Skip to main content
Log in

Mining microarray gene expression data with unsupervised possibilistic clustering and proximity graphs

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Gene expression data generated by DNA microarray experiments provide a vast resource of medical diagnostic and disease understanding. Unfortunately, the large amount of data makes it hard, sometimes even impossible, to understand the correct behavior of genes. In this work, we develop a possibilistic approach for mining gene microarray data. Our model consists of two steps. In the first step, we use possibilistic clustering to partition the data into groups (or clusters). The optimal number of clusters is evaluated automatically from the data using the Information Entropy as a validity measure. In the second step, we select from each computed cluster the most representative genes and model them as a graph called a proximity graph. This set of graphs (or hyper-graph) will be used to predict the function of new and previously unknown genes. Experimental results using real-world data sets reveal a good performance and a high prediction accuracy of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: ordering points to identify the clustering structure. In: Proc of the ACM SIGMOD int conf on management of data, PH, USA, 1–3 June 1999, pp 49–60

  2. Au W-H, Chan KCC, Wong AKC, Wang Y (2005) Attribute clustering for grouping, selection, and classification of gene expression data. IEEE/ACM Trans Comput Biol Bioinform 2(2):83–101

    Article  Google Scholar 

  3. Baldi P, Hatfield GW (2002) DNA microarrays and gene expression: from experiments to data analysis and modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    MATH  Google Scholar 

  5. Bickel DR (2003) Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically. Bioinformatics 19(7):818–824

    Article  Google Scholar 

  6. Blatt M, Wiseman S, Domany E (1996) Super-paramagnetic clustering of data. Phys Rev Lett 76(3251–3254):29–76

    Google Scholar 

  7. Bryan K, Cunningham P, Bolshakova N (2006) Application of simulated annealing to the biclustering of gene expression data. IEEE Trans Inf Technol Biomed 10(3):519–525

    Article  Google Scholar 

  8. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  9. Divina F, Aguilar-Ruiz JS (2006) Biclustering of expression data with evolutionary computation. IEEE Trans Knowl Data Eng 18(5):590–602

    Article  Google Scholar 

  10. Efron B (1982) The jackknife, the bootstrap, and other resampling plans. In: Proc of the CBMS-NSF regional conf series in applied mathematics, vol 38. SIAM, Philadelphia

    Google Scholar 

  11. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Article  Google Scholar 

  12. Gepas software. http://transcriptome.ens.fr/gepas/

  13. Guthke R, Schmidt-Heck W, Hann D, Pfaff M (2000) Gene expression data mining for functional genomics. In: Proc of the European symp on intel techn, Aachen, Germany, pp 170–177

  14. Hatzis C, Page D (2001). KDD Cup 2001. http://www.cs.wisc.edu/~dpage/kddcup2001

  15. Herrero J, Valencia A, Dopazo J (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17(2):126–136

    Article  Google Scholar 

  16. Hinneburg A, Keim DA (1998) An efficient approach to clustering in large multimedia database with noise. In: Proc of the 4th int conf on knowledge discovery and data mining, NY, USA, 27–31 August 1998, pp 58–65

  17. Jiang D, Pei J, Zhang A (2003) DHC: a density-based hierarchical clustering method for time series gene expression data. In: Proc of the 3rd IEEE symp on bio-informatics and bio-engineering, Maryland, USA, 10–12 March 2003, pp 393–400

  18. Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 16(11):1370–1386

    Article  Google Scholar 

  19. Jinyan L, Huiqing L (2001) Kent Ridge bio-medical data set repository. http://sdmc.lit.org.sg/GEDatasets

  20. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Google Scholar 

  21. Kaymak U (2000) A unified approach for practical applications of fuzzy clustering. In: Proc of 20th Belgium-Netherlands conf on artif intel, Efteling, Kaatsheuvel, 1–2 November 2000, pp 101–108

  22. Kaymak U, Babuska R (1995) Compatible cluster merging for fuzzy modeling. In: Proc of the 4th IEEE international conf on fuz syst, vol 2, Yokohama, Japan, March 1995, pp 897–904

