
Bounded non-deterministic planning for multimedia adaptation

Fernando López • Dietmar Jannach • José M. Martinez •
Christian Timmerer • Narciso García •
Hermann Hellwagner

Abstract This paper proposes a novel combination of arti­
ficial intelligence planning and other techniques for improv­
ing decision-making in the context of multi-step multime­
dia content adaptation. In particular, it describes a method
that allows decision-making (selecting the adaptation to
perform) in situations where third-party pluggable multi­
media conversion modules are involved and the multime­
dia adaptation planner does not know their exact adapta­
tion capabilities. In this approach, the multimedia adapta­
tion planner module is only responsible for a part of the
required decisions; the pluggable modules make additional
decisions based on different criteria. We demonstrate that
partial decision-making is not only attainable, but also in­
troduces advantages with respect to a system in which these
conversion modules are not capable of providing additional
decisions. This means that transferring decisions from the

multi-step multimedia adaptation planner to the pluggable
conversion modules increases the flexibility of the adapta­
tion. Moreover, by allowing conversion modules to be only
partially described, the range of problems that these modules
can address increases, while significantly decreasing both
the description length of the adaptation capabilities and the
planning decision time. Finally, we specify the conditions
under which knowing the partial adaptation capabilities of
a set of conversion modules will be enough to compute a
proper adaptation plan.

Keywords Bounded non-deterministic multimedia
adaptation • Planning • Decision-making • MPEG-7 •
MPEG-21

1 Introduction

Planning is a branch of Artificial Intelligence (AI) [1] that
has successfully addressed a wide range of automatic deci­
sion applications. These applications include, for example,
robot control, computer games, expert systems and medical
applications [1]. This paper addresses multi-step multimedia
adaptation decision-making with AI planning methods. Al­
though the multimedia community has studied this issue to
some extent [2, 3], this paper will deal with new challenges
that so far have not been addressed.

In MPEG-21, [4] the word terminal refers to the phys­
ical or logical device (e.g. iPhone, Web browser) in which
the user consumes multimedia content. The terminal, the
data network and the user preferences collectively define
the usage environment. Frequently, multimedia adaptation
planners [2, 3] utilize the usage environment constraints (or
merely the terminal constraints) to represent the goal state
of the planner. Multi-step multimedia adaptation enables the

adaptation of multimedia content in several steps; for the
purpose of this research work each one of these steps will be
referred to as a conversion.1 Software modules called con­
version modules2 implement these conversions. When a set
of available reusable conversion modules is given, it is possi­
ble that none of these is capable of adapting multimedia con­
tent to the usage environment in one single step. However,
multi-step conversions might reach this goal in several steps.
For example, one of the conversion modules may be capa­
ble of transmoding a video to a set of images and another
may be capable of transcoding images to satisfy the termi­
nal image decoding and transmission constraints. Therefore,
the video can only be adapted to the constraints of the ter­
minal by executing a sequence of both conversions. In this
paper, we describe an AI planner that automatically identi­
fies such sequences together with the parameters needed to
execute each conversion. This multimedia adaptation plan­
ner will be referred to as the Planner module.

1.1 Motivation and objectives

Multimedia adaptation offers content providers added value
by increasing the range of terminals that can consume their
contents. In addition, multimedia adaptation improves the
quality of such content by offering both the content provider
and its customers the capability to customize the content to
either one's preferences. There is a large amount of research
on multimedia adaptation. Special consideration has to be
given to multimedia adaptation within the MPEG-21 frame­
work [4]. In this framework a wide variety of methods—
such as multi-attribute optimization methods [5], genetic
algorithms [6] or knowledge-based methods [1, 3]—have
been evaluated to determine the best way to modify media
resources in order to make them available in the consumer's
usage environment. For the purpose of multi-step multime­
dia adaptation, mainstream research [2, 3, 7] has relied on
MPEG-21 to describe the multimedia adaptation problem
and on different AI planning techniques to find the solutions,
i.e., the computational processes that transform the multime­
dia content so that the terminal can consume it. This paper
is also inspired by AI planning and extends the ideas that we
introduced in [8].

The techniques described in this paper have been devel­
oped to fulfill the objectives of CAIN-21 (Content Adapta­
tion INtegrator in the MPEG-21 framework) [9]. CAIN-21
is a multimedia adaptation engine3 that is compliant with

MPEG-21 Part-7 defines a conversion as the process that changes the
characteristics of a resource. In general a conversion performs the act
as defined by the MPEG-21 Part-6 term adapt. One conversion can be
roughly seen as one set of actions in a Graphplan-like [20] planner.
Sections 2.4 and 4 explain the notion of conversions in detail.
2Throughout this paper, the term module refers to software modules.
3The source code of CAIN-21 together with an online demo of its func­
tionalities is available at http://cain21.sourceforge.net.

the MPEG-21 framework. The MPEG-21 framework pro­
poses the notion of a Digital Item (DI) as a general me­
dia resources container that can represent nearly every type
of multimedia content. Most adaptation techniques [5, 6]
have been designed to deal with particular media (such as
JPEG images or MPEG-4 Advanced Video Coding (AVC)
video). Conversely, CAIN-21 is not restricted to particular
media types. To this end, CAIN-21 supports the integration
of third-party pluggable and reusable multimedia conver­
sion modules referred to as Component Adaptation Tools
(CATs) [10]. A CAT is characterized by the set of para­
meters describing the media to be adapted and it explicitly
specifies the set of conversions that it can perform. The goal
of this work is to incorporate into CAIN-21 an automatic
decision mechanism. This mechanism will identify which
conversions must be executed to adapt a DI and which pa­
rameters must be supplied to the conversion modules. For
better readability of the paper, we start with a high-level de­
scription of CAIN-21 in Sect. 3. In our previous work [11],
we developed a mechanism that performs multimedia adap­
tation decision-making by solving a Constraint Satisfaction
Problem (CSP). The main limitation encountered, and the
motivation for our current work, is the difficulty in apply­
ing this mechanism to problems requiring more than one
conversion step. Therefore, this paper focuses on the devel­
opment and evaluation of the Planner module which, pro­
vided with an MPEG-21 description of the adaptation prob­
lem, computes all the sequences of conversions that adapt
a DI (the media resources and corresponding metadata) to
the usage environment. This paper does not address deci­
sions regarding which of these sequences is best. However,
some approaches dealing with this issue will be introduced
in Sect. 7.3 and proposed as future work. This current pa­
per includes a set of innovations with respect to previous
work [7, 8, 11, 12]:

• Multimedia properties. All information required in the
adaptation process is consistently described by using so-
called multimedia properties. Multimedia properties refer
to all the elements of the multimedia system, including
the media resource, the usage environment, and the adap­
tation capabilities. To access these properties, CAIN-21
implements a highly efficient addressing mechanism by
means of XPath [13] expressions [10]. Section 3 describes
this mechanism and Sect. 7.1 summarizes the advantages
of using multimedia properties.

• Domain-specific planner. The Planner uses multimedia
properties to make quick multimedia adaptation decisions
with a small memory footprint. Standard planners such as
the one that we used in previous work [7] or other plan­
ning representation schemes such as PDDL [14] were de­
liberately not used in this research; the rationale of this
decision is discussed in more detail in Sect. 4.3.

http://cain21.sourceforge.net

• Tolerating partial description. In order to allow for a com­
pact description of the CAT adaptation capabilities, the
Planner includes a mechanism that provides semantics
for absent properties.

• Multi-valued properties. The Planner can manage ter­
minals with multi-valued properties. Multi-valued prop­
erties represent alternative values (e.g., screen_size =
{320 x 240, 640 x 480}). Although AI research has ad­
dressed this problem (e.g. [15]), previous multimedia
adaptation research [1, 2, 7, 12] has not taken into ac­
count this condition, which characterizes many practical
scenarios.

• Internal decisions. CAIN-21 allows for the integration
of third-party pluggable CATs capable of making in­
ternal decisions regarding which adaptation to perform.
Thus, the decision process is partially transferred from
the Planner to the CATs. Depending on these internal de­
cisions, the CATs can produce different outcomes. The
multi-valued properties of the CATs have also been trans­
ferred to the terminal. Consider, for instance, a specific
CAT capable of receiving/ormai = {mpeg-l,mpeg-2} and
producing a video with format = {mpeg-2,mpeg-4,flv}.
If the Planner has selected these parameters, the CAT
can produce any of these outputs and the subsequent
CAT/terminal will accept all these video formats.

1.2 Methodology and structure of the paper

Section 2 reviews the state of the art of multi-step multime­
dia adaptation and the existing AI concepts and techniques
that have been selected to make decisions in our adaptation
engine. Section 3 provides a high-level view of the modu­
lar architecture of CAIN-21 and the control flow through its
modules. Section 4 concentrates on its decision phase and
describes the conceptual elements of the Planner. Section
also sketches practical problems that may arise with a com­
plete and rigid multimedia description model and proposes
semantics that make it possible to tolerate a partial descrip­
tion. Section 5 discusses the algorithms of the Planner, and
proves (using a theoretical analysis) that the proposed al­
gorithm is sound (i.e. the Planner always terminates) and
that the produced plan infinite and complete. Section 6 pro­
vides experiments, demonstrations and performance mea­
surements. The major findings as well as their limitations
and our future work are summarized in Sect. 7, and lastly
Sect. 8 concludes the paper.

2 State of the art

2.1 Multimedia background technology

In the last two decades, at least two different communities
have addressed multimedia: the coding community and the

metadata community. The main target of the first commu­
nity is to represent multimedia content compactly and ef­
ficiently with standard multimedia formats. One of the im­
portant aims of standardization is to reduce the manufac­
turing costs of terminals capable of consuming multimedia.
For instance, the Joint Photographic Experts Group (JPEG)
is well-known for image compression standards. Examples
of audio compression standards are MPEG-1 Audio Layer 2
(MP2), MPEG-1 Audio Layer 3 (MP3) and Advanced Au­
dio Coding (AAC). The Moving Picture Experts Group has
defined widely used video compression standards such as
MPEG-1, MPEG-2 or MPEG-4 [16]. The MPEG standards
divide video formats into profiles and levels. A profile de­
fines how complex the encoding is. Technically, a profile
defines a subset of the syntax of the specification. For each
profile there are a series of levels. A level defines a set of
constraints on the values that may be taken by the parame­
ters of the specification within a profile. For instance, DVD
uses the MPEG-2 MainProfile@MainLevel video format.
Frequently, uncompressed video is referred to as RAW video
and the Waveform Audio Format (WAV) has been widely
used to represent uncompressed audio.

Video containers such as AVI, MPEG, or WMV usu­
ally consist of one visual stream and one audio stream. For
instance, iPhone and Nokia N810 mobile phones use the
MPEG-4 video container with an AVC visual stream and
an AAC audio stream. Additional audio streams are fre­
quently used to provide support for different languages (e.g.,
in DVDs). From now on, the term media resource will be
used in this paper to refer to both media (e.g., MP3 audio)
and multimedia resources (e.g., MPEG-4 video container
with MP3 audio stream and AVC visual stream).

Further work initiated by the coding community includes
automatic multimedia content analysis techniques (such as
voice or face recognition) to extract information not ex­
plicitly represented in the media. Roughly speaking, the
low-level multimedia features are automatically obtained by
means of signal analysis techniques. Subsequently, infer­
ence techniques are used to obtain high-level descriptions.
Multimedia research tries to All the semantic gap between
the low-level and high-level multimedia descriptions (see
for instance [17]). As not all these descriptions can be auto­
matically extracted, the metadata community has proposed
the semi-automatic or manual annotation of complementary
multimedia descriptions. The MPEG-7 [18] standard pro­
vides automatically and manually generated descriptions of
the multimedia content. In addition, the MPEG-21 [4] stan­
dard provides metadata to describe an entire multimedia sys­
tem.

2.2 Existing multimedia adaptation decision-making
techniques

As stated above, the work presented in this paper focuses
on multimedia adaptation within the MPEG-21 framework.
MPEG-21 Part 2 [4] provides a set of description tools for
representing media resources and their metadata. Multime­
dia elements are referred to as Digital Items (DIs). MPEG-7
Part 5 [18] specifies description tools which are frequently
incorporated in the metadata of such DIs. For the adapta­
tion of DIs to the usage environment, MPEG-21 Part 7 [4]
specifies a set of tools referred to as Digital Item Adapta­
tion tools (DIA tools).4 DIA tools address the problem of
maximizing the adapted content quality [19]. The term DIA
description is used to refer to instances of one or more DIA
tools. Within MPEG-21 Part 7, the adaptation engines them­
selves are not normatively specified. The scope of standard­
ization of MPEG-21 Part 7 is limited to the DIA tools. Based
on this scheme, authors can implement different MPEG-21
Part 7 compliant mechanisms to adapt the existing DIs.

MPEG-21 Part 7 provides, among other tools, two groups
of DIA tools primarily intended to define the constraints of
the environment. The first group is the Usage Environment
Description tools (UED tools) that describe the terminal ca­
pabilities, the network characteristics, the user preferences
and other environment characteristics (such as location and
time zone). The second group is the Universal Constraints
Description tools (UCD tools), which allow for the multime­
dia consumers and multimedia providers to further constrain
the adaptation of the DI.

Typically, multimedia adaptation is done in two phases
and executed in a sequential manner [2, 5, 7, 12, 19]. First,
a decision phase is used to evaluate which adaptation best
suits the constraints expressed in the UED and UCD. Sec­
ondly, in the execution phase, these adaptation actions are
performed on the media and metadata conveyed in the DI.
In the decision phase, two main methods exist:

• Optimization-based methods [5, 19] aim at finding the
adaptation parameters that maximize the quality of the
content of the DI after its adaptation to the constraints of
the terminal, the network and sometimes the user prefer­
ences. This group of methods operates by solving an op­
timization problem. Frequently this problem is described
by metadata where the UED tools and UCD tools are used
together to describe the constraints of the problem. The
MPEG-21 Part 7 AdaptationQoS tools have been used in
this case to describe the possible adaptations that can be
performed on a media resource.

• Knowledge-based methods [2, 3, 7] have been used pri­
marily to determine whether an action can be used and

4MPEG-21 capitalises and italicises XML description tools. This paper
adopts this rule.

which parameters must be supplied to adapt the content.
These types of methods usually evaluate the concatena­
tion of several actions in a sequence.

Knowledge-based methods frequently rely only on meta­
data describing the content to make multimedia adaptation
decisions. In contrast, optimization-based methods utilize
the content of the resource to make decisions. In particular,
optimization-based methods measure the quality of the me­
dia content after adapting the content in several ways. The
variation of the content that better fulfils the constraints of
the UED and UCD and has the highest quality will be se­
lected during the decision process.

Conversely, knowledge-based methods operate on the ba­
sis of a description of the media format in the DI (e.g.,
via the MPEG-7 MediaProflleType DS). During the deci­
sion phase, these methods search for actions that enable the
media format of the DI to be consumable in the target en­
vironment. Unlike optimization-based methods, knowledge-
based methods usually do not consider the content of the DI
resources until the execution phase starts.

Although in theory both the UED tools and the UCD
tools may be used to describe the constraints of the envi­
ronment, knowledge-based approaches (such as the ones de­
scribed in [2] and [7]) have used only the UED tools to de­
fine the constraints of the adaptation problem. Indeed, there
exists a coupling between the UCD elements that define the
constraints of the problem and the AdaptationQoS elements
that span a solution space making references to the con­
straints in the UCD. The Planner presented in this paper
makes use of only metadata (DI and UED tools), that is, it
does not access to the media resource during the knowledge-
based decision phase.

Based on the above observations, both optimization and
knowledge-based adaptation methods may be combined in
sequence. First, the knowledge-based method uses the me­
dia format to decide which actions adapt the content to the
UED. Second, as further explained in Sect. 4.1, "intelligent"
actions use optimization-based methods to select their out­
put. At the moment, CAIN-21 includes several CATs capa­
ble of performing such optimization decisions.

In this paper, we propose an improvement to the knowl­
edge-based methods. Specifically, we are going to allow for
the integration of conversion modules that make decisions
during the execution phase.

2.3 Existing AI planning techniques

Previous multi-step multimedia adaptation approaches have
frequently used AI planning techniques to select which
actions adapt the content to the constraints of the termi­
nal [2, 3, 7]. These AI techniques have been summarized in
the following subsections.

