Skip to main content

Advertisement

Log in

Multi-objective Genetic Algorithms for grouping problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Linear Linkage Encoding (LLE) is a convenient representational scheme for Genetic Algorithms (GAs). LLE can be used when a GA is applied to a grouping problem and this representation does not suffer from the redundancy problem that exists in classical encoding schemes. LLE has been mainly used in data clustering. One-point crossover has been utilized in these applications. In fact, the standard recombination operators are not suitable to be used with LLE. These operators can easily disturb the building blocks and cannot fully exploit the power of the representation. In this study, a new crossover operator is introduced for LLE. The operator which is named as group-crossover is tested on the data clustering problem and a very significant performance increase is obtained compared to classical one-point and uniform crossover operations. Graph coloring is the second domain where the proposed framework is tested. This is a challenging combinatorial optimization problem for search methods and no significant success has been obtained on the problem with pure GA. The experimental results denote that GAs powered with LLE can provide satisfactory outcomes in this domain, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avanthay C, Hertz A, Zufferey N (2003) A variable neighborhood search for graph coloring. Eur J Oper Res 151(2):379–388

    Article  MathSciNet  MATH  Google Scholar 

  2. Babu G, Murty M (1993) A near-optimal initial seed value selection in k-means algorithm using a genetic algorithm. Pattern Recogn Lett 14(10):763–769

    Article  MATH  Google Scholar 

  3. Barbosa VC, Assis CA, Nascimento JOD (2004) Two novel evolutionary formulations of the graph coloring problem. J Comb Optim 8(1):41–63

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkhin P (2002) Survey of clustering data mining techniques. Technical Report, Accrue Software, San Jose, CA

  5. Bezdek J, Boggavarapu S (1994) Genetic algorithm guided clustering. In: Proc 1st IEEE conf on evolutionary computation, pp 34–39

  6. Blake CL, Merz CJ (2000) UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/mlrepository.html, University of California, Irvine, Dept of Information and Computer Sciences

  7. Bolshakova N, Azuajeb F (2003) Cluster validation techniques for genome expression data. Signal Process 83(4):825–833

    Article  MATH  Google Scholar 

  8. Brelaz D (1979) New methods to color vertices of a graph. Commun ACM 22:251–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Cole RM (1998) Clustering with genetic algorithms. Master’s Thesis, Nedlands 6907, Australia

  10. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  11. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  12. Du J, Korkmaz E, Alhajj R, Barker K (2004) Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives. Lecture notes in computer science, vol 3181. Springer, Berlin, p 219

    Google Scholar 

  13. Eiben AE, Hauw JKVD, Hemert JIV (1998) Graph coloring with adaptive evolutionary algorithms. J Heuristics 4(1):25–46

    Article  MATH  Google Scholar 

  14. Eskandari H, Geiger CD (2008) A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems. J Heuristics 14(3):203–241

    Article  MATH  Google Scholar 

  15. Falkenauer E (1998) Genetic algorithms and grouping problems. Wiley, New York

    Google Scholar 

  16. Fleurent C, Ferland J (1996) Genetic and hybrid algorithms for graph coloring. Ann Oper Res 63:437–461

    Article  MATH  Google Scholar 

  17. Franti P, Virmajoki O, Hautamaki V (2006) Fast agglomerative clustering using a k-nearest neighbor graph. IEEE Trans Pattern Anal Mach Intell 28(11):1875–1881

    Article  Google Scholar 

  18. Galinier P, Hao J-K (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3(4):379–397

    Article  MathSciNet  MATH  Google Scholar 

  19. Glover F, Parker M, Ryan J (1996) Coloring by tabu branch and bound. In: Cliques, coloring and satisfiability, second DIMACS implementation challenge. Am Math Soc, Providence, pp 285–307

    Google Scholar 

  20. Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28(1):100–108

    Article  MATH  Google Scholar 

  21. Hertz A, de Werra D (1987) Using tabu search techniques for graph coloring. Comput Arch 39:345–351

    MATH  Google Scholar 

  22. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, vol 1. New Jersey, pp 82–87

  23. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall International, Englewood Cliffs

    MATH  Google Scholar 

  24. James TL, Browna EC, Keelinga KB (2007) A hybrid grouping genetic algorithm for the cell formation problem. Comput Oper Res 34:2059–2079

    Article  MATH  Google Scholar 

  25. Johnson DS, Aragon CR, McGeoch LA, Schevon C (1989) Optimization by simulated annealing: an experimental evaluation. Part 1, graph partitioning. Oper Res 37(6):865–892

    Article  MATH  Google Scholar 

  26. Jones DA, Beltramo MA (1991) Solving partitioning problems with genetic algorithms. In: Belew LB, Booker RK (eds) Proceedings of the 4th international conference on genetic algorithms, San Diego, CA, July 1991. Morgan Kaufmann, San Moteo, pp 442–449

    Google Scholar 

  27. Kirovski D, Potkonjak M (1998) Efficient coloring of a large spectrum of graphs. In: Design automation conference, pp 427–432

  28. Kivijarvi J, Franti P, Nevalainen O (2003) Self-adaptive genetic algorithm for clustering. J Heuristics 9(2):113–129

    Article  Google Scholar 

  29. Korkmaz EE (2006) A two-level clustering method using linear linkage encoding. Lecture notes in computer science, vol 4193. Springer, Berlin, pp 681–690

    Google Scholar 

  30. Korkmaz EE, Du J, Alhajj R, Barker K (2006) Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intell Data Anal 10(2):163–182

    Google Scholar 

  31. Krishna K, Murty M (1999) Genetic k-means algorithm. IEEE Trans Syst Man Cybern Part B Cybern 29(3):433–439

    Article  Google Scholar 

  32. Lee K, Yoon W, Baek D (2006) A classification method using a hybrid genetic algorithm combined with an adaptive procedure for the pool of ellipsoids. Appl Intell 25(3):293–304

    Article  Google Scholar 

  33. Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via linear programming. SIAM News 23:1–18

    Google Scholar 

  34. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33:1455–1465

    Article  Google Scholar 

  35. Moraglio A, Poli R (2006) Product geometric crossover. Lecture notes in computer science, vol 4193. Springer, Berlin, pp 1018–1027

    Google Scholar 

  36. Mumford CL (2006) New order-based crossovers for the graph coloring problem. Lecture notes in computer science, vol 4193. Springer, Berlin, pp 880–889

    Google Scholar 

  37. Murty M, Rashmin B, Bhattacharyya C (2008) Clustering based on genetic algorithms. Studies in computational intelligence, vol 98, pp 137–159

  38. Ramanathan K, Guan SU (2007) Clustering and combinatorial optimization in recursive supervised learning. J Comb Optim 13(2):137–152

    Article  MathSciNet  MATH  Google Scholar 

  39. Sarafis I, Zalzala AMS, Trinder P (2002) A genetic rule-based data clustering toolkit. In: Fogel DB, El-Sharkawi MA, Yao X, Greenwood G, Iba H, Marrow P, Shackleton M (eds) Proceedings of the 2002 congress on evolutionary computation CEC2002. IEEE Press, New York, pp 1238–1243

    Chapter  Google Scholar 

  40. Ulker O, Ozcan E, Korkmaz EE (2006) Linear linkage encoding in grouping problems: Applications on graph coloring and timetabling. In: International conference on the practice and theory of automated timetabling, PATAT06, pp 303–319

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Erkan Korkmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkmaz, E.E. Multi-objective Genetic Algorithms for grouping problems. Appl Intell 33, 179–192 (2010). https://doi.org/10.1007/s10489-008-0158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-008-0158-3

Keywords

Navigation