  23. Keedwell E, Narayanan A (2005) Discovering gene networks with a neural-genetic hybrid. IEEE/ACM Trans Comput Biol Bioinform 2(3):231–242

    Article  Google Scholar 

  24. Krishnapuram R, Keller M (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110

    Article  Google Scholar 

  25. Kumar M, Stoll R, Stoll N (2006) A min-max approach to fuzzy clustering, estimation, and identification. IEEE Trans Fuzzy Syst 14(2):248–262

    Article  Google Scholar 

  26. Looney CG (2002) Interactive clustering and merging with a new fuzzy expected value. Patern Recogn 35(11):2413–2423

    Article  MATH  Google Scholar 

  27. Ma PCH, Chan KCC, Yao X, Chiu DKY (2006) An evolutionary clustering algorithm for gene expression microarray data analysis. IEEE Trans Evol Comput 10(3):296–314

    Article  Google Scholar 

  28. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1(1):24–45

    Article  Google Scholar 

  29. McLachlan GJ, Bean RW, Peel D (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18(3):413–422

    Article  Google Scholar 

  30. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(2):370–379

    Article  Google Scholar 

  31. Pal NR, Keller JM, Bezdek JC (2005) A possibilistic fuzzy C-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  MathSciNet  Google Scholar 

  32. Ralf-Herwig PA, Muller C, Bull C, Lehrach H, O’Brien J (1999) Large-scale clustering of cDNA-fingerprinting data. Genome Res 9(11):1093–1105

    Article  Google Scholar 

  33. Romdhane LB, Ayeb B, Wang S (2002) On computing the fuzzifier in FLVQ: a data driven approach. Int J Neurol Sys 12(2):149–157

    Google Scholar 

  34. Rose K (1998) Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc IEEE 86(11):2210–2239

    Article  Google Scholar 

  35. Shamir R, Sharan R (2000) CLICK: A clustering algorithm for gene expression analysis. In: Proc 8th int conf on intelligent systems for molecular biology, CA, USA, 19–23 August 2000, pp 307–316

  36. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    MathSciNet  Google Scholar 

  37. Smet FD, Mathys J, Marchal K, Thijs G, Moor BD, Moreau Y (2002) Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18(5):735–746

    Article  Google Scholar 

  38. Sun H, Wang S, Jiang Q (2004) Fcm-based model selection algorithms for determining the number of clusters. Patern Recogn 37(10):2027–2037

    Article  MATH  Google Scholar 

  39. Tomida S, Hanai T, Honda H, Kobayashi T (2002) Analysis of expression profile using fuzzy adaptive resonance theory. Bioinformatics 18(8):1073–1083

    Article  Google Scholar 

  40. Tou JT, Gonzalez R (1974) Pattern recognition principles. Addison-Wesley, Reading

    MATH  Google Scholar 

  41. Tsai H-K, Yang J-M, Tsai Y-F, Kao C-Y (2004) An evolutionary approach for gene expression patterns. IEEE Trans Inf Technol Biomed 8(2):69–78

    Article  Google Scholar 

  42. Wu S, Liew A, Yan H, Yang M (2004) Cluster analysis of gene expression data based on self-splitting and merging competitive learning. IEEE Trans Inf Technol Biomed 8(1):5–15

    Article  Google Scholar 

  43. Yang J, Wang W, Wang H, Yu P (2002) δ-Clusters: capturing subspace correlation in a large data set. In: Proc 18th IEEE int conf on data engineering. IEEE Computer Society, Los Alamitos, pp 517–528

    Google Scholar 

  44. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzz WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987

    Article  Google Scholar 

  45. Ying X, Vijay VR, Praveen D, Xiaoquan Z (2005) A new fuzzy clustering algorithm for optimally finding granular prototypes. Int J Approx Reason 40:109–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Romdhane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romdhane, L.B., Shili, H. & Ayeb, B. Mining microarray gene expression data with unsupervised possibilistic clustering and proximity graphs. Appl Intell 33, 220–231 (2010). https://doi.org/10.1007/s10489-009-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-009-0161-3

Keywords

Navigation