2.3.1 Planning 2.3.3 Non-deterministic planning

In AI, planning is the decision-making process that pre­
cedes acting [14]. Formally, a planning problem is made
up of a finite and recursively enumerable set of states
S = [si,s2,...}, a finite and recursively enumerable set of
actions A = {a\,a2,...}, and a state transition function
y(s,a): S x A ^ S, which, given a specific state s¡ and a
specific action a¡, take us to adifferent state si+\ e y(s¡, a;).
In addition, each action is associated with a set of precon­
ditions pre(cii) that must be true before the action can be
executed and a set of effects effects{ai) that describes how
the state changes when the action is executed. Under such
conditions, planning algorithms commits to finding the cu­
mulative effects of these actions to search for sequences of
actions that lead from an initial state to a goal state.

Moreover, the set of effects effects{a\) can be further di­
vided into a set of postconditions post{ai) that represent
changes in properties of the state and a set of invariants
invariants(ai) that represent properties of the state that must
not change, i.e., effects{ai) = post(ai)U invariants^). Tra­
ditionally, preconditions are represented as predicates that
must be true before the action starts, postconditions are rep­
resented as predicates that must be true when the action ter­
minates, and invariants are represented as predicates that
keep their true value from the beginning to the end of the
executing action.

2.3.2 Neoclassical planners

In the 1980s the computational costs needed to solve the
above-described planning problems using classical planners
apparently could not be further reduced. However, in the
1990s the computational costs of planning systems were re­
duced with the rise of techniques that have been qualified as
neoclassical planners [14]. The most remarkable approach
was Graphplan [20]. The main difference between classi­
cal planning and neoclassical planning is that in classical
planning every node of the search space corresponds to sin­
gle state in a partial plan, whereas in neoclassical planning
nodes correspond to the union of a set of postconditions that
can be seen as a set of partial plans. The planning graph
serves to gather similar actions forming a partially defined
set of actions. In classical planning, actions were analyzed
individually and fully instantiated. Conversely, neoclassical
planning analyzes a partially defined set of actions. Addi­
tionally, Graphplan proposes to build a reachability graph
instead of a reachability tree to reduce the computational
costs of the planning algorithm. Even though the first imple­
mentation of this idea used forward search, further advances
in this area included backwards search, i.e., with the goal
state evaluated first (see for instance [21]).

This subsection introduces the notion of a non-deterministic
planning and focuses on the difference between bounded
and unbounded non-deterministic planners.

Classical and neoclassical planners make two restrictive
assumptions [14]:

• Deterministic actions: In a given state, actions always
produce the same effects. That is, for each action a;, if the
action is applicable for the s¡ state, it will lead to no more
than a single state si+i, i.e., \y(si, a¡)\ < 1. The planner
terminates the expansion of search paths in those states s¡
in which for every action a; it holds that | y (s¡ , a¡) | = 0.

• Full observability: The planner can monitor all the rele­
vant features of the world, meaning that it can recognize
all the properties of the states.

Non-deterministic planning relaxes these assumptions. Spe­
cifically, non-deterministic planning introduces:

• Non-deterministic actions: Actions that under the same
conditions (receiving the same input state) produce dis­
similar outcomes, i.e., the exact outcome that is going
to be produced is unknown before executing the action,
i.e., 0 < \y(si,cii)\ < n, where n is any natural number.
For instance, during a manufacturing process the equip­
ment may fail, or throwing a dice has several possibili­
ties, none of them are certain. Deterministic actions are a
particular case of the non-deterministic actions in which
\y(si,ai)\ < 1.

• Partial observability: In some applications the state of the
world is only partially observable, and as a consequence
different states of the system become indistinguishable.
Full observability is a specific case of partial observability
in which all the states of the world are distinguishable.

Probably the main problem of non-deterministic planning is
that this may result in different execution paths. The usual
way to address this uncertainty follows three basic rules:

• Outcome probabilities. Non-deterministic actions are
modeled by associating probabilities with the outcomes
of the actions. This rule allows taking into account the
fact that some outcomes are more probable than others.

• Belief states. States are replaced by belief states, which
associate a probability distribution across the state space.

• Utility function. Goals are represented via a utility func­
tion, i.e., numeric values that indicate the level of pref­
erence of each possible goal state. Under these circum­
stances, planning under uncertainty can be seen as an op­
timization problem where the objective of the planner is
to maximize the utility function.

A non-deterministic planner can be unbounded or bounded.
A bounded non-deterministic planner is one that can con­
trol the parameter of the action to limit the outcome to a

subset of its potential instantiations. This paper will focus
on the implementation of a neoclassical non-deterministic
bounded planner. Specifically, Sect. 4.2 describes that pre­
conditions and postconditions partially define a group of
states. Section 4.2 introduces the notion of conversion states.
Section 4.3 explains that uncertainty is handled using non-
deterministic conversion states. Section 4.3 also explains
that such conversion states are bounded using so called
source and target parameters.

2.4 Conversions vs. planning actions

A conversion is an action that changes the characteristics
of a multimedia resource, represents its partial or complete
state before and after its execution, and may perform internal
decisions. The notion of conversion is the basic operation
within the extensible Planner of CAIN-21. This term has
been chosen following the MPEG-21 Part-7 nomenclature.
Conversions have three main features:

(1) Internal decisions. Conversions include internal deci­
sions; one conversion corresponds to a group of re­
lated actions. Graphplan-like planners also include this
idea and produce a planning graph in which each node
corresponds to a set of related actions. However, in
Graphplan-like planners, these sets of actions are par­
tially instantiated states that will be fully instantiated be­
fore the planner terminates. In the case of conversions,
the parameters are partially instantiated and the Planner
never fully instantiates these parameters because these
decisions are postponed until the execution phase.

(2) Bounded non-deterministic actions. Conversions are
bounded non-deterministic actions, which are a specific
type of action. In the Planner, a conversion state can
represent a set of possible states. In this case, the para­
meter values of the conversion are multi-values.

(3) Tolerating partial description. Conversions incorporate
semantics for absent properties that will be explained in
Sect. 4.5.

3 Architecture and control flow within CAIN-21

This section describes the CAIN-21 software interfaces, the
internal architecture and the control flow. Further details can
be found in our previous publications [9, 10]. Subsequently,
Sects. 4 and 5 focus on the Planner module.

3.1 External interfaces

CAIN-21 serves adaptation requests through two exter­
nal software interfaces (see Fig. 1 below): (1) The media
level transcoding interface performs blind adaptation (i.e.,
semantics-less adaptation) of a media resource. In addition

to the media level, this interface can also perform system
level adaptation, i.e., videos composed of one or more au­
dio and visual streams. The media level transcoding opera­
tions are implemented inside the Tlib module. This module
includes conventional software libraries such nsffmpeg, im-
agemagick as well as Java Native Interface custom libraries.
(2) The DI level adaptation interface is responsible for per­
forming system level (semantic or blind) adaptations. In this
case, metadata is exploited during the adaptation. During
this DI level adaptation, all the modules from (2) to (7) de­
scribed below are used.

The DI level adaptation interface deals with three types
of MPEG-21 DIs: (1) the Content DI conveys the media re­
source together with its metadata; (2) the Context Repository
encloses usage environment information together with infor­
mation that the adaptation engine employs on deciding and
executing the most suitable set of adaptations. Three Context
DIs implement the Context Repository: the Usage Env DI
describes the available terminals, networks and user prefer­
ences. The CAT Caps DI describes the conversion capabili­
ties for each CAT in the CATs Repository. The Properties DI
defines the set of properties to be taken into account and pro­
vides the addressing mechanism described in the following
subsection; (3) the Configuration DI states which UED—
from the ones available in the Context DI—must be used
to perform the adaptation. The purpose of the Configuration
DI is to decouple the Content DI and the Context DIs. Usage
examples and further explanations of this mechanism can be
found in [10].

In CAIN-21, the adaptation is performed through the DI
level interface and at the Component level. An MPEG-21
Component includes a media resource (in the Resource el­
ement) and its metadata (in the Descriptor element). The
DI level adaptation interface provides two different oper­
ations. The first one modifies the existing Component and
the second operation adds a new Component element to the
DI. More specifically: (1) the transformo operation takes
a Component from the Content DI and modifies its media
resource and metadata to adapt it to the usage environment;
(2) the addVariationQ operation takes a Component from the
DI and creates a new Component ready to be consumed in
the usage environment. At the end of the addVariationQ op­
eration, CAIN-21 adds this adapted Component to the Con­
tent DI.

3.2 Architecture

This section provides a detailed description of the CAIN-
21 modules. Figure 1 depicts CAIN-21 functional modules
and the control flow along the adaptation process. The Man­
ager module is responsible for coordinating the whole DI
level adaptation process. The modules depicted below the
Manager perform different tasks initiated by the Manager.

Fig. 1 Modules and control
flow within CAIN-21

External représenla!ion (e.g. SMIL)

(1)

DI level
adaptation
interface
tran.iform() I
addVariationQ

Conten:
Di

(2)

Traj
I

ranslater

D!

0)

J (8)

CAIN-21

Manager

(7)

Adapted
Content

DI

Adapted Component

" (6)

Parser Properties
>

(4)

Planner

Initial Component
+ Sequence
of conversions

(5)

E\ee uter

Context Repository CATs Repository

Usage Env DI
CAÍ CapsDI

Properties DI

c CP ct CAÍ"

•> External software interface cal I /return

-> Control flow

• » Use the pointed out service

1Mb

(e.g. dynamic libraries)

Í
Media level

transcoding interface

The distinction between the notion of adaptation module and
execution module has been frequently proposed in the mul­
timedia adaptation literature [5, 6]. CAIN-21 also includes
this distinction with the Planner and the Executer modules.
The Planner uses metadata to decide on the sequence of
conversions and parameters that should be executed over a
Component element of the Content DI [8]. Subsequently, the
Executer is responsible for executing the corresponding se­
quence of CATs on the initial Component. If CAIN-21 re­
ceives multiple requests to adapt the same content to the
same usage environment, a caching mechanisms speed up
this process by bypassing the execution of the Planner and
Executer several times.

The Context Repository includes three types of Context
DIs (see Fig. 1). The Usage Environment DI describes the
available usage environments using standard UED elements
(i.e., instances of fheMPEG-21 UED tools). The CAT Capa­
bilities DI describes de adaptation capabilities of the plug­
gable CATs. There are as many CAT Capabilities DIs as
CATs are installed in the system. Each CAT Capabilities
DI contains one or more ConversionCapabilities elements.

Each ConversionCapabilities element describes one conver­
sion that the CAT can perform. Each ConversionCapabil­
ities element has a set of valid input and output parame­
ters: each parameter has an associated set of allowed values
(multi-valued properties). The relationships among these el­
ements are described in more detail in [10].

CAIN-21 includes an addressing mechanism [10] based
on XPath [13] expressions. After parsing the different DIs,
all the metadata is represented as a set of properties. With
this mechanism, gathering the set of properties of the multi­
media adaptation elements is straightforward and highly ef­
ficient. The Xalan processor [23] is used to efficiently gather
these properties. This set of XPath expressions is collected
in the Properties DI. The XPath expressions in the Proper­
ties DI reference data stored in the other DIs. Changes in
the set of multimedia properties under consideration do not
imply alterations of the underlying source code of the de­
cision algorithm; in fact, these changes must only be done
in the Properties DI. The Parser module resolves the val­
ues of the aforementioned properties. Firstly, the Parser ac­
cesses the Properties DI to obtain the set of property keys

and corresponding XPath/XPointer expressions. Secondly,
after resolving these expressions, the values of these proper­
ties are generated. During this step, metadata is loaded from
the Content DI, Configuration DI, Usage Environment DI
and CAT Capabilities DI. The value of the properties that
this mechanism obtains can be multi-valued (e.g., bitrate =
[1000..200000], audio Jormat = [aac, mp3}). Representing
the information by means of properties has additional ad­
vantages that will be described in Sect. 7.1.

A wide range of multimedia representation standards ex­
ists and CAIN-21 can be integrated into heterogeneous mul­
timedia systems. The Translater module is the gateway to
other multimedia systems that may be using external tech­
nology (i.e., non-MPEG-21 technology) to represent mul­
timedia content (e.g., HTML, SMIL, NewsML, MPEG-4
BIFS). The Translater enables the integration of CAIN-21
adaptation services into such heterogeneous multimedia sys­
tems. With this purpose, this module transforms the exter­
nal representation of multimedia into an MPEG-21 com­
pliant input Content DI that afterward CAIN-21 processes.
In addition, the Translater is responsible for transforming
the adapted output Content DI into its external representa­
tion. Different instances of the Translater are interchange­
able modules created to interact with external multimedia
systems.

3.3 Control flow

The numbers in Fig. 1 indicate the tasks control flow in the
adaptation process. (1) When interacting with external mul­
timedia systems, the Translater transforms the external mul­
timedia representation into a Content DI that CAIN-21 can
process. (2) The Content DI and Configuration DI arrive to
CAIN-21 via the DI level interface transformQ or addVaria-
tion() operations. The Manager is in charge of coordinating
the whole DI level adaptation process. Although Fig. 1 does
not explicitly show it, the Manager is in charge of transfer­
ring control to the Parser, Planner and Executer. Specifi­
cally, (3) the Manager initiates the adaptation transferring
the control to the Parser so that all the metadata can be col­
lected as properties. Other modules use the Parser (e.g. to
create the adapted Content DI), but for simplicity, the figure
shows it used only to extract the relevant properties. (4) The
Planner receives these properties to make a decision on the
adaptation to perform. Subsequently, (5) the Executer re­
ceives the initial Component to adapt and the calculated se­
quence of conversions (together with the corresponding pa­
rameters). The Executer uses the CATs services to execute
the sequence of conversions. The CATs may also change or
append information to the Descriptor element of the Com­
ponent so that the subsequent CATs may use it. (6) When
all the conversions of the sequence have been executed, the
Executer returns the adapted Component. (7) The Manager

replaces or appends the Component to the adapted Content
DI, depending on the DI level interface operation (i.e., trans­
formo or addVariationQ). (8) Frequently, the adapted Con­
tent DI may need to be transformed to an external repre­
sentation and in this case, the Translater will perform this
transformation.

4 Planning with multimedia conversions

This section provides a conceptual view on the Planner and
explains how to incorporate partial description to this model.
Section 5 both contains algorithm descriptions and a theoret­
ical analysis of the Planner.

4.1 Conversion modules that make decisions

In previous multi-step adaptation engines [2, 3, 7], classi­
cal and neoclassical AI planners have been used to make all
the decisions regarding the actions to perform and the para­
meters to use in order to achieve a goal state. Frequently, the
goal in multi-step multimedia adaptation is determined from
the constraints of the terminal. After the planning phase, the
actions are then executed in sequence. The primary novel
contribution of our approach is to transfer parts of these de­
cisions from the decision phase (Planner) to the execution
phase (Executer and CATs). In this approach, the Planner
uses the CAT Capabilities to determine the constraints that
the CATs must obey during their internal decisions. The
optimization-based methods described in Sect. 2.1 are an
example of this class of conversion modules. In [24] we re­
ported several experiments that make internal decisions in
order to select optimal parameters settings that maximize
the Quality of Service (AdaptationQoS tools), satisfying the
constraints imposed by the terminal (UED tools) and the
constraints of the content providers and content consumers
(UCD tools). In another publication [25], we evaluated the
automatic execution of sequences of conversions in which
the Planner first decides on the input image format, the out­
put visual stream format and the output frame size. In a
second step, an ImagelVideo CAT uses Regions Of Inter­
est (ROIs) descriptions stored in the Content DI to make
additional internal decisions that focus on the adapted scene
on the ROIs (e.g. faces of the people) to improve the result
of the adaptation. The OnDemandVideoTranscoder CAT is
yet another example of a conversion module that makes in­
ternal decisions. This CAT embeds the ffmpeg transcoding
tool. When certain parameters (such as the frame rate or the
bitrate) are not explicitly provided, the ffmpeg tool chooses
default values, which usually depend on the transcoding op­
eration that will be carried out. More details of these internal
decisions will be provided in Sect. 6.

