Skip to main content
Log in

A test for the homoscedasticity of the residuals in fuzzy rule-based forecasters

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Heteroscedasticy is the property of having a changing variance throughout the time. Homoscedasticity is the converse, that is, having a constant variance. This is a key property for time series models which may have serious consequences when making inferences out of the errors of a given forecaster. Thus it has to be conveniently assessed in order to establish the quality of the model and its forecasts. This is important for every model including fuzzy rule-based systems, which have been applied to time series analysis for many years. Lagrange multiplier testing framework is used to evaluate wether the residuals of an FRBS are homoscedastic. The test robustness is thoroughly evaluated through an extensive experimentation. This is another important step towards a statistically sound modeling strategy for fuzzy rule-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aznarte JL (2008) Modelling time series through fuzzy rule-based models: a statistical approach. PhD thesis, Universidad de Granada

  2. Aznarte JL, Benítez Sánchez JM (2006) On the identifiability of TSK additive fuzzy rule-based models. In: Soft methods for integrated uncertainty modelling. Advances in soft computing, vol 6. Springer, Berlin, pp 79–86

    Google Scholar 

  3. Aznarte JL, Benítez JM (2010) Equivalences between neural-autoregressive time series models and fuzzy systems. IEEE Trans Neural Netw 21(9):1434–1444. doi:10.1109/TNN.2010.2060209

    Article  Google Scholar 

  4. Aznarte JL, Benítez JM, Castro JL (2007) Smooth transition autoregressive models and fuzzy rule-based systems: Functional equivalence and consequences. Fuzzy Sets Syst 158(24):2734–2745. doi:10.1016/j.fss.2007.03.021

    Article  MATH  Google Scholar 

  5. Aznarte JL, Benítez JM, Nieto-Lugilde D, de Linares Fernández C, Díaz de la Guardia C, Alba Sánchez F (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32(4):1218–1225. doi:10.1016/j.eswa.2006.02.011

    Article  Google Scholar 

  6. Aznarte JL, Medeiros MC, Benítez JM (2010) Linearity testing for fuzzy rule-based models. Fuzzy Sets Syst 161(13):1836–1851

    Article  MATH  Google Scholar 

  7. Aznarte JL, Medeiros MC, Benítez JM (2010) Testing for remaining autocorrelation of the residuals in the framework of fuzzy rule-based time series modelling. Int J Uncertain Fuzziness Knowl-Based Syst 18(4):371–387

    Article  MATH  Google Scholar 

  8. Bárdossy A, Duckstein L (1995) Fuzzy rule-based modeling with applications to geophysical, biological, and engineering systems. Systems engineering series. CRC Press, Boca Raton. http://books.google.es/books?id=YkB_wfN7GBkC

    MATH  Google Scholar 

  9. Barreto H, Howland F (2005) Introductory econometrics: using Monte Carlo simulation with Microsoft excel. Cambridge University Press, Cambridge

    Google Scholar 

  10. Benrejeb M, Sakly A, Othman KB, Borne P (2008) Choice of conjunctive operator of tsk fuzzy systems and stability domain study. Math Comput Simul 76(5–6):410–421. doi:10.1016/j.matcom.2007.04.003. http://www.sciencedirect.com/science/article/B6V0T-4NFH0BH-2/2/162d0452aebb66d4e95da94e1e1e842b. Mathematical aspects of modelling and control

    Article  MathSciNet  MATH  Google Scholar 

  11. Byun H, Lee K (2005) A decision support system for the selection of a rapid prototyping process using teh modified topsis method. Int J Adv Manuf Technol 26(11–12):1338–1347

    Article  Google Scholar 

  12. Cárdenas E, Castillo J, Cordón O, Herrera F, Peregrín A (1995) Applicability of t-norms in fuzzy control. Busefal 61:28–36

    Google Scholar 

  13. Cordón O, Herrera F, Peregrin A (1995) T-norms versus implication functions as implication operators in fuzzy control. In: Proceedings of the IFSA 1995 conference, Sao Paulo, Brazil, pp 501–504

