptation in genetic algorithms. Soft Comput 1(2):81–87

    Google Scholar 

  52. Neri F, Cascella GL, Salvatore N, Kononova AV, Acciani G (2006) Prudent-daring vs tolerant survivor selection schemes in control design of electric drives. In: Applications of evolutionary computing. Lecture notes in computer science, vol 3907. Springer, Berlin, pp 805–809

    Chapter  Google Scholar 

  53. Whitley D (1989) The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In: Proceedings of the third international conference on genetic algorithms, pp 116–121

  54. Baker JE (1985) Adaptive selection methods for genetic algorithms. In: Proceedings of the first international conference on genetic algorithms and their applications, pp 101–111

  55. Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the second international conference on genetic algorithms, pp 14–21

  56. Spears WM (1998) The role of the mutation and recombination in evolutionary algorithms. PhD thesis, VA George Mason University, Fairfax

  57. Goldberg DE (1989) Genetic algorithms for search, optimization and machine learning. Addison–Wesley, Reading

    Google Scholar 

  58. Deb K, Agrawal S (1999) Understanding interactions among genetic algorithm parameters. In: Foundations of the genetic algorithms (FOGA-5), pp 265–286

  59. Krasnogor N (2004) Toward robust memetic algorithms. In: Hart WE, Krasnogor N, Smith JE (eds) Recent advances in memetic algorithms, Springer, Berlin, pp 185–207

    Google Scholar 

  60. Krasnogor N (1999) Co-evolution of genes and memes in memetic algorithms. In: Wu A (ed) Proceeding of the 1999 genetic and evolutionary computation conference

  61. Krasnogor N, Blackburne B, Burke E, Hirst J (2002) Multimeme algorithms for proteine structure prediction. In: Proceeding of parallel problem solving in nature VII. Lecture notes in computer science. Springer, Berlin

    Google Scholar 

  62. Ong YS, Keane AJ (2004) Meta-Lamarkian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110

    Article  Google Scholar 

  63. Arabas J, Michalewicz Z, Mulawka J (1994) Gavaps—a genetic algorithm with varying population size. In: Proceedings of the first IEEE conference on evolutionary computation, 1994 and IEEE world congress on computational intelligence, vol 1, June 1994, pp 73–78

  64. Eshelman LJ (1991) The chc adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Foundations of genetic algorithms 1 (FOGA-1). Kaufmann, Los Altos, pp 263–283

    Google Scholar 

  65. Gehlhaar DK, Fogel DB (1996) Tuning evolutionary programming for conformationally flexible molecular docking. In: Fogel TBLJ, Angeline PJ (eds) Proceedings of the 5th annual conference on evolutionary programming. MIT, Cambridge, pp 419–429

    Google Scholar 

  66. Owen DB (1962) Handbook of statistical tables. Reading

  67. Wilks SS (1942) Statistical prediction with special reference to the problem of tolerance limit. Ann Math Stat 13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferrante Neri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neri, F., Toivanen, J. & Mäkinen, R.A.E. An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Appl Intell 27, 219–235 (2007). https://doi.org/10.1007/s10489-007-0069-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-007-0069-8

Keywords

Navigation