Fig. 2 Conceptual view of the
Planner Instances

9
Component Component

Description
schema

MPEG-21
Component

4.2 Conceptual view of the Planner

In Sect. 1 we explained that a conversion module comprises
one or more actions that modify the media resource. In
Sect. 3.2 we then explained that in the context of the CAIN-
21 system, a CAT is a pluggable software tool that imple­
ments one or more conversion modules. The CAT Capa­
bilities and ConversionCapabilities documents describe the
CATs and the conversions that each CAT implements, re­
spectively. This section provides a conceptual view of the
Planner and its elements.

The input to the Planner are the multimedia Component
to be adapted, the ConversionCapabilities describing the
conversion modules installed in the system, and the UED
providing the current usage environment. We refer to the
properties of these three description elements as conversion
states. The conversion states will be further formalized in
the next section. The Planner uses conversion states to rep­
resent the properties of a Component both before and af­
ter converting it. Figure 2 shows the conceptual view of the
Planner together with the description schema used to repre­
sent each type of conversion state.

The term sequence of conversions soci will be used to re­
fer to any sequence of conversion states cs„, csn-\,. ..,cs\
that leads from the initial content cs„ (i.e., the Compo­
nent to be adapted) to the adapted content cs\ (i.e., the
UED). Since our Planner is a backward planner, indices
appear in reverse from « t o 1. As there may be several
ways of adapting the input media resource to the usage
environment, the Planner builds a virtual tree of conver­
sions. In the virtual tree of conversions, the nodes corre­
spond to the conversion states and the arrows correspond
to changes in the conversion states. The term set of se­
quences of conversions SSOC will refer to all of these se­
quences of conversions, i.e., SSOC = {soc\,..., soct}. For

convenience reasons, our Planner creates several instances
of the conversion state that represents the initial content
(i.e., all of these instances represent the same Component
that is going to be adapted). For example, in Fig. 2 soc\ =
{CSa4, CSa3,CSa2,CSai}, SOC2 = {CSb3, CSb2, CSbi], SOC3 =

[csC4, csC3, csci, csc\} and SSOC = {soc\, soc2, SOC3}. The
output of the Planner is the SSOC that produces content
that is ready for consumption on the terminal.

4.3 Multimedia conversion states

Since these CATs take internal decisions during the execu­
tion phase, their outputs depend on these internal decisions
and therefore are non-deterministic from the point of view
of the planning algorithm, i.e., the Planner cannot antici­
pate the outcomes of these CATs. In contrast to previous
multimedia adaptation research [2, 3, 7], we use a bounded
non-deterministic planner, i.e., the Planner binds the output
of the internal decisions to a subset of its potential outputs.
The existence of bounded internal decisions is a fundamen­
tal reason for the development of a model for the conversion
states that we will further described in the subsequent sub­
sections.

4.3.1 Properties-based representation of the conversion
states

Preconditions, postconditions and invariants have tradition­
ally been represented with first order logic predicates that
have shown to be sufficiently expressive to model many
planning problems [26, 27]. This research evaluates an
alternative representation of predicates based on proper­
ties (i.e., 0-ary propositional predicates). The term single-
valued property will be used to refer to a label (vari­
able assignment) with only one value (e.g., width = 320).

Similarly, the term multi-valued property will refer to a
label with multiple homogeneous values (e.g., format =
[mpeg-l, mpeg-2, mpeg-4} or bitrate = [16000..780000]).

4.3.2 Conversion capabilities and conversion states

As explained in Sect. 2.3.3, non-deterministic planning has
addressed uncertainty in the output of the actions with be­
lief states. In this work, we propose an alternative approach
to address non-deterministic actions with conversion states.
Specifically, the term conversion capabilities cc¡5 will refer
to the range of properties accepted and produced by the con­
version module. The term selected conversion state cs¡ (or
conversion state, for short) will refer to the subset of prop­
erties that the Planner is considering for the execution in a
sequence of conversions. The term realized conversion state
realized(csi) will refer to the result (set of single-valued
property valuations) of executing a non-deterministic con­
version. Therefore, given any conversion module the follow­
ing relation holds: cci c csi c realized(csi). In the Plan­
ner, only the properties in realized{csC) have to be single-
valued. For example, when given a conversion capabilities
element cci that accepts format = [mpeg-l, mpeg-2, divx}
and produces format = [mpeg-l, mpeg-2, mpeg-4, divx},
the Planner may generate a conversion state csi that ac­
cepts format = [mpeg-l, mpeg-2} and produces format =
[mpeg-l, mpeg-2, mpeg-4}. In this example, the values ac­
cepted by cs¡ are a subset of the values accepted by cc¡. Sim­
ilarly, the values produced by cs¡ are a subset of the values
produced by cci. After its execution, the conversion mod­
ule may end up receiving format = [mpeg-2} and producing
format = [mpeg-4}. The result of executing the conversion
corresponds to realized(csi).

4.3.3 Preconditions, postconditions, source and target
parameters

Section 2.3.1 described the difference between precondi­
tions, effects, postconditions and invariants. Section 3.2 in­
troduced the ConversionCapabilites element of the CAT Ca­
pabilities. A ConversionCapabilities element contains two
subelements: the Preconditions element describes the condi­
tions (using multi-valued properties); the Planner must se­
lect one or more of its values before the conversion module
can be executed The Postconditions element describes the
changes (represented as properties) that occur after execut­
ing it. These description elements correspond to the conver­
sion capabilities cci, preconditions object pre(cci) and the

In this document the term conversion capabilities (shortened as cc)
makes reference to the range of properties accepted and produced
by the conversion module whereas the term ConversionCapabilities
makes reference to its description using the MPEG-21 XML elements.

postconditions object post{cci) respectively. Invariants are
not directly represented. Section 4.5 explains that if a prop­
erty of the conversion module is not described in the precon­
ditions and in the postconditions, the property is invariant,
i.e., its value is not altered in the conversion.

The term selected source parameters s_params(csi) (or
source parameters, for short) will be used to refer to the
subset of preconditions s_params(csi) ^pre(csi) that the
Planner selects for executing a conversion. Similarly, the
selected target parameters t_params(csi) (or target para­
meters, for short) will be used to refer to the subset of post­
conditions t_params(cs¡) c post(cs¡) that might be obtained
during a specific conversion execution. The selected source
and target parameters will be computed during the deci­
sion phase. When the target parameters are multi-valued,
the Planner transfers decisions to the conversion modules.
In this case, they may decide which output to produce.
In the same manner, the terms realized source parame­
ters s e s_params(csi) and realized target parameters t e
t_params(csi) (which names are not shortened in this pa­
per) will be used to refer to the single-valued properties that
the conversion module receives and produces during the ex­
ecution phase.

Figure 3 shows the elements that take part in a bounded
non-deterministic multimedia conversion and Fig. 4 shows
an example in the CAIN-21 demo. In Fig. 3, the conversion
state is shown as an instance of the conversion capabilities:
the source parameters are a subset of the preconditions and
the target parameters are a subset of the postconditions. The
source and target parameters in Fig. 3 will be selected pa­
rameters at the end of the decision phase and realized para­
meters at the end of the execution phase. Note that the con­
version states are represented with only one object whose
properties (in the case of selected conversion states) may be
multi-valued.

The example in Fig. 4 shows a conversion state (source
and target parameters) together with its conversion capa­
bilities (preconditions and postconditions). The source pa­
rameters must fulfill the preconditions, and therefore the
source parameters must be a subset of the preconditions,
i.e., s_params(csi) c.pre(csi). Similarly, the target parame­
ters must be a subset of the postconditions t_params(csi) c
post(csi). Target parameters are always associated with the
postconditions and not with the invariants, because invari­
ant properties by definition cannot be changed and are not
explicitly modeled. In Fig. 4, the conversion labeled as
mimejmagejormatsjranscoder defines in its postcondi­
tions that mimejype = [image/jpeg, image/bmp, image/gif
image/ppm, image/png, image /tiff}, which means that the
conversion module can produce these image formats. In
the example, the Planner has decided that the output for­
mat must be image /jpeg, and therefore in the selected tar­
get parameter is mimejype = [image/jpeg}. In general,

Fig. 3 Elements of a bounded
non-deterministic conversion

Source
params

Target
params

Preconditions Postconditions

CAIN-21 Content Adaptation Integrator in the MPEC-21 framework p»oo
(•* I - CO) () (W) (™ nnp://150¿44,57,;u/cain;iaemo/den'w_iutapBlion_re5uH-jip*adipted
W I C A I N - 2 1 Content Adapta t ion INle... +

v^-<2F i

ImageTrarificoder

CAT

E

mime_image_formats_transcoder

b ind ing:

content:

Source Params

urn mpeg mpeg21:2007:01 -BBL-NS:handler FILE

urn:mp#g:mpe37:c5:ConlentCS:2001:4.1

imaged peg

Image/bmp

irnage/gif

image;ppm

¡ms.ge ;'png ¡mage,-'tiff

visual_frame:

Preconditions

urJ:

b ind ing!

content:

urn!

urn:

Tip«Lg:mpeg21:2007:01-BBL-NS:handler:FILE

Tipeg:mpe97:cs:Con1entCS:2001:4.1

i mage; j peg

image'bxnp

image/g i f

imageyppm

image; png image/ t l f f

Target Params

binding:

content:

visual_eolar_domain:

vi su al . f rame:

mi me . type:

formar

vi su al .format:

uH:

urn:mpeg:mpeg2i:20O7:O1-EBL-NS:handler:FILE

um:rnpeg:mpeg7:t5 ;CantenlCS:2001 :4. 1

graylevel

176x144

image/jpeg

urn:rnpeg:mpeg7:cs:F¡leFormaiCS:20[)l:l

ufn:rnpeg:mpe^?:ts:VisualCodin9FormaiC5:20üT:4

file:///E:\Program F¡l« Ix86)\Apacbe Software

FoLrrtfacion\To...

ur l :

b inding:

content:

Postconditions

(í rn.mpeg:mpeg2í:2007:01-BBL-NS:handlerFILE

urn:mpeg:mpeg7:cs:CantentCS:2C01:4.1

image/ ; peg

¡jnage.'bjnp

Image/gEf

image/ppm

Image.'png image/MFF

urn:mpeg:mpeg7:c5Fi|e

ujTi:mpeg:mpeg7:r_5:File

uj ,n:mpeg:mpeg7:c5:Kile

urn:mpeg:mpeo7:cs:File

iírn:mpeg:mpeg7 -c5 -F-ile

m u C 5 ; 2 0 l) l

maídSiZOOl

istC&ZOOl

matC5:2001

iatCS:2001

.

Fig. 4 Conversion state in the CAIN-21 demo available at cain21.sourceforge.net

during the decision phase the target parameters can be as­
signed several values. In this case, the Planner is transfer­
ring the decision of what value to produce to the conver­
sion module. For instance, if the terminal accepts GIF and
JPEG images, the target parameter would be mimejype =
[image/gif, image/jpeg}.

4.4 Bounded non-deterministic conversions and planning

According to their outcomes, conversions can be divided
into three groups: (1) deterministic conversions, which are
always bound to single-valued properties, (2) unbounded

non-deterministic conversions, where the outcome is not al­
ways the same and the planner cannot select the outcome,
and (3) bounded non-deterministic conversions, where the
outcome can vary and the planner selects a subset of the
postconditions. In this paper, multimedia conversions are
modeled as bounded non-deterministic conversions where a
conversion can be executed by providing a set of target para­
meters. Subsequently, the execution of each conversion may
produce these parameters (a subset of the set of the postcon­
ditions).

An important difference between the bounded non-
deterministic planner (our Planner) and other multimedia

file:///E:/Program
http://cain21.sourceforge.net

planners (such as the one in [3]) is that the bounded non-
deterministic planner must determine the source and target
parameters settings to execute the conversions.

Finally, the bounded non-deterministic planner should
not be confused with other techniques such as continuous
planning [22] or planning under uncertainty [14]. These lat­
ter two techniques implement unbounded non-deterministic
planners wherein the actual outcome of an action is not
known before its execution. Such situations can for example
arise, when the execution of an action fails due to an unfore­
seen change in the environment that has occurred since the
planning phase. Therefore, this other group of techniques
requires the existence of contingency decisions, that is, al­
ternative decisions that are chosen depending on the out­
come of executing an action (such as to repeat the action
or to select an alternative action). Contingency decisions are
needed in continuous planning and planning under uncer­
tainty because if contingency decisions were not used, the
plan would not always lead to a goal; the goal would be
only reached when there was no "failure" in the sequence of
actions. Moreover, these contingency decisions have the ef­
fect that no linearly ordered sequence of conversions exists.
Bounded non-deterministic planners, however, can build lin­
ear sequence of actions that always succeed. The planner de­
veloped in this paper uses conversions that—by definition—
always produce one of the selected solutions. Therefore, this
planner can calculate all the feasible sequences of conver­
sions before the conversions are executed.

4.5 Tolerating partial description

Multimedia adaptation systems such as CAIN-21 can be
used in large real-world multimedia platforms, which might
involve a relatively large number of multimedia properties.
For the viewpoint of both the CAT implementer (i.e., the
third-party that implements a pluggable CAT) and the user
that needs to adapt his/her multimedia content, supplying
accurate values for the entire set of properties may become
tedious and error prone. For these reasons the Planner was
designed to operate with partial description. Specifically, the
CAT implementer is not forced to provide detailed descrip­
tion of all the properties of the CAT Capabilities. Besides,
the Content DI (i.e., the Component to be adapted) and Con­
text DI (i.e., the UED) may arrive at the adaptation engine
without all their properties values. The notion of partial de­
scription relates to the notion of partial observability intro­
duced in Sect. 2.3.3. When only a partial description is avail­
able, the Planner assumes default meanings for the proper­
ties of the conversions capabilities. The following subsec­
tions describe the mechanisms that tolerate partial descrip­
tion.

4.5.1 Semantics of the properties of the conversion
capabilities

We propose the following semantics for the properties of the
preconditions, postconditions and invariants of the conver­
sion capabilities. These semantics apply in extended form
also to the corresponding properties in the conversion states:

• Required preconditions. If a property appears in a precon­
dition of a conversion capability cc¡, this indicates that
the conversion requires this property in the corresponding
source parameter of the conversion state csi. Specifically,
such a source parameter (represented as a property) must
be a subset of the corresponding precondition property
values.

• Produced postconditions. If a property appears in a post­
condition of a conversion capability cci, this must be in­
terpreted in the sense that the corresponding conversion
state CSÍ produces such a property. In this case, the con­
version state may create the property (represented as a tar­
get parameter) if it does not exist in the source parameter,
or modify it if it exists in the source parameters.

4.5.2 Incompleteness semantics

In addition to providing semantics to existing properties, in­
completeness semantics have been implemented. These se­
mantics define how to deal with absent or partially defined
properties in the conversion capabilities and corresponding
conversion states. Specifically:

• Optional properties. If a property does not appear in the
preconditions of a conversion capability cc¡, this must be
interpreted in the sense that every value is acceptable, in­
cluding the situation where it is not provided at all.

• Wildcard properties. If a property is marked with a wild­
card in the preconditions of a conversion capability cci,
this configuration must be interpreted in the sense that
every value is acceptable, but it must be provided.

• Preserved properties. If a property appears neither in the
preconditions nor in the postconditions of a conversion
capability cc¡, this situation must be interpreted in the
sense that the conversion state csi preserves the value
of such a property, that is, the target parameters take the
property values of the corresponding source parameters
without changes.

Note that the preserved properties semantic forces the Plan­
ner to assume that whenever a property does not appear in
the description of the conversion capabilities, this property
is not modified in the conversion. Therefore, the CAT that
implements such a conversion must refrain from modifying
this property. Note that this is a risky assumption, as the CAT
implementers are assumed to be careful and precise in their
design. The other option would have been to force the CAT

implementers to annotate all the invariant properties that the
conversion module does not modify, which would become
tedious for the CAT implementers. Alternatively, the algo­
rithm that searches for the plan would have to systematically
discard all the conversion modules that are not completely
annotated.