    Google Scholar 

  14. Driankov D, Hellendoorn H, Reinfrank M (1996) An introduction to fuzzy control, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  15. Jang JS (1993) ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cibern 23(3):665–685

    Article  MathSciNet  Google Scholar 

  16. Jang JS, Sun CT (1993) Predicting chaotic time series with fuzzy if-then rules. In: Second IEEE international conference on fuzzy systems, 1993, vol 2, pp 1079–1084. doi:10.1109/FUZZY.1993.327364

    Chapter  Google Scholar 

  17. John R, Innocent P (2005) Modeling uncertainty in clinical diagnosis using fuzzy logic. IEEE Trans Syst Man Cybern, Part B, Cybern 35(6):1340–1350. doi:10.1109/TSMCB.2005.855588

    Article  Google Scholar 

  18. Kim J, Kasabov N (1999) HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems. Neural Netw 12:1301–1319

    Article  Google Scholar 

  19. Lee I, Kosko B, Anderson WF (2005) Modeling gunshot bruises in soft body armor with an adaptive fuzzy system. IEEE Trans Syst Man Cybern, Part B, Cybern 35(6):1374–1390

    Article  Google Scholar 

  20. Maguire L, Roche B, McGuinnity T, McDaid L (1998) Predicting a chaotic time series using a fuzzy neural network. Inf Sci 112(1–4):125–136

    Article  MATH  Google Scholar 

  21. Medeiros M, Veiga A (2003) Diagnostic checking in a flexible nonlinear time series model. J Time Ser Anal 24:461–482

    Article  MathSciNet  MATH  Google Scholar 

  22. Medeiros M, Veiga A (2005) A flexible coefficient smooth transition time series model. IEEE Trans Neural Netw 16(1):97–113

    Article  Google Scholar 

  23. Nauck D, Kruse R (1999) Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst 101(2):261–271. doi:10.1016/S0165-0114(98)00169-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Nie J (1997) Nonlinear time-series forecasting: a fuzzy-neural approach. Neurocomputing 16(1):63–76

    Article  Google Scholar 

  25. Palit AK, Popovic D (2005) Computational intelligence in time series forecasting: theory and engineering applications (Advances in industrial control). Springer, New York

    MATH  Google Scholar 

  26. Suarez-Farinas M, Pedreira CE, Medeiros MC (2004) Local global neural networks: a new approach for nonlinear time series modeling. J Am Stat Assoc 99:1092–1107. http://ideas.repec.org/a/bes/jnlasa/v99y2004p1092-1107.html

    Article  MathSciNet  MATH  Google Scholar 

  27. Sugeno M, Kang G (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28:15–33

    Article  MathSciNet  MATH  Google Scholar 

  28. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132

    MATH  Google Scholar 

  29. Teräsvirta T (1994) Specification, estimation and evaluation of smooth transition autoregresive models. J Am Stat Assoc 89:208–218

    Article  Google Scholar 

  30. Tong H (1978) On a threshold model. In: Pattern recognition and signal processing

    Google Scholar 

  31. Vieira CF, Palma LB, da Silva RN (2005) Robust fault diagnosis approach using analytical and knowledge based techniques applied to a water tank system. Int J Eng Intell Syst Electr Eng Commun 13(4):237–244

    Google Scholar 

  32. Wang LX (1992) Fuzzy systems are universal approximators. IEEE Trans Syst Man Cybern SMC7(10):1163–1170

    Google Scholar 

  33. Zadeh L (1965) Fuzzy sets. Inf Control 3(8):338–353

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Aznarte.

Additional information

This work is part of the first author’s Ph.D. thesis and has been partially funded by Spanish Ministerio de Ciencia e Innovación (MICINN) under Project grants MICINN TIN2009-14575 and CIT-460000-2009-46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aznarte, J.L., Molina, D., Sánchez, A.M. et al. A test for the homoscedasticity of the residuals in fuzzy rule-based forecasters. Appl Intell 34, 386–393 (2011). https://doi.org/10.1007/s10489-011-0288-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-011-0288-x

Keywords

Navigation