4.5.3 Ignored properties and accumulated effects

In the incompleteness semantics there is a peculiar situation
when a property appears in the preconditions of a conver­
sion module, but does not appear in the postconditions or in
the invariants of the conversion. In this case, it is not defined
what the conversion does with this property and we say that
the conversion capability ignores the property. Therefore, it
is impossible to make any assumption involving the value
of this property in the target parameters. The term "ignore"
must not be interpreted in the sense that the execution of the
conversion module necessarily "loses" the property, but in
the sense that the conversion module does not provide infor­
mation about what is going to happen with this property. An
example of this is a conversion capability that defines the
maximum frame rate that a conversion module accepts, but
does not define the maximum frame rate that it can produce.
This situation may arise simply because the media produced
by the conversion does not have a frame rate at all (e.g., it
produces an image as a summary of a video clip), or be­
cause it does not specify the output frame rate (although the
conversion module produces a video).

To avoid ignoring properties, we introduced the notion
of accumulated effects, which refer to the set of properties
that are produced or modified through a sequence of conver­
sions. Given a conversion state csi, an algorithm can com­
pute these accumulated effects as the union of the properties
in the source and target parameters of the conversion states
that appear along the path from csi to cs\. During each step
of the sequence of conversions, the Planner imposes that the
accumulated effects must always increase or remain, that
is, the Planner does not allow the existence of conversion

capabilities that ignore properties (according to the above-
mentioned ignore incompleteness semantic). In CAIN-21,
the Parser currently detects this condition and reports it to
the user.

5 Algorithm and theoretical analysis

5.1 The Planner algorithm

Figure 2 shows that the conversion states of a multimedia
adaptation problem are instances of the MPEG-21 Compo­
nent to be adapted, the existing CornersionCapabilities ele­
ments and the UED tool. The Planner algorithm carries out
a backwards search that finds all the sequences of conver­
sion states that are capable of adapting the initial conver­
sion state (the Component) to the goal conversion state (the
UED). Section 4.2 proposes to represent those sequences
of conversions soc¡ as a set of sequences of conversions
SSOC = {soc\, SOC2, • • •, sock}. Algorithm 1 is the top-level
control structure of the Planner that computes these se­
quences. It starts by extracting the properties of the goal
conversion state from the UED. Subsequently, getSetOfSe-
quenceOfConversionsQ (explained in Sect. 5.2) determines
the sequences of conversions that lead to the goal conver­
sion state. As the goal conversion state is not part of the
sequences of conversions that getSetOfSequenceOfConver-
sionsQ produces, Algorithm 1 adds the goal conversion state
to the tail of each sequence.

Every sequence of conversion states must have at least
two conversion states: the initial conversion state and goal
conversion state. Thus, if the Component to be adapted (the
initial conversion state) fulfils the UED constraints (the goal
conversion state) without further changes, the corresponding
sequence of conversion states would only include these con­
version states. Conversely, if there is no sequence of conver­
sions that can adapt the Component to the UED, Algorithm 1
would return an empty SSOC. In this case, CAIN-21 reports
this circumstance to the user using plain English explana­
tion messages (e.g., "There is no sequence of CATs capable

Algorithm 1 Main structure of the Planner algorithm

Inputs: problem // The Component to be adapted, the CAT Capabilities and the UED
Outputs: SSOC // Set of sequences of conversions that the Planner has found.
Vars: goal_cs // A conversion state with the properties of the UED

empty_soc // Starts backwards search with an empty sequence of conversion states
SSOC planner(problem)

goal_cs = problem.getUEDConversionStateO;
SSOC = getSetOfSequenceOfConversions(problem,goal_cs,[]);
for (each soc in SSOC)

soc = soc + {goal_cs} // Add goal_cs to the tail of soc
return SSOC;

Algorithm 2 Set of sequences of conversions

Inputs: problem // The Component to be adapted, the CAT Capabilities and the UED
subgoal // The goal or subgoal in each recursive step
visited_conversion_states // List of conversion state objects that have already been evaluated

Outputs: SSOC // Set of sequences of conversions that the Planner has found.
Vars: prospective // The set of conversion states (instance of either a ConversionCapabilities element or

// the Component element) that matches with the current subgoal
feasible // Subset of prospective conversion states that Algorithm 4 has selected
sub_ssoc // The SSOC that reach the current subgoal

SSOC getSetOfSequencesOfConversions(problem, subgoal, visited_conversion_states)
prospective = getProspectiveConversionStates(problem, subgoal);
feasible = {};
for (each cs in prospective)

if (isFeasibleConversion(cs, subgoal, visited_conversion_states))
feasible.add(cs);

SSOC= {};
for (each cs in feasible)

if (cs isa Component)
soc = {cs};
SSOC.add(soc);

else
visited_conversion_states.add(cs);

sub_ssoc = getSetOfSequencesOfConversions(problem, cs, visited_conversion_states);
visited_conversion_states.remove(cs);
for (SequenceOfConversions soc : sub_ssoc)

soc.addTailStep(cs);
SSOC.add(soc);

return SSOC;

of converting DivX files to MPEG-4"). This message helps
the adaptation engine administrator to configure the CATs
installed in the adaptation engine.

5.2 Computing the set of sequences of conversions

Algorithm 2, which gives details of the getSetOfSequenceof-
ConversionsQ function, is a recursive process that produces
a virtual tree of conversions (introduced in Sect. 4.2). An ex­
ample of this virtual tree of conversions is given in Fig. 5.
This example shows the changes in the source and target
parameters of the virtual tree of conversions' nodes. Thus,
what Algorithm 2 produces is a set of sequences of conver­
sions SSOC = {soc\,soc2, • • •, sock} that corresponds to the
different paths.

The algorithm receives in the subgoal parameter either
the goal conversion state (i.e., instance of the UED) or any
subgoal conversion state (i.e., instance of either a Conver­
sionCapabilities element or the Component element) in the
virtual tree of conversions. In order to prune the search, the
algorithm also receives a list of visited conversion states. Al­
gorithm 2 has two parts:

(1) The first loop determines which conversion states can
precede the current goal conversion state. The term
prospective conversion states refers to the conversion
states (instances of the conversion capabilities avail­
able in the system) that match (according to Algo­
rithm 6 explained in Sect. 5.5) the current goal conver­
sion state. The term feasible conversion states refers to
those prospective conversion states that contribute to the
adaptation. They are explained in Sect. 5.3.

(2) The second loop recursively composes the set of se­
quences of conversions that go from each feasible con­
version to the current goal. The visited conversion states
are also used to avoid infinite loops through the same
group of states.

5.3 Prospective and feasible conversion states

The prospective conversion states are obtained from both the
Component to be adapted and the ConversionCapabilities of
the CATs currently installed in the system. In Algorithm 3,
the first part determines whether the conversion capabilities
that correspond to the Component to be adapted matches
(according to Algorithm 6) with the current goal conversion

Fig. 5 Example of a virtual tree
of conversions sre=souree parameters

target=target parameters

targct={a.d}
src={b,c}

target={}
src={a,b.c} targct={}

src={a,b,c}

target={}
src={a.b.c

Q
target=ib.a,d,e}
src={c}

target={c,e}
src={}

targel={b.e[
src={a,di

target={b,dj
src={a,c,e}

target={a,c,e}
src={¡

target={a,b}
sre={e[

target={c.i}
src={}

Algorithm 3 Prospective conversion states

Inputs: problem // The Component to be adapted, the CAT Capabilities and the UED
subgoal // The goal of subgoal in each recursive step

Outpus: cs_set // Set of prospective conversion states.
Vars: child_cs // Conversion state that matches with the current goal conversion state
SSOC getProspectiveConversionStates(problem, subgoal)

cs_set = {};
child_cs = match(subgoal, problem.getComponentConversionCapsO);
if (child_cs T¿ null)

cs_set.add(child_cs);
for (each cc in problem.getCATsConversionCaps())

child_cs = match(subgoal, cc);
if (child_cs T¿ null)

cs_set.add(child_cs);
return cs set;

state. The second part of Algorithm 3 obtains the set of con­
version capabilities that match the current goal.

The set of feasible conversion states is a subset of the
prospective conversion states that contribute to the adapta­
tion. Algorithm 4 shows the three conditions that make a
prospective conversion state become a feasible conversion
state. (1) It must not be previously visited, (2) it must con­
tribute to the progress of the adaptation (according to Algo­
rithm 5), and (3) the initial conversion states must not have
unsatisfied preconditions. Unsatisfied preconditions mean
that properties exist which have not been adapted through
the sequence of conversions according to the constraints of
the UED.

5.4 Obtaining the conversion states that contribute
to the adaptation process

In each step within the backwards search process through
the virtual tree of sequences of conversions of Fig. 5, the

Planner must determine which conversion states contribute
to the adaptation process. The criterion to determine their
contribution is as follows:

• If the intersection between the property list of the target
parameters of the CSÍ+I conversion state and the property
list of the target parameters of the csi goal conversion
state is a set with one or more empty property values, then
this configuration means that CSÍ+I contributes (with the
empty properties in the intersection) to the progress of
the adaptation. In this case, the CSÍ+I conversion state is
maintained.

• Otherwise, it means that the same outcome can be reached
with est, and the CSÍ+I conversion state is discarded.

Consider, for example, that the target parameters of csi
are visualjormat = {mpeg-l, mpeg-2} and audio Jormat =
[mp2, mp3} and the target parameters of CSÍ+I are
visualjormat = {mpeg-4} and audio Jormat = [mp2, mp3}.
In this case, the intersection of the visualjormat values is

Algorithm 4 Feasible conversion states

Inputs: cs // Prospective conversion state to be determine as feasible conversion state
subgoal // The goal of subgoal in each recursive step
visited_conversion_states // List of conversion state objects that have already been evaluated

Outputs: Returns whether the prospective conversion state is feasible or not
boolean isFeasibleConversion (cs, subgoal, visited_conversion_states)

if (visited(cs, visited_conversion_states))
return false;

if (!contribute(cs, subgoal))
return false;

if (cs isa Component AND NOT cs.hasUnsatisfledPreconditions())
return false;

return true;

Algorithm 5 Conversion states that contribute to the adaptation

Inputs: cs // Prospective conversion state. The algorithm determines whether it contributes to the adaptation
subgoal // The goal of subgoal in each recursive step

Outputs: Whether the cs conversion state contributes to the adaptation (that produces the subgoal conversion state) or not
boolean contribute(cs, subgoal)

intersected_props_values = cs.getTargetParams() n subgoal.getTargetParams();
for (each p intersected_props_values)

if (p.isEmptyO)
return true;

return false;

an empty set. This means that mpeg-4 visual format can be
adapted by adding CJ¡+I to the virtual tree of conversions.
Note that this discarding condition never occurs when the csi
conversion state is the goal conversion state. This happens
because getUEDConversionStateQ always returns a conver­
sion state with an empty set of target parameters and in this
case the source parameters corresponds to the properties of
the UED (see Fig. 5).

Algorithm 5 starts by determining the intersection be­
tween the target parameters of csi and csi+\. Subsequently,
a property with empty values denotes the existence of states
that cannot be reached without csi+\. This means that CSÍ+I

contributes to the adaptation.

5.5 The matching process

Classical planning algorithms represent changes in the state
of the system with a state transition function (introduced
in Sect. 2.3.1). Figure 6(a) shows the elements involved
in the state transition function. The state transition func­
tion si+\ = y (SÍ , a;) evaluates the preconditions of an action
ai e A and determines if the action can be applied to the in­
put state SÍ e S and the output state J¡+I e S. Accordingly,
classical planning algorithms are restrained by three rules:

• States are fully observable. The system has complete
knowledge of the world, and therefore it observes the out­

comes in a single state, i.e., the current unique state of the
system.

• Actions are deterministic. Actions have single-valued
states, i.e., if applicable during the s¡ state, each action
a¡ leads to a single new state si+i, so that \y(si, a¡)\ < 1.

• Actions are always unbounded, i.e., they have no source
and target parameters. As the result of executing an action
is always the same and it makes no sense to use parame­
ters to select these single-values properties.

This research proposes that relaxing these traditional as­
sumptions allows modeling and solving a wider range of
problems. Thus, our proposal for a bounded non-determi­
nistic planner replaces the state transition function y (s¡, a¡)
with a matching process y(csi, cc¡+i). Figure 6(b) shows
the elements of the matching process. The matching process
is a function that receives as input the ¿-th conversion state
CSÍ together with the (i + l)-th conversion capabilities cc¡+i
and produces as output the (i + l)-th conversion state cs¡+i.
In other words, the matching process identifies the csi+\
conversion state whose target parameters are acceptable by
the CSÍ conversion state. In this case, the conversion capa­
bilities cci+i matches with the conversion state CÍ¡. The ra­
tionale behind this change is further developed in Sect. 7.1.
This algorithm is invoked from Algorithm 3 to obtain the
prospective conversion states. The arrows in Fig. 6 show that

9 (execution phase)

(decision phase)
•

Preconditions Postconditions

(a) State transition function

(execution phase)

Source

(decision phase)

Target Source
params params

(b) Matching process

C5¡

Target
params

Fig. 6 Elements of the state transition function and of the matching

process

the decision phase progresses from the target to the source,
whereas the execution phase progresses from the source to
the target. In this work, indices are always assigned to the
states according to the order in which the decision phase
evolves.

The state transition function used in classical planning al­
gorithms creates an explicit intertwined sequence of states
and actions as shown in Fig. 6(a). On the other hand, as
Fig. 6(b) shows, the implied state of the Component that is
being adapted can be removed from the sequence of conver­
sion states without losing information because the conver­
sion state impliedly represent the state of such a Component
through its source and target parameters. Speciflcally, the
source parameters represent the Component before execut­
ing the conversion module and the target parameters repre­
sent the Component after executing the conversion module.
In Sect. 4.3.3 the source and target parameters of a conver­
sion state csi+i have been defined as a subset of, respec­
tively, the preconditions and postconditions of its conver­
sion capabilities cc¡+i. Therefore, the new conversion state
object csi+i would include its corresponding conversion ca­
pabilities cci+i (represented as preconditions and postcon­
ditions) together with the source and target parameters that
the matching process has selected for the conversion state.
The details of the matching process algorithm are given in
Algorithm 6.

5.6 Analysis of the Planner algorithm

As the algorithm progresses from the goal conversion state
to the initial conversion state, the source parameters are re­
moved and the target parameters are added. Therefore, at the
end of Algorithm 1 the goal conversion state must only con­
tain source parameters. Likewise, the initial conversion state
must only contain target parameters (see Fig. 5). That being
said, note that:

(1) The number of properties in the goal conversion state
is always the same, regardless of the sequence of con­
versions that reaches the goal conversion state, i.e., in
Fig. 5 all the sequences must lead to the same set of
source parameters ({a, b, c} in this example). However,
since the properties of the goal conversion state could
be multi-valued, the values of the properties that each
sequence of conversions produces may vary. This repre­
sentation is consistent with the capability of the UED to
accept alternative properties. For instance, suppose that
in Fig. 5 the goal state accepts a = {mpeg-2, mpeg-4},
what means that the a property must be produced by
every sequence of conversions. However some of these
conversions might produce a = {mpeg-2}, other se­
quences might produce a = {mpeg-4}, and even an­
other group of conversions might produce both a =
{mpeg-2, mpeg-4}.

(2) It is not guaranteed either that the source parameters
will be monotonically removed, or that the target para­
meters will be monotonically added. However, the ac­
cumulated effects characteristic introduced in Sect. 4.5.3
guarantees that the accumulated effects (the union of the
source and target parameters) of the CSÍ+I conversion
state are a superset of the source parameters of the csi
conversion state. For instance, in Fig. 5, the goal con­
version state has the source parameters src = {a, b, c}
and the CS2 conversion state has the accumulated effects
src = {a, d} U target = {b, c} = {a, b, c, d], which is a
superset of the source parameters of the goal conversion
state. The next section will make use of the accumu­
lated effects to prove that the Planner algorithm always
terminates.

5.7 Soundness and completeness

This subsection develops three theorems that prove that the
Planner algorithm given in Algorithm 1 is sound (always
terminates). In addition, this subsection proves that the plan
is finite (always terminates) and complete (contains all the
available solutions).

Theorem 1 Algorithm 1 is sound (always terminates).

Proof Given any goal conversion state csi, representing ei­
ther the UED (cs\) or any subgoal conversion state, it can be
derived that:

(1) According to the prerequisite given in Sect. 4.5.3 and
further described in the previous subsection, the set of
accumulated effects remains stable or increases in size
in each step from csi to csi+\. Therefore, in each conver­
sion step going backwards from cs\ (the goal conversion
state) to cs„ (the initial conversion state), the number of
accumulated effects never decreases (see Fig. 5). This

Algorithm 6 Matching process

Inputs: csO // Conversion to be reached (subgoal)
ccl // The ConversionCapabilities or Component to be considered

Outputs: csl // Conversion state (an instance of ccl) that matches with csO or null if there is no matching
Vars: key // The key of a property. Properties contains one key and a set of values

p // Used to refer to each postcondition of cs 1
q // Used to refer to each source parameter of csO

ConversionState match(csO, ccl)
csl = new ConversionState(ccl);
// Step 1: Gather source parameters that come from csO
for (each q in csO.getSourceParamsO)

key = q.getKeyO;
p = ccl.getPostcondition(key);
if (p ^ null)

r = p n q;
if (r.isEmptyO)

// Fails since ccl is not capable of producing a property requested by csO
return null;

cs 1 .addTargetParam(r);
else

csl.addSourceParam(q);
// Add the preconditions of ccl to the source parameters of csl if they have not been taken from csO in step 1
for (each p in ccl.getPreconditionsO)

key = p.getKeyO;

if (csl.getSourceParam(key) = null)
csl.addSourceParam(p);

// Add the postconditions of csl to the target params of csl if they have not been selected during step 1
for (each p in ccl.getPostconditionsO)

key = p.getKeyO;
if (csl.getTargetParam(key) = null)

cs 1 .addTargetParam(p);
return csl;

idea is similar to the one proposes in [27] where "delete
lists" are removed from a STRIPS-like planner in order
to guarantee decidability.

(2) As the number of ConversionCapabilities elements in­
stalled in CAIN-21 is finite, Algorithm 3 always ex­
pands a finite number of prospective conversion states
(as defined in Sect. 5.2). In practice, cs\ always has a
finite number of source parameters (number of proper­
ties of the UED), which must be reached by its subse­
quent conversion states during each step of the sequence
of conversions from cs¡ to cs¡+i. In this case, only two
situations may occur: (a) the number of accumulated ef­
fects increases from csi to CSÍ+I, or (b) the number of
accumulated effects from csi to CSÍ+I remains the same.
However, in the second situation Algorithm 2 cannot use
conversion states stored in visited_conversion_states
again. Therefore, Algorithm 2 always terminates (and
thus Algorithm 1). In the worst-case scenario, Algo­

rithm 2 will terminate when all the conversion states are

stored in visited_conversion_states. D

Theorem 2 The plan is finite (always terminates).

Proof As, according to Theorem 1, Algorithm 3 always ex­
pands a finite number of conversion states, and because the
visited_conversion_states guaranties that the virtual tree of
conversions has no cycles, the plan reaches all the feasible
conversion states in a finite number of steps. D

Theorem 3 The plan is complete, i.e., the virtual tree of
conversions covers all the feasible conversion states.

Proof As, according to Theorem 1, all the conversion states
that reach the goal conversion state are expanded and as ac­
cording to Theorem 2 the plan is finite, it can be concluded
that the plan reaches all the feasible conversion states. D

The result of this subsection formalizes the sufficient
conditions that allow the Planner algorithm to compute a
finite and complete plan. This computation can be executed
even when the adaptation capabilities are only partially de­
fined. In fact, the only condition that the conversion capa­
bilities have to comply with is that the accumulated effects
always increase or remain unchanged. That is, the Planner
does not allow for the existence of conversion capabilities
that ignore properties (according to the semantic explained
in Sect. 4.5.3).

6 Experiments and demonstrations

6.1 Claims and hypotheses

In the subsequently reported experiments and demonstra­
tions, we focus on providing evidence for the following
claims:

(Claim 1) A partial description of the adaptation capabili­
ties suffices for computing all the feasible adaptation plans.

(Claim 2) Requiring only partial description of the conver­
sion modules significantly reduces the description length
of the adaptation capabilities.

(Claim 3) Requiring only partial description of the conver­
sion modules significantly reduces the decision time.

(Claim 4) Partial decision-making provides advantages for
decision-making with respect to systems in which the con­
version modules do not perform additional decisions.

Claim 1 has been theoretically proven in Sect. 5.7. Claim 4
is not suitable for an empirical study, but it is suitable for
an informal demonstration that has been accomplished in
Sect. 6.5. Based on Claim 2 and Claim 3, three hypotheses
are going to be tested in this section.

(HI) The average-case computational cost of the Planner
is significantly lower than the theoretical worst-case
computational cost.

(H2) The adaptation capabilities description size decreases
significantly when partial description is allowed.

(H3) The decision time decreases significantly when partial
description is allowed.

6.2 Theoretical worst-case computational costs
of the Planner

This section analyzes the theoretical worst-case computa­
tional cost of Algorithm 2 and Algorithm 6, which are the
core algorithms of the Planner. The other algorithms de­
scribed in Sect. 5 serve as sub functions.

Let C be the number of conversion capabilities elements
existing in the available CATs, and N the number of prop­
erties of the conversions capabilities to be considered in the

matching process of Algorithm 6. In the worst-case (assum­
ing that the same conversion capabilities are not instantiated
more than once), Algorithm 2 would be invoked C! times.
In the worst-case Algorithm 6 would be invoked C times in
Algorithm 2, i.e., in the worst-case Algorithm 6 is invoked
C-C\ times, which is of the order of (C +1)!. Assuming that
N is the upper bound of properties in a conversion capabil­
ities element, Algorithm 6 would perform in the worst-case
JV2 property comparisons during each invocation. Thus, the
theoretical worst-case computational cost is of the order of
JV2 • (C + 1)! with respect to the number of comparisons
between properties.

6.3 Empirical methodology, dataset and metrics

This subsection justifies the empirical methodology, dataset
and metrics used in the experiments. The following sub­
sections perform the empirical analysis and present the re­
sults.

To increase the objectivity of the experiments, we have
selected adaptation tests aiming to cover different media
transcoding operations. In this way, different sets of prop­
erties would be involved in the experiments. Specifically,
we have used most of the adaptation tests available in the
CAIN-21 demo, but distributing them into four groups: I->-I
(Image to image), I->-V (Image to video), V ^ V (Video to
video), SVC (Scalable video coding). Tables 1 and 3 show
these 24 adaptation tests distributed in four groups: 6 im­
age to image adaptations, 6 image to video adaptations, 6
non-scalable video adaptations and 6 scalable video adapta­
tions. In Tables 1 and 3, the ID of the terminal corresponds
to each adaptation test of the dataset. In Table 3, the sec­
ond column shows the type of these tests. The adaptation
tests use a different number of CATCapabilities elements
and therefore a different number of ConversionCapabilities
elements. In Tables 1 and 3 C represents the number of Con­
versionCapabilities elements used in each adaptation test.
In addition, each ConversionCapabilities element contains
multiple properties. Therefore, the number of properties in­
volved in the experiments is higher than the number of adap­
tation tests. Table 2 shows the specific number of proper­
ties, N, for each ConversionCapabilities element. The tests
were implemented and executed in the JUnit testing frame­
work [28]. The source code of these tests is publicly avail­
able at cain21.sourceforge.net. All these tests were executed
in the same hardware, a Mac Book Pro with a 2.4 GHz Intel
Core 2 duo and 4 GB of RAM.

To study HI, we have measured the average-case com­
putational cost of the Planner for each test and compared it
with the corresponding theoretical worst-case computational
cost. Specifically (see Table 1), we counted the number of
invocations to the functions that implement Algorithm 2 and

http://cain21.sourceforge.net

Table 1 Number of invocations of the algorithms

ID of the terminal

gray_images_viewer

jpeg_images_viewer

images_viewer_without_resolution

audiovisual_mobile_l

bmp_image_viewer

png_image_viewer

image_viewer%_se\'eral'^formats

mpeg4_mp2_online_web

mpegl _big_adapted_online_web

mpegl _desktop

flash_player

¡phone

h264_desktop

svc_no_audio_l 76 x 144_15fps

mp4 jnobile _audio

mpeg2_without_audio

mpegl _without_audio

mpegl _with_audio

svc_with_audio_352 x 288_15Jps

mpeg2 _medium_desktop

mpeg2 _big_desktop

h263_offline

h263_online

mpeg2 _small_desktop

Table 2 Number of properties
in each ConversionCapabilities
element with partial description

C

4

4

4

4

4

4

4

7

9

11

11

11

11

13

13

13

13

13

16

19

19

19

19

20

Invocations

Min
steps

3

1

2

5

5

5

1

3

3

3

3

3

Algorithm 2

4

4

4

2

4

4

4

2

108

54

30

30

30

231

297

173

212

281

321

131

232

308

312

312

ConversionCapabilities element

Algorithm 6

20

20

20

10

24

24

24

16

1080

590

360

360

360

3756

4158

2595

3870

4131

5457

2620

3575

5231

6040

6552

ondemandjnpegl _http_video_server

ondemand_mpeg4_http_video_server

online

online

online

online

_mpegl_http_video_server

_mpeg2_http_video_server

_mpeg4_http_video_server

_h264_http_video_server

big_image_2_video

medium Jmage_

small_

mime_

image_2_

_2_video

video

image• formats Jranscodei

image_formats_ transcoder

N

18

18

18

18

18

18

25

25

25

17

17

Cmps

96

94

91

47

108

106

108

199

3648

1850

1013

1017

1400

14745

16826

10174

13131

14937

21740

8162

10456

18341

19837

20712

Theoretical worst-case

Algorithm 2
CI

2.40e+01

2.40e+01

2.40e+01

2.40e+01

2.40e+01

2.40e+01

2.40e+01

5.04e+03

3.62e+05

3.99e+07

3.99e+07

3.99e+07

3.99e+07

6.22e+09

6.22e+09

6.22e+09

6.22e+09

6.22e+09

2.09e+ll

1.21e+17

1.21e+17

1.21e+17

1.21e+17

2.43e+18

Algorithm 6

(C + l)!

1.20e+02

1.20e+02

1.20e+02

1.20e+02

1.20e+02

1.20e+02

1.20e+02

4.03e+04

3.62e+06

4.79e+08

4.79e+08

4.79e+08

4.79e+08

8.71e+08

8.71e+08

8.71e+08

8.71e+08

8.71e+08

3.55e+12

2.43e+18

2.43e+18

2.43e+18

2.43e+18

5.10e+19

ConversionCapabilities element

Cmps
¿V2-!(C + 1)

1.08e+05

1.08e+05

1.08e+05

1.08e+05

1.08e+05

1.08e+05

1.08e+05

3.62e+07

3.26e+09

4.31e+ll

4.31e+ll

4.31e+ll

4.31e+ll

7.84e+ll

7.84e+ll

7.84e+ll

7.84e+ll

7.84e+ll

3.20e+17

2.18e+21

2.18e+21

2.18e+21

2.18e+21

4.59e+22

N

visualJ'ormatJmage Jbrmatsjranscoder 17

ondemandjnpegjranscoder

ondemand_mp4 Jranscoder

mpeg2_online_transcoder

ran _video_combiner

online_resource_loader

svc_

svc_

svc_

without_audioJranscoder

with_audioJranscoder

_to_mp4

visual_to_svc

audiovisual Jo_svc

25

25

23

21

14

22

22

20

21

23

Algorithm 6 as well as the number of property compar­
isons within Algorithm 6. To obtain the theoretical worst-
case costs, in Table 1 we used the formulas explained in
Sect. 6.2. In order to provide an upper bound for the theoret­
ical worst-case (assuming partial description), we assumed
N = 30 properties (therefore, iV2 = 900) as the larger num­

ber of properties in each conversion capabilities element. In
addition, Table 1 has a column with the minimum number
of steps in the sequence of conversions needed to perform
the adaptation.

To study H2 and H3, we performed an ablation study
with two different sets of Content DIs and CAT Capabil-

Table 3 Time and number of comparisons with partial and with total description

ID of the terminal

gray_images_viewer

jpeg_images_viewer

images_viewer_without_

audiovisual_mobile_l

bmp_image_viewer

png_image_viewer

resolution

image_viewer%_se\'eral'^formats

mpeg4_mp2_online_web

mpegl _big_adapted_online_web

mpegl _desktop

flash_player

¡phone

h264_desktop

svc_no_audio_l 76 x 144_

mp4 jnobile _audio

mpeg2_without_audio

mpegl _without_audio

mpegl _with_audio

_15Jps

svc_with_audio_352 x 288_15Jps

mpeg2 _medium_desktop

mpeg2 _big_desktop

h263_offline

h263_online

mpeg2 _small_desktop

Type

I->

I->

I->

V -

I->

I->

I->

V -

V -

V -

V -

V -

I->

I

I

I

•> V

I

I

I

•> V

•> V

•> V

•> V

•> V

V

SVC

SVC

SVC

SVC

SVC

SVC

V

V

V

V

V

c

4

4

4

4

4

4

4

7

9

11

11

11

11

13

13

13

13

13

16

19

19

19

19

20

With partial description

Time

173 ms

106 ms

108 ms

85 ms

106 ms

177 ms

184 ms

260 ms

1327 ms

1443 ms

664 ms

518 ms

1134 ms

7539 ms

8791 ms

4593 ms

6131 ms

6012 ms

7124 ms

8163 ms

9134 ms

10131ms

11005 ms

10087 ms

Comparisons

96

94

91

47

108

106

108

199

3648

1850

1013

1017

1400

14745

16826

10174

13131

14937

21740

8162

9852

18341

19837

20712

With total

Time

320 ms

315 ms

257 ms

112 ms

220 ms

208 ms

371 ms

487 ms

2012 ms

3456 ms

2178 ms

1678 ms

2976 ms

28678 ms

33457 ms

22331ms

25312 ms

25240 ms

36593 ms

27964 ms

34574 ms

33420 ms

38432 ms

59570 ms

description

Comparisons

245

230

201

97

340

340

340

483

3834

4304

3201

2278

3023

48675

52567

32870

35322

38731

66457

17586

19356

34132

39962

86793

ities. In the first set we did not allow absent properties,
i.e., all the properties were provided. In the second set the
Content DI and CAT Capabilities only provided some of
these properties. Whenever incompleteness semantics (ex­
plained in Sect. 4.5.2) apply, they are used and the property
was removed from the description. In reference to H2, it is
straightforward to demonstrate that the size of the adapta­
tion capabilities description decreases with partial descrip­
tion. This is demonstrated by observing that the number of
properties of the Content DI and CAT Capabilities with total
description must be longer. The number of properties with
partial description N varies for each ConversionCapabili­
ties element. Table 2 shows the number of properties for
each of the ConversionCapabilities elements with partial de­
scription. The number of properties with total description
Mnax = 36 is fixed and determined by the number of prop­
erties in the Properties DI. In order to check that this number
decreases significantly, we have implemented a significance
test in Sect. 6.4.

In reference to H3, Table 3 shows the time and number
of comparisons needed to execute the experiments with par­
tial and with total description. As CAIN-21 allows specify­

ing the CAT Capabilities to be considered during the deci­
sion phase (and therefore the ConversionCapabilities), the
number of ConversionCapabilities elements C is not fixed
through the tests. Section 6.4 proves that the time and num­
ber of comparisons also decrease significantly with partial
description.

6.4 Statistical significance of the experiments

This subsection studies the statistical significance for the re­
duction in the average-case computational cost (HI), size of
the partial description (H2), and time needed to compute the
decision with partial description (H3).

The average-case number of properties to be compared in
each experiment is a statistical variable that depends on the
number of ConversionCapabilities elements C involved in
the experiment. If we increase C for a given experiment, the
number of properties to be compared would also increase.
Therefore, in this study we assume a normal distribution in
this statistical variable only when the adaptation tests have
the same C number. Formally, the number of comparisons
in the theoretical-worst case is not a statistical variable but a

fixed upper bound for the given N and C. However, for the
purposes of the following significance tests it can be seen as
a statistical variable for which, given N and C, its mean is
the fixed upper bound and its variance is zero.

The other statistical variables in this study, (i.e., the
average-case number of invocations of Algorithm 2, the
average-case number of invocations of Algorithm 6, the time
needed to execute Algorithm 2 with partial description and
with total description) can be seen as different views of how
the average-case number of comparisons varies with the
number of available properties. To demonstrate that these
statistical variables are aligned with the average-case num­
ber of property comparisons, we have calculated their cor­
relation. The correlation coefficient between the number of
invocations of Algorithm 2 and the number of property com­
parisons is 0.987. The correlation coefficient between the
number of invocations of Algorithm 6 and the number of
property comparisons is 0.990. The correlation coefficient
between the time needed to compute the plan with partial de­
scription and the number of property comparisons is 0.931.
The correlation coefficient between the time needed to com­
pute the plan with total description and the number of prop­
erty comparisons is 0.945. For these reasons, when the adap­
tation tests have the same C number, we also assume a nor­
mal distribution on these statistical variables.

On the other hand, as the samples come from differ­
ent adaptation tests, we assume independence between the
samples of the independent variables to be compared in
the significance tests. Specifically, among the samples of
the average-case computational cost and the samples of the
theoretical worst-case computational cost (HI), among the
samples of the size of the adaptation capabilities with par­
tial and with total description (H2), and among the sam­
ples of the decision time with partial and with total descrip­
tion (H3).

In addition, as we have a relative small number of sam­
ples, we are going to validate these hypotheses by testing
the difference between the two independent variables means
using the Student's t-test. In this significance test, the t-score
(i) is calculated as:

Where m\ is the mean of the first independent variable, mi
is the mean of the second independent variable, and SE is
the standard error, which is calculated as:

SE-- n
n\

V2

« 2
(2)

m\ — ni2

SE
(1)

In formula (2), ni,vi are the number of tests and variance
in the first independent variable, and ni, mi are the number
of tests and variation of the second independent variable.

For the three tests, we define two alternative hypotheses:
the null hypothesis is that m\>mi and the alternative hy­
pothesis is that m\ < mi. The critical value ofí (ic) depends
on the significance level (which is always 0.05 in this study)
and on the degree of freedom (DF) of the adaptation tests.

6.4.1 Computational cost

To study the reduction in the computational cost for HI, we
have divided the tests into four groups with the same C num­
ber in Table 1. In this way, as has been discussed above, we
can assume that the independent variables (i.e., the average-
case and worst-case number of invocations) in each group of
tests follow normal distributions. Specifically, we have se­
lected four groups of tests corresponding to C = 4, C = 11,
C = 13, C = 19. The other tests (i.e., tests with C = 7,
C = 9, C = 16, C = 20) were discarded because there is
only one test per group and therefore these tests have zero
degrees of freedom (DF). For the selected four groups, the
means to be compared are the average-case computational
cost m\ and the worst-case computational cost mi. To ana­
lyze the number of invocations of Algorithm 2, Table 4 col­
lects the means, variances, standard error, degrees of free­
dom used to calculate the t-critical value, t-score and t criti­
cal value for the independent variables in each group. Like­
wise, Tables 5 and 6 show the same information for, respec­
tively, the number of invocations of Algorithm 6 and for the
number of property comparisons. The worst-case computa­
tional cost is the second independent variable. As the second
independent variable is a theoretical upper value, its mean
mi is constant for each group and therefore vi = 0.

In all cases, the null hypothesis is rejected because the
t-score is lower than the t critical value (i.e. the t-score is
in the region of rejection). Therefore, we conclude that the

Table 4 Significance test for Algorithm 2

Group

C = 4

C = l l

C = 13

C = 19

n\ =ni

1

4

5

4

m\

3.71

36.00

238.80

245.75

rri2

2.4e+01

3.99e+07

6.23e+09

1.21e+17

v\

0.57

144.00

2569.20

7206.91

V2

0.00

0.00

0.00

0.00

SE

0.28

6.00

22.66

42.44

DF

6

3

4

3

t

-7.10e+01

-6.65e+06

-2.74e+08

-2.85e+15

h

-1 .94

-2 .35

-2 .13

-2 .35

Table 5 Significance test for Algorithm 6

Group

C = 4

C = l l

C = 13

C = 19

n\ =ri2

1

4

5

4

m\

20.28

417.50

3702.00

4366.50

«22

1.20e+02

4.79e+08

8.71e+08

2.43e+18

v\

24.57

13225.00

412141.50

2408232.33

V2

0.00

0.00

0.00

0.00

SE

1.87

57.50

287.10

775.92

DF

6

3

4

3

t

-5.32e+01

-8.33e+06

-3.03e+06

-3.13e+15

h

-1 .94

-2 .35

-2 .13

-2 .35

Table 6 Significance test for the number of comparisons between properties

Group n\ =n2 m\ m2 vi n SE DF

C = A

C = l l

C = 13

C = 19

Table 7
forH2

7

4

5

4

Significance test

92.85

1320.00

13962.60

14199.00

Group

1.08e+05

4.31e+ll

7.84e+ll

2.18e+21

n\ =n2

4.58e+02

1.57e+05

6.20e+06

3.31e+07

m\ m2

0.00

0.00

0.00

0.00

"l

8.09

198.61

1113.68

2878.05

"2

6

3

4

3

SE

-1.33e+04

-2.17e+09

-7.03e+08

-7.57e+17

DF t

-1 .94

-2 .35

-2 .13

-2 .35

tc

All 22 20.45 36.00 11.21 0.00 0.71 21 -21.77

Table 8 Significance test for the decision time with partial and with total description

-1.72

Group

C = 4

C = l l

C = 13

C = 19

n\ =n2

1

4

5

4

m\

134.14

939.75

6613.20

9608.25

rri2

2.57e+02

2.57e+03

2.70e+04

3.36e+04

v\

1.75e+03

1.81e+05

2.56e+06

1.51e+06

V2

75.20e+02

6.33e+05

1.80e+07

1.86e+07

SE

36.39

451.29

2031.37

2247.80

DF

6

3

4

3

t

-3 .39

-3 .61

-10.04

-10.67

h

-1 .94

-2 .35

-2 .13

-2 .35

average-case computational cost of the Planner is signifi­
cantly lower than the theoretical worst-case computational
cost.

6.4.2 Size of the descriptions

To study H2, the first independent variable is the number of
properties in the ConversionCapabilities elements with par­
tial description N (gathered in Table 2) and the second inde­
pendent variable is the number of properties in the Conver­
sionCapabilities elements with total description (assuming
Mnax = 36 as explained in Sect. 6.3). We compare the means
of the first independent variable m\, with the means of the
second independent variable mi. In this significance test, we
assume that the number of properties in the ConversionCa­
pabilities elements follows a normal distribution and thus
Table 7 has only one group of tests. The number of proper­
ties with total description m2 is constant (m2 = Nn :36)

and therefore vi = 0.
The null hypothesis is rejected because the t-score is

lower than the t critical value. Thus, we conclude that the

size of the ConversionCapabilities elements decreases sig­
nificantly when partial description is allowed.

6.4.3 Decision time

This subsection studies the significant reduction in the de­
cision time that H3 hypothesizes. Table 3 gathers the deci­
sion time for the tests with partial and with total description.
Again, to assume a normal distribution for the independent
variables of each group of tests we have created four groups
of tests corresponding to C = 4, C = 11, C = 13, C = 19.
Table 8 shows the result of computing the t-score for the
decision time with partial and with total description. In con­
trast to the previous experiments, in this experiment the sec­
ond independent variable is not theoretical, and thus vi > 0.
It can be observed that in all cases, the t critical value is
lower than the t-score, and therefore we conclude that the
decision time decreases significantly when partial descrip­
tion is allowed.

Even though H3 only states that the decision time de­
creases significantly, in Table 9 we have analyzed the num-

Table 9 Significance test for the number of comparisons with partial and with total description

Group

C = 4
C = l l

C = 13

C = 19

n\ =ni

1
4
5
4

m\

92.85
1320.00

13962.60
14048.00

rri2

2.56e+02
3.20e+03
4.16e+04
2.78e+04

v\

4.58e+02
1.57e+05
6.20e+06
3.47e+07

V2

8.37e+03
7.00e+05
7.35e+07

1.21e+08

SE

35.52
463.10

3993.67
6243.81

DF

6
3
4
3

t

-4 .59
-4 .06
-6 .92

-2 .19

tc

-1 .94
-2 .35
-2 .13
-2 .35

ber of comparisons to prove that it also decreases signifi­
cantly. In this way, we aim to demonstrate that comparing
properties is the upper bound and more costly operation in
our Planner. To provide more evidence for the alignment of
the decision time and the number of comparisons, we have
also computed the correlation coefficient between the time
and number of comparisons in Table 3, which are 0.944 with
partial description and 0.901 with total description. The in­
tuition behind this statement is that comparing properties is
the inner operation and therefore, the operation that is re­
peated more often.

6.5 Increase in the range of addressable problems
with internal decisions

To demonstrate Claim 4, the CAIN-21 demo implements
two CATs that include internal decisions. We assume that it
is very difficult (or impossible) to make these internal deci­
sions during the planning phase. Subsequently, we demon­
strate that if we postpone these decisions to the execution
phase, these decisions can be performed inside the CAT.

The first CAT with internal decisions is called Im-
age2Video. This CAT uses Regions Of Interest (ROIs) de­
scriptions stored in the Content DI so that additional deci­
sions can be performed. Specifically, the ROIs are used (see
Fig. 7) to focus on the faces in the photo instead of the whole
subjects in the image. This process is further explained in
previous work [25].

The second CAT with internal decision is the SVCCAT.
This CAT performs scalable video coding adaptation. A scal­
able video is divided into one or more layer. The base layer
contains a rough representation of the video suitable for low
bandwidth networks. Additional layers, called enhancement
layers, provide additional details in several dimensions (typ­
ically spatial dimension, frame-rate dimension and quality
dimension). If the bandwidth supports the delivery of more
information, the SVCCAT implements a mechanism to de­
cide which enhancement layer to transmit. Specifically, the
SVCCAT uses Peak Signal to Noise Ratio (PSNR) met­
rics stored in the AdaptationQoS description (explained in
Sect. 2.2) to make this decision.

The remainder of this subsection describes in detail three
internal decision tests involving SVC and three internal de­
cision tests involving image to video adaptation. The first
SVC-adaptation to discuss is labeled svc_no_audio_176 x

Fig. 7 Example of image resource to be adapted

144_15fps in Table 3. With this test, the Planner algo­
rithm produces the sequence of conversions initial ->
svc_without_audio_transcoder -> goal with. In this se­
quence, the initial conversion state corresponds to the Con­
tent DI to be adapted, the svc_without_audio_transcoder
conversion state corresponds to one of the conversion mod­
ules implemented in the SVCCAT and goal corresponds to
the properties of the terminal labeled svc_no_audio_176 x
144_15fps. The svc_without_audio_transcoder conversion
state is executed with the following source and target para­
meters (for better readability, only the relevant parameters
from the standpoint of this discussion are shown):6

Source parameters:
visual Jrame = {176 x 144,288 x 352, 704 x 576}
visual Jrame_rate = {1.875, 3.75, 7.5,15, 30}
visual_bitrate = [500..100000]

Target parameters
visualjrame = {176 x 144}
visual Jrame _rate = {15}
visualjbitrate = [0..200000]

The visualjrame source parameter indicates that the scal­
able input video can be adapted at three different frame

6 The complete details of these tests can be obtained in the public demo
publicly available at http://cain21.sourceforge.net.

http://cain21.sourceforge.net

resolutions (176 x 144,288 x 352,704 x 576) and the tar­
get parameter indicates that the Planner algorithm has se­
lected the frame resolution 176 x 144. This happens be­
cause 176 x 144 is the frame size of the current termi­
nal (labeled svc_no_audio_176 x 144_15fps). Similarly, the
Planner algorithm has selected 15 fps, which corresponds
to the frame rate of the terminal. Regarding the visual bi­
trate target parameter, the Planner algorithm does not make
a complete decision for this value. The terminal supports a
visual bitrate from 0 to 200000 bps, which is the Planner
selected range. As the Planner has not solved the whole
problem, this decision is transferred to the internal deci­
sion. Specifically, during the execution phase the SVC-
CAT (using the AdaptationQoS description) decides that
the maximum quality layer that can be delivered has a bi­
trate of visual_bitrate = 98000 fps. The second test labeled
svc_with_audio_352 x 288_15fps in Table 3 produced sim­
ilar results, but including the audio stream.

The third test labeled mp4_mobile_audio in Table 3 is an­
other didactic experiment. In this test, the Planner produces
the sequence of conversions initial -> svc_without_audio_
transcoder -> svc_to_mp4 -> goal. Note that the Planner
adds the svc_to_mp4 conversion state at the end of the se­
quence to transcode SVC content to MP4. This occurs be­
cause the Content DI to be adapted contains SVC video,
but the target terminal is not a SVC-compliant terminal. In
the svc_without_audio_transcoder conversion state, the se­
lected source and target parameters are:

Source parameters:
visual Jrame = {176 x 144, 288 x 352,704 x 576}
visualJrame_rate = {1.875, 3.75,7.5, 15, 30}
visual_bitrate = [500..100000]

Target parameters
visualjrame = {176 x 144, 288 x 352,704 x 576}
visual Jrame _rate = {1.875, 3.75,7.5, 15, 30}
visualjbitrate = [0..200000]

Again, the Planner does not completely specify the tar­
get parameters for this conversion state and therefore of­
floads the decision to the SVCCAT (which implement the
svc_without_audio_transcoder conversion module). The
SVCCAT, then uses the AdaptationQoS description to make
a decision, which selects a layer that fulfils the constraint vi­
sual Jitrate< 200000 maximizing the quality of the adap­
tation. During this internal decision, the SVCCAT selects
the layer with properties visualjrame = 288 x 352, vi­
sual Jramejrate = 15 and visual_bitrate = 185000.

In the I->-V tests in Table 3, the Planner always se­
lects the sequence of conversions initial -> image Jormats_
transcoder -> mediumJmage_2_video -> ondemand_
videoJranscoder -> goal. The imageJormatsjranscoder
conversion state transcodes the image to the format and

size that the mediumJmage_2_yideo conversion state re­
quests in its preconditions (JPEG image format and 3:4 as­
pect ratio). The mediumJ,mage_2_\>ideo conversion mod­
ule is only able to produce MPEG-2 video and the on-
demand_video Jranscoder conversion state transcodes this
video to the (format and size) constraints of the terminal.
Note that even though the sequence of conversions is al­
ways the same, the parameters of the conversion states were
different for each test. This happens because each test was
executed with a different Content DI. Speciflcally, in the first
test the Content DI (named birds_eye_view_di.xml) had no
ROIs descriptions. In the other two cases that we have stud­
ied, the Content DIs were annotated with ROIs. The ROIs
were provided to the Image2VideoCAT in the property la­
beled roi. Speciflcally, during the second test the Content
DI (named group_roi_di.xml) was adapted with roi = {62
139 76 156, 93 151 107 165, 115 128 128 145, 129 177 143
193, . . . , 403 146 415 16}. During the third test, the Content
DI named people_roi_di.xml was adapted with roi = {95
125 116 149, 110 76 127 95, 151 56 169 84, 189 57 206 76,
219 53 234 71, 251 51 266 69}. The image resource used in
the third test is shown in Fig. 7.

6.6 Analysis of the results

HI states that in practical scenarios the average-case com­
putational cost of the Planner algorithm is significantly
lower than the theoretical worst-case computational cost.
Section 6.4.1 has confirmed the significant difference that
HI proposes. The intuition behind these results is that Algo­
rithm 2 only succeeds in expanding a few conversion states
(the feasible conversion states according to Algorithm 4).
Besides, in practice, most of the properties are optional and
rarely used. To empirically see it, we can observe that when
C increases, the ratio between the theoretical worst-case
number of invocation of the algorithms and the real num­
ber of invocations also increases. The correlation coefficient
between C and this ratio is 0.704 for Algorithm 6 and 0.666
for Algorithm 2. This can also be observed in Tables 4, 5
and 6 in which when C increases the t-score increases as
well. This suggests that HI becomes more important with
large values of C. The reason behind this observation is that
with a large number of conversion capabilities elements, Al­
gorithm 4 eliminates a larger number of expansions in the
virtual tree of conversions.

H2 states that a partial description of the conversion mod­
ules has the benefits of reducing the size of the adaptation
capabilities and H3 states that partial description also sig­
nificantly reduces the decision time. To study H2 and H3
we have performed an ablation study. The first group uses
a partial description of the ConversionCapabilities and the
second group uses a total description of the ConversionCa­
pabilities. To prove H2, Table 2 collects from the CAIN-21

software the number of properties for each ConversionCa-
pabilities description element with partial description. It is
obvious that a partial description is smaller than a total de­
scription. Section 6.4.2 validates H2 because the size of the
conversions decreases significantly. To prove H3, Table 3
collects two groups of similar tests that only differ in the
Content DI and CAT Capabilities description. Table 3 shows
both the time and number of comparisons performed. Sec­
tion 6.4.3 demonstrates that in all cases the time and number
of comparisons decrease significantly when partial descrip­
tion was allowed. These results validate H3 and show the
usefulness of partial description.

Claim 4 states that offloading decision-making from
the Planner to the conversion modules the range of prob­
lems that can be addressed increases. The intuition behind
Claim 4 is that certain decisions cannot be made during
the decision phase, but can be made during the execution
phase. To demonstrate Claim 4, Sect. 6.5 collects 3 tests
involving internal decisions for SVC layer selection and
3 tests involving internal decisions for ROIs-based adap­
tation. For these tests, there are no methods for adapta­
tion decision-making during the planning phase. However,
Sect. 6.5 shows how the range of problems that can be
addressed increases by making these decisions during the
execution phase. The divide and conquer design paradigm
recommends to divide complex solutions into smaller and
more specific solutions. In CAIN-21, the Planner makes
the general decisions that only rely on metadata (properties)
and transfers the particular problem domain decisions to the
CATs.

6.7 Comparison

In [2], the authors report experiments in which the planner
selects and performs multi-step image adaptation. However,
they do not provide a dataset, but instead report the times
needed to construct the Directed Acyclic Graph (DAG),
which determines the multi-step sequence. The behavior of
the Planner algorithm in this paper can be compared with
the behavior of the planning algorithm in [2]. The Planner
builds a virtual tree of conversions whereas [2] has reported
the construction of a DAG that is similar. The main differ­
ence is that in the virtual tree of conversions (as explained in
Sect. 4.2) the Planner creates several instances of the con­
version state representing the initial Component.

In reference to the computational cost, the main differ­
ence that we have identified between our Planner and the
planner in [2] is that in our implementation, the computation
time substantially depends on the number of conversion ca­
pabilities elements C involved in the decision. Conversely,
in the results from [2], the computation time only depends
on the length of the sequence obtained and does not depend
on the number of conversion capabilities (services in their
terminology). Using the data in Table 3, Fig. 8 compares the
number of conversion capabilities evaluated C against the
time needed to compute the plan with partial and with total
description. In the Planner, both seem to increase rapidly,
although the decision time with total description is signif­
icantly higher. In our understanding, the number of nodes
that have to be analyzed in each node expansion must influ­
ence the decision time and this is the reason why in our work
the computational time increases when C increases.

Fig. 8 Plan construction time
with partial and with total
description

With incompleteness Without incompleteness

70000

GOOOO

7 9 11 13 16 19 20

Number of conversions capabilities evaluated (C)

7 Summary of contributions, limitations and future
work

7.1 Contributions

Initial studies in multi-step multimedia content adaptation
have employed forward chaining [1] in conjunction with
breadth-flrst search and goal regression (and some heuris­
tics) to search for a sequence of actions that lead from
the initial state to a goal state [2, 3, 7]. As explained in
Sect. 2.3.2, further advances in AI [20, 21] combined plan­
ning graphs with backwards chaining techniques to search,
beginning from a goal state and finishing in an initial state.
This paper has applied these ideas to multi-step multimedia
content adaptation. The algorithms in Sect. 5 combine ideas
from both modi operandi (graph-based planning and back­
wards searching) and introduce new ideas, which are not
present in the neoclassical backwards-chaining algorithms.
In particular, our paper contributes the following:

(1) Sound multimedia adaptation planning. This research
has proven that AI planning techniques can make
sound automatic decisions in the multimedia domain.
The Planner algorithm is sound and produces a finite
and complete plan. These features, in general, how­
ever, do not hold when a planning algorithm permits
the removal of effects. For these reasons, Sect. 5.7 has
presented an algorithm that never removes effects.

(2) Multimedia properties. The use of multimedia prop­
erties presents several advantages with respect to us­
ing standard XML representation: (a) all the decision-
related information can efficiently be held in memory;
(b) changes in the underlying XML files do not imply
changes in the source code of the whole adaptation en­
gine (Sect. 3.2 explained that it only implies changes in
the Properties DI document); (c) the multimedia prop­
erties directly represent the information that the Plan­
ner requires; (d) this information is represented homo­
geneously; and lastly, (e) alternatives are easily repre­
sented by means of multi-valued properties.

(3) Bounded non-deterministic planning. The Planner
is well suited to represent parameterized conversion
states and conversion capabilities of the conversion
modules. We have replaced the notion of action with
the notion of conversion in such a way that different
parameters lead to different actions. Multi-valued pa­
rameters make it possible to gather related actions in
a single conversion state. The source parameters (that
may be multi-valued representing the selected inputs)
represent the input to the conversion. The target pa­
rameters (that also may be multi-valued allowing the
CAT to make internal decisions) control the output
of the conversion. One conversion can be comparable

to a set of actions in a Graphplan-like planner. Sec­
tion 4.3.2 explains peculiarities of conversions such
as using selected conversion states to determine the
source and target parameters. The partial description is
another characteristic of the conversion modules.

(4) Matching process. As a side effect, the matching
process developed in Sect. 5.5 represents an easy and
more efficient way to check the relations between the
MPEG-7 and MPEG-21 descriptions of the Compo­
nent states (both selected and realized) and also of
the conversion states that modify the Component. To
check these relations, the classical and neoclassical
planning approach—of modeling preconditions and
effects with first order logic predicates—has been re­
placed by properties. The matching process described
in Sect. 5.5 has replaced the state transition function
that performs unifications between predicates. Instead
of computing intertwined states and actions, this re­
placement is the basis for the computation of con­
version states (see Fig. 6) and uses the parameters to
impliedly represent the state of the Component being
adapted. Additionally, traditional bound or unbound
planning values have been replaced by general multi­
valued properties, where a property is always bound to
one or more values.

(5) Alternatives. We have developed a model that al­
lows representing alternative constraints in the termi­
nal (e.g., the terminal accepts several media formats).
Additionally, this model allows for representing alter­
natives in the internal decisions of the CATs.

(6) Partial decisions. The Planner partially decides the
adaptation constraints that the conversion modules
must comply with and postpones other decisions to the
conversion modules. These conversion modules can
use dissimilar decision techniques referred to as inter­
nal decisions. For instance, the ImagelVideo CAT can
make decisions (using the ROIs [25] stored in the Con­
tent DI) to show the faces in the image being adapted,
instead of the whole subjects in the image.

(7) Internal decisions. Most planners make all the deci­
sions during the decision phase. The Planner trans­
fers parts of the decision to the CATs and in this
way, the decision and the execution phases are in­
tertwined. In contrast to continuous planning (intro­
duced in Sect. 2.3.3), the conversions of the Plan­
ner are bounded non-deterministic actions. As a result,
the Planner does not perform further decisions that
depend on the result of the internal decisions trans­
ferred to the CAT. That is, the Planner computes all
the sequences of conversions before the Executer can
start executing the CATs. The notion of internal deci­
sions cannot be found in existing multi-step multime­
dia adaptation planning algorithms [2, 3, 7].

(8) Parameters for optimization. Previous multi-step mul­
timedia adaptation planning algorithms seldom search
for more than one sequence of actions. Conversely,
the bounded non-deterministic planner developed in
this work searches for all the sequences of conver­
sions capable of adapting the content to the usage en­
vironment. This feature allows further decisions in or­
der to pick the sequence that optimizes some crite­
rion (such as execution time or resulting screen reso­
lution). In addition, in contrast to a neoclassical plan­
ner, the bounded non-deterministic planner must And
the source and target parameters that must be supplied
to the non-deterministic conversions.

(9) Tolerating partial description. Traditional decision
systems only rely on actions whose adaptation ca­
pabilities are completely known. Planning under un­
certainty uses belief states (explained in Sect. 2.3.3)
that associate a probability distribution over the state
space in order to represent the manifold states that non-
deterministic actions can produce. This work has pro­
posed the use of selected and realized states (instead of
belief states) to address non-deterministic conversions.

(10) Absent properties. The Planner deals with absent prop­
erties, which are useful in practical applications. Fur­
thermore, the absent properties, in conjunction with
multi-valued properties allow the Planner to navigate
through a set of conversion states. These are only par­
tially determined using the same technique as the neo­
classical planners. The work in [20] demonstrated that
these sets reduce the number of states that must be
evaluated and therefore speed up the decision process.
Previous multimedia adaptation planners do not take
advantage of this idea. Absent properties must not
be confused with un-instantiated action and goal at­
tributes within a classical planner: the former corre­
sponds to information that is never given, while the
latter are unbound attributes that must be bound after
producing a plan. Absent properties must also not be
confused with Aexible planning [21]. Absent proper­
ties correspond to lack of information; Aexible plan­
ning introduces soft constraints in the classical plan­
ning domain deAnition.

7.2 Limitations

Two main limitations have been identiAed in the multime­
dia adaptation decision system proposed in this research.
First, the Planner considers the terminal properties manda­
tory constraints, i.e., the sequence of conversions must pro­
duce all of them. In contrast to the Content DI and CAT
Capabilities, the properties of the terminal cannot be ig­
nored/optional. More precisely, the terminal properties are
a conjunction of preconditions where all the preconditions

must be "produced" at a certain step of the sequence of con­
versions. For instance, if a terminal accepts visual and au­
dio streams, the Planner would consider non-consumable
by this terminal a video composed of just a visual stream
(without an audio stream). Optional properties cannot be in­
cluded either in the standard MPEG-21 UED or in the Plan­
ner developed in this paper. In addition, the semantics of
MPEG-21 UED tools do not provide a mechanism to pro­
hibit properties in the media to be consumed. According to
these semantics, if the MPEG-21 terminal does not declare
the audio stream format, it does not mean that the media
cannot include audio; rather it means that the Component
will be accepted independently of the existence of an audio
stream.

Second, the matching process described in Sect. 5.5
makes possible to deAne static relations between conversion
states (e.g., determining that csi produces a video format
that csi-i accepts). Dynamic relations between precondi­
tions and postconditions (i.e., properties whose values de­
pend on other properties) cannot be expressed in this declar­
ative approach. For instance, the output bitrate of a video
transcoder depends, in general, on the input frame size. Al­
though it is theoretically possible to express a property as
a function of other properties, it is not always easy or pos­
sible to And a function that provides the exact value of a
property as a function of other properties (e.g., the exact
output bitrate might not be represented as a function of the
input frame width and height properties). As a result, the
output properties (the postconditions) can be related to the
input properties using ranges of values more easily. When­
ever the CAT implementers have to express this relation, it is
easy to create several conversion capabilities with different
"proAles" for the input and output property ranges. For in­
stance, one ConversionCapabilities element might describe
that frame sizes between 44 x 36 and 177 x 144 produce a
bitrate between 2000 bits/s and 8000 bits/s. Another Con­
versionCapabilities element might describe that the frame
sizes between 177 x 144 and 704 x 576 produce a bitrate
between 8000 bits/s and 48000 bits/s. For instance, due
to this limitation, the Image2VideoCAT has three Conver­
sionCapabilities elements (namely, the big_image_2_video,
medium_image_2_video and small_image_2_video in Ta­
ble 2).

Besides the above two limitations, the following difAcul-
ties in the implementation or use of the adaptation engine
have been identiAed:

(1) The input Content DI, where the Component to be
adapted is located, cannot impose constraints involving
properties that the CATs or the usage environment does
not consider. That is, those properties that appear in the
preconditions of the conversion states must be fulAlled
by the Component. For example, if a conversion state

requests audio_stream = {mp2, mp3, aac], the Compo­
nent must contain one of these audio streams in order to
enable the evaluation of the conversion state. Otherwise,
the Planner will not evaluate this conversion state. Con­
versely, it can be observed that properties of the Compo­
nent that do not appear in the conversion state precondi­
tions are always allowed and ignored and these proper­
ties impliedly become postconditions of the conversion
state. The cause of this effect is the preserved proper­
ties semantic defined in Sect. 4.5.2, which tolerates the
existence of partial description in the CAT Capabilities
and UED. Therefore, the terminal may end up receiving
an adapted Component with properties that the terminal
does not understand. To avoid such problems, the termi­
nals must not use properties that have not been declared
in its UED.

(2) There is a gap between the MPEG-7 description of the
Component and the MPEG-21 UED. These difficul­
ties have been hidden behind the getUEDConversion-
StateQ function in Algorithm 1. An example of this gap
is a mismatch between the MPEG-7 description of the
color domain that can take the values color, colorized,
graylevel, binary and the MPEG-21 description of the
terminal color display capabilities, which can take the
values true, false. To address this problem, the getUED-
ConversionStateQ function transforms the MPEG-21
properties associated with the UED into MPEG-7 prop­
erties.

(3) It is not always possible to describe the conversions
that can be performed if the capabilities of a CAT are
not represented with several ConversionCapabilities el­
ements. Therefore, this increases the verbosity of the
CAT Capabilities. Specifically, it is cumbersome for a
conversion capabilities element to express that it pre­
serves the value of the property, but the property must
exist and take (at least) one value from a set of se­
lected values. In this scenario, the ConversionCapa­
bilities element must be divided into several Conver­
sionCapabilities elements, so that the preconditions of
each ConversionCapabilities element accept only one
value and produce the same value. Another problem­
atic situation arises whenever a ConversionCapabili­
ties element describes several preconditions, as it rep­
resents an implied conjunction of preconditions. To ex­
press disjunction of preconditions, these must be listed
in different ConversionCapabilities elements so that all
the preconditions and postconditions describe conjunc­
tive conditions. Still another situation that is difficult
to express in a ConversionCapabilities element is that
it does not accept input parameters with certain com­
binations of properties; for example, a ConversionCa­
pabilities element that accepts JPEG and PNG images,
where JPEG images are accepted in color and grayscale

and PNG images are only accepted in grayscale. Once
again, in this situation the capabilities must be split into
two separate ConversionCapabilities elements: one sta­
ting that JPEG images are accepted in both color and
grayscale and another in which PNG images are ac­
cepted only in grayscale. If the CAT Capabilities and the
enclosing ConversionCapabilities element have several
of these restrictions, the list of ConversionCapabilities
elements will quickly become long and unwieldy. This
difficulty could be handled through a Graphic User In­
terface (GUI) managing these descriptions. In addition,
the partial description semantics developed in Sect. 4.5
also help.

(4) The correct operation of the system depends on the pre­
cise conformance with the semantics of the CAT Ca­
pabilities that represent the preconditions and postcon­
ditions of the conversion capabilities elements. This
means that the whole system usefulness depends on ju­
dicious and correct "advertisement" of the Conversion-
Capabilities by the CAT authors, i.e., according to the
semantics of the parameters. If different CATs describe
the capabilities in different ways or have different poli­
cies with respect to how properties should be specified,
the system would not work effectively. For instance,
consider MPEG-4 videos that have different levels and
profiles. One CAT might be capable of processing all the
MPEG-4 video file levels and never specifies the levels
in its capabilities description. Another CAT might only
be capable of processing one level and advertise that it
can accept only this level. In this case, the two CATs
might not work together effectively on MPEG-4 media,
i.e., the output of one CAT cannot be used as input of the
other CAT. This may happen if, due to incompleteness
semantics, the output of the first CAT does not specify
the level and its output level cannot be used as input by
the second CAT. To answer this problem, the CAT im-
plementer must pay special attention to describing the
preconditions and postconditions of the conversion ca­
pabilities elements according to their semantics. Mak­
ing use of a set of standardized classification schemes
is very useful in this case. MPEG-7 Part-5 classification
schemes such as the ContentCS, FileFormatCS, Visual-
CodingFormatCS and AudioCodingFormatCS (see An­
nex B of the MPEG-7 Part 5 standard [18]) can be used
in this case.

7.3 Future work

There are different opportunities for future work. First of all,
it is important to consider the details of how to selects a se­
quence of conversions after the Planner has produced a set
of sequences of conversions SSOC in which more than one
sequence satisfies the adaptation requirements. How does

the Planner decide which sequence of conversions to make?
How can the cost of each sequence be measured in order to
select the "cheaper" sequence? Which criterion is more fea­
sible, lower memory usage or lower computing time? Can
hybrid models be applied? Perhaps the simplest approach is
to take the shortest sequence. Instead of a shorter sequence,
perhaps it is better to choose online adaptations first? That
is, sequences whose conversion modules are annotated in
the CAT Capabilities as online conversions (i.e., conversion
modules that start serving the media before it has been to­
tally adapted) could be preferred over sequences that in­
clude offline conversion modules. Also, the computational
costs may be annotated in the ConversionCapabilities. Dy­
namic measures of the past performance of each CAT could
be considered as well. Other approaches might be the use
of memory and, depending on the terminal, specific proper­
ties like battery lifetime could be evaluated. The user pref­
erences can be considered in this case to answer all these
questions.

A second opportunity for further development is related
to the conversion states. If there are several sequences that
contain the same conversion states, but in a different order,
what order is the most appropriate? Here it should be eval­
uated whether different orders provide the same outcome
(the same outcome may mean the same adaptation quality)
and/or whether different orders yield "cheaper" sequences.
For example, if the last conversion state is lossy and the re­
maining ones are lossless, then other sequences of conver­
sion states may be cheaper than using the lossy conversion
state after all the lossless conversion states.

A third research area lies in the improvement of the per­
formance of the reachability analysis (see Sect. 2.3.2). As
Fig. 2 shows, our Planner builds a reachability tree that has
been proven finite and complete in Sect. 5.7. Graphplan in­
troduced reachability ideas to reduce the computational spa­
tial costs by avoiding the expansion of duplicate states.

A fourth research direction is dealing with flexible plan­
ning [21]. Having a set of decoding and transmission con­
straints, how should the Planner maximize the number of
desirable constraints satisfied? One way is to maximize the
number of desirable constraints (each desirable constraint
has the same weight), but another option is to establish a
ranking of constraints (each constraint may have a different
weight).

8 Conclusion

This paper has dealt with the applicability of AI plan­
ning methods for the computation of multi-step multime­
dia adaptations. To adapt multimedia, some extensions to
standard AI planning methods have been proposed. Tradi­
tionally, multi-step adaptation has been implemented with

an AI planner that makes all the decisions before begin­
ning the adaptation. Taking into account that there are de­
cisions that can only be made, or are easy to made, dur­
ing the execution phase (i.e. when the media resource is
available), this paper has proposed the inclusion of these
decisions into the adaptation process. To accomplish this
goal, we have modeled multimedia conversions as bounded
non-deterministic conversions and we have developed a
bounded non-deterministic planning algorithm. The Plan­
ner allows for dealing with decision-making problems
in which the conversions to be performed can be con­
trolled (i.e., are bound), even though under some circum­
stances they may produce different outcomes (i.e., are non-
deterministic). These outcomes may also only be partially
observable by the Planner. Overall, the proposed plan­
ning algorithm is capable of computing all sequences of
conversions that adapt an MPEG-21 Component to the
constraints of the terminal. Deciding which of these se­
quences of conversions is the best with respect to some
plan quality metrics is part of our future work. In addi­
tion, mechanisms that deal with partial observability tol­
erating partial description have been proposed. The theo­
retical analysis has proven the soundness of the Planner
and its applicability has been proven as well. Finally, the
most important findings, limitations and difficulties per­
taining to multi-step multimedia adaptation have been dis­
cussed.

References

1. Russell S, Stuart J (2003) Artificial Intelligence: a modern ap­
proach, 2nd edn. Prentice Hall, New York

2. Girma B, Brunie L, Pierson JM (2006) Planning-based multime­
dia adaptation services composition for pervasive computing. In:
Proceedings of 2nd international conference on signal-image tech­
nology internet based systems (SITIS'2006), pp 132-143

3. Soetens P, De Geyter M (2005) Applying domain knowledge to
multistep media adaptation based on semantic web services. In:
Proceedings of workshop on image analysis for multimedia inter­
active systems (WIAMIS 05) (CD-ROM Proc), 4 pp

4. Burnett IS, Pereira F, de Walle RV, Koenen R (eds) (2006) The
MPEG-21 Book. Wiley, New York

5. Mukherjee D, Delfosse E, Kim JG, Wang Y (2005) Optimal adap­
tation decision-taking for terminal and network quality-of-service.
IEEE Trans Multimedia 7(3):454-462

6. Sofokleous AA, Angehdes MC (2008) DCAF: an MPEG-21
dynamic content adaptation framework. Multimed Tools Appl
40(2):151-182

7. Jannach D, Leopold K, Timmerer Ch, Hellwagner H (2006)
A knowledge-based framework for multimedia adaptation. Int J
Appl InteU 24(2): 109-125

8. López F, Jannach D, Martinez JM, Timmerer Ch, Hellwagner H,
García N (2008) Multimedia adaptation decisions modelled as
non-deterministic operations. In: Proceedings of 9th international
workshop on image analysis for multimedia interactive services
WIAMIS 2008, May 2008, pp 46^19

9. Martínez JM, Valdés V, Béseos L, Herranz J (2005) Introduc­
ing CAIN: a metadata-driven content adaptation manager inte­
grating heterogeneous content adaptation tools. In: Proceedings
of WIAMIS'05 (CD-ROM Proc), 4 pp

10. Lopez F, Martínez JM, García N (2009) CAIN-21: an extensible
and metadata-driven multimedia adaptation engine in the MPEG-
21 framework. In: 4th international conference on semantic and
digital media technologies (SAMT 2009), Graz, Austria, 2-4 De­
cember. Lectures Notes in Computer Science, vol 5887. Springer,
Berlin, pp 114-125

11. López F, Martinez JM (2007) Multimedia content adaptation mod­
elled as a constraints matching problem with optimisation. In:
Proceedings of the 8th international workshop on image analy­
sis for multimedia interactive services, WIAMIS'2007, June 2007,
pp 82-85

12. Plan T, Zorpas G, Bagrodia R (2002) An extensible and scalable
content adaptation pipeline architecture to support heterogeneous
clients. In: Proceedings of ICDCS, pp 507-516

13. WWW Consortium (W3C) (1999) XML Path Language (XPath)
version 1.0, November 1999

14. Ghallab M, Ñau DS, Traverso P (2004) Automated planning: the­
ory and practice. Morgan Kaufmann, San Mateo

15. Chapman D (1987) Planning for conjunctive goals. Artif Intell
32:333-379

16. Chiariglione L (1995) MPEG: a technological basis for multime­
dia applications. IEEE Multimed 2(l):85-89

17. Iftikhar N, Qadir MA, Hamid OA (2007) Group profile and
ontology-based semantic annotation of multimedia data for effi­
cient retrieval. In: Proceedings of the 2nd international workshop
on context-based information retrieval 2007 in conjunction with
sixth international and interdisciplinary conference on modeling
and using context, August 2007

18. ISO/IEC 15938-5:2003 (2003) Information technology-
multimedia content description interface—part 5: multimedia
description schemes

19. Timmerer C (2008) Generic adaptation of scalable multimedia re­
sources. Verlag Dr. Muller, Saabriicken

20. Blum A, Furst M (1995) Fast planning through Planning Graph
analysis. Artif Intell 90:1636-1642

21. Xu L, Gu W-X, Zhang X-M (2006) Backward-chaining flexible
planning. Lecture notes in computer science, vol 3960. Springer,
Berlin, pp 1611-3349

22. Myers KL (1999) A continuous planning and execution frame­
work. AI Mag 20(4):63-69

23. Apache Java Xalan XSLT Processor. Available online at http://
xml.apache.org/xalan-j/

24. López F, Nur G, Dogan S, Arachchi HK, Mrak M, Martínez JM,
García N, Kondoz A (2010) Improving scalable video adaptation
in a knowledge-based framework. In: Proceedings of the 11th in­
ternational workshop on image analysis for multimedia interactive
services (WIAMIS 2010), under publication, April 2010

25. López F, Martinez JM, García N (2009) Automatic adaptation
decision making using an image to video adaptation tool in the
MPEG-21 framework. In: Proceedings of the 10th international
workshop on image analysis for multimedia interactive services
(WIAMIS'09), 6-8 May 2009

26. Pednault E (2007) Synthesizing plans that contain actions with
context-dependent effects. Comput Intell 4(3):356-372

27. Erol K, Nau D, Subrahmanian VS (1995) Complexity, decidability
and undecidability results for domain-independent planning. Artif
InteU 72(l-2):75-88

28. JUnit. Available online at http://junit.org/

Fernando López received a Com­
puter Science degree in 2004 from
the Universidad Autónoma de
Madrid (UAM), Spain. He obtained
a fellowship grant from the Ministe­
rio de Educación y Ciencia of the
Spanish Government. Since 2004
he has been working in multime­
dia adaptation research within the
Video Processing and Understand­
ing Lab (VPU Lab) of the UAM
wherein he is currently pursuing his
Ph.D. degree in Computer Science
and Telecommunications. In this pe­
riod, he has published one journal

paper, ten international conference papers and one book chapter. In ad­
dition, he is working as assistant professor in the Knowledge Engineer­
ing and Multimedia laboratories in the UAM. His research interests lie
in the areas of multimedia adaptation and knowledge engineering.

Dietmar Jannach is a full profes­
sor at Technische Universitát Dort­
mund, Germany and the head of the
e-Services Research Group. His re­
search interests include interactive
recommender systems and conver­
sational preference elicitation, en­
gineering of knowledge-based sys­
tems and web applications as well
as the application of Artificial In­
telligence in industry. Dietmar Jan­
nach has authored and co-authored
more than 100 scientific papers in
these areas and published papers in
journals such as Artificial Intelli­

gence, AI Magazine, IEEE Intelligent Systems and on conferences
such as IJCAI and ECAI.

José M. Martinez received the In­
geniero de Telecomunicación de-

- gree (six years engineering pro­
gram) in 1991 and the Doctor In­
geniero de Telecomunicación de­
gree (Ph.D. in Communications) in
1998, both from the E.T.S. Inge­
nieros de Telecomunicación of the
Universidad Politécnica de Madrid.
From 1991 till 2002 he was a mem­
ber of the Grupo de Tratamiento de
Imágenes of the E.T.S. Ingenieros

I de Telecomunicación. In 2002 he
I moved to Universidad Autónoma de

Madrid were he started the Video
Processing and Understanding Lab. Besides working as Research As­
sistant at the Grupo de Tratamiento de Imágenes, from 1995 until 1998
he was Assistant Lecturer at the Escuela Técnica Superior de Infor­
mática of the Universidad Autónoma de Madrid and since 1998 he was
Associate Professor at the Department of Signals, Systems, and Ra-
diocommunications of the Universidad Politécnica de Madrid. Since
2002 he is Associate Professor at the Escuela Politécnica Superior of
the Universidad Autónoma de Madrid. From 2003 to 2004 he was
also Subdirector for Postgraduate and Doctoral Studies at the Escuela
Politécnica Superior of the Universidad Autónoma de Madrid, and
from 2005 to 2008 Subdirector for Postgraduate Studies and Research.
His professional interests cover different aspects of multimedia in-

http://
http://xml.apache.org/xalan-j/
http://junit.org/

formation systems, focusing on content analysis, understanding and
description, content adaptation and personalization for Universal Mul­
timedia Access, and video sumarización. Besides his participation in
several Spanish national projects (both with public and private fund­
ing) he has bein actively involved in European projects (Race, Acts,
Telematics) dealing with multimedia information systems applied to
the cultural heritage (e.g., RACE 1078 EMN, European Museum Net­
work; RACE 2043 RAMA, Remote Access to Museums Archives),
education (e.g., ET 1024 TRENDS, Training Educators Through Net­
works and Distributed Systems), multimedia archives (e.g., ACTS 361
HYPERMEDIA, Continuous Audiovisual Digital Market in Europe)
and semantic multimedia systems (e.g., 1ST FP6-001765 acemedia,
1ST FP6-027685 Mesh).

He is author and co-author of more than 80 papers in international jour­
nals and conferences, and co-author of the first book about the MPEG-7
Standard published 2002. From 1998 to 2004 he as actively involved in
the development of the MPEG-7 standard, acting as contributor, chair
and co-chair in different AHGs and editor of some documents, among
them the "Multimedia Description Schemes Committee Draft" (part 5
of the ISO/IEC 15938 standard) and the "Overview of MPEG-7". He
has also followed and contributed to MPEG-21.
He has acted as auditor and reviewer for the EC for projects of the
5th, 6th and 7th framework program for research in Information So­
ciety and Technology (1ST). He has acted and acts as reviewer for
journals and conferences, and has been Technical Co-chair of the In­
ternational Workshop VLBV'03 (Madrid, September 2003), Special
Sessions Chair of the International Conference SAMT 2006 (Athens,
December 2006), Special Sessions Chair of the 9th International Work­
shop on Image Analysis for Multimedia Interactive Services WIAMIS
2008 (Klagenfurt, May 2008) and Program co-chair of the 7th Interna­
tional Workshop on Content-based Multimedia Indexing CBMI 2009
(Crete, June 2009). e l Christian Timmerer received his

I M.Sc. (Dipl.-Ing.) in January 2003
I and his Ph.D. (Dr.techn.) in June
I 2006 (for research on the adapta-
I tion of scalable multi-media con-
I tent in streaming and constraint
I environments) both from the Kla-
I genfurt University. He joined the
I Klagenfurt University in 1999 and
I is currently a Assistant Professor
I (Ass.-Prof.) at the Department of
I Information Technology (ITEC)—
I Multimedia Communication Group.
I His research interests include the

transport of multimedia content,
multimedia adaptation in constrained and streaming environments,
distributed multimedia adaptation, and Quality of Service/Quality of
Experience. He has published more than 50 scientific papers in these
areas and he was the general chair of WIAMIS 2008. Additionally, he
is an editorial board member of IEEE Computer Science Computing
Now. He has been actively participating in several EC-funded projects,
notably DANAE, ENTHRONE, and P2P-Next. Furthermore, he par­

ticipated in the work of ISO/MPEG for several years, notably in the
area of MPEG-21, MPEG-M (MXM), and MPEG-V. Publications and
MPEG contributions can be found under http://research.timmerer.com.

Narciso García received the Inge­
niero de Telecomunicación degree
(with honors) in 1976 and the Doc­
tor Ingeniero de Telecomunicación
degree (Ph.D. in communications)
with summa cum laude in 1983,
both from the Universidad Politéc­
nica de Madrid, Spain. Since 1977,
he has been with E.T.S. Ingenieros
de Telecomunicación of the Univer­
sidad Politécnica de Madrid (tenure
as Associate Professor in 1984),
and, since 1990, as a Professor of
Signal Theory and Communications

in the Department of Signals, Systems, and Communications. In addi­
tion, he leads the Image Processing Group (Grupo de Tratamiento de
Imágenes). From 1978 to 1988, he was also a Scientific Advisor at the
Image Processing Department, IBM Madrid Scientific Center, Madrid,
Spain. He was Coordinator of the Spanish Evaluation Agency from
1990 till 1992 and has been evaluator, reviewer, auditor, observer, and
analyst of European programs since 1990. He has been Director of
the Spanish delegation at the Management Committee of the Informa­
tion Society Technologies Program of the Fifth Framework Program
of the European Union. His professional interests cover digital image
processing, digital television, computer vision, and telecommunication
systems.

Hermann Hellwagner (S' 85-
M'95) received the M.S. and Ph.D.
degrees in Informatics from the
University of Linz, Austria, in 1983
and 1988, respectively. He has been
a full professor of Informatics in the
Institute of Information Technol­
ogy (ITEC), Klagenfurt University,
Austria, for ten years. His current
research areas are distributed mul­
timedia systems, multimedia com­
munications, quality of service, and
MPEG-21. He has received many
research grants from national (Aus­
tria, Germany) and European fund­

ing agencies as well as from industry. Dr. Hellwagner is the editor of
several books and has published more than 100 scientific papers on
parallel computer architecture and parallel programming and, more
recently, on multimedia communications and adaptation. He has orga­
nized several international conferences and workshops. He is a member
of the IEEE, ACM, GI (German Informatics Society) and OCG (Aus­
trian Computer Society) and member of the Scientific Board of the
Austrian Science Fund (FWF).

http://research.timmerer.com

