Skip to main content

Advertisement

Log in

A compact genetic algorithm for the network coding based resource minimization problem

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In network coding based data transmission, intermediate nodes in the network are allowed to perform mathematical operations to recombine (code) data packets received from different incoming links. Such coding operations incur additional computational overhead and consume public resources such as buffering and computational resource within the network. Therefore, the amount of coding operations is expected to be minimized so that more public resources are left for other network applications.

In this paper, we investigate the newly emerged problem of minimizing the amount of coding operations required in network coding based multicast. To this end, we develop the first elitism-based compact genetic algorithm (cGA) to the problem concerned, with three extensions to improve the algorithm performance. First, we make use of an all-one vector to guide the probability vector (PV) in cGA towards feasible individuals. Second, we embed a PV restart scheme into the cGA where the PV is reset to a previously recorded value when no improvement can be obtained within a given number of consecutive generations. Third, we design a problem-specific local search operator that improves each feasible solution obtained by the cGA. Experimental results demonstrate that all the adopted improvement schemes contribute to an enhanced performance of our cGA. In addition, the proposed cGA is superior to some existing evolutionary algorithms in terms of both exploration and exploitation simultaneously in reduced computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlswede R, Cai N, Li SYR, Yeung RW (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216

    Article  MathSciNet  MATH  Google Scholar 

  2. Li SYR, Yeung RW, Cai N (2003) Linear network coding. IEEE Trans Inf Theory 49(2):371–381

    Article  MathSciNet  MATH  Google Scholar 

  3. Koetter R, Médard M (2003) An algebraic approach to network coding. IEEE/ACM Trans Netw 11(5):782–795

    Article  Google Scholar 

  4. Wu Y, Chou PA, Kung SY (2005) Minimum-energy multicast in mobile ad hoc networks using network coding. IEEE Trans Commun 53(11):1906–1918

    Article  Google Scholar 

  5. Chou PA, Wu Y (2007) Network coding for the internet and wireless networks. IEEE Signal Process Mag 24(5):77–85

    Article  Google Scholar 

  6. Cai N, Yeung RW (2002) Secure network coding. In: Proceedings of IEEE international symposium on information theory (ISIT’02)

    Google Scholar 

  7. Kamal AE (2006) 1+N protection in optical mesh networks using network coding on p-cycles. In: Proceedings of IEEE globecom, San Francisco

    Google Scholar 

  8. Xing H, Ji Y, Bai L, Sun Y (2010) An improved quantum-inspired evolutionary algorithm for coding resource optimization based network coding multicast scheme. AEÜ, Int J Electron Commun 64(12):1105–1113

    Article  Google Scholar 

  9. Kim M, Ahn CW, Médard M, Effros M (2006) On minimizing network coding resources: An evolutionary approach. In: Proceedings of second workshop on network coding, theory, and applications (NetCod2006), Boston

    Google Scholar 

  10. Kim M, Médard M, Aggarwal V, Reilly VO, Kim W, Ahn CW, Effros M (2007) Evolutionary approaches to minimizing network coding resources. In: Proceedings of 26th IEEE international conference on computer communications (INFOCOM2007), Anchorage, pp 1991–1999

    Chapter  Google Scholar 

  11. Kim M, Aggarwal V, Reilly VO, Médard M, Kim W (2007) Genetic representations for evolutionary optimization of network coding. In: Proceedings of evoworkshops 2007. LNCS, Valencia, vol 448, pp 21–31

    Google Scholar 

  12. Langberg M, Sprintson A, Bruck J (2006) The encoding complexity of network coding. IEEE Trans Inf Theory 52(6):2386–2397

    Article  MathSciNet  Google Scholar 

  13. Oliveira CAS, Pardalos PM (2005) A Survey of Combinatorial Optimization Problems in Multicast Routing. Comput Oper Res 32(8):1953–1981

    Article  MATH  Google Scholar 

  14. Yeo CK, Lee BS, Er MH (2004) A survey of application level multicast techniques. Comput Commun 27:1547–1568

    Article  Google Scholar 

  15. Xu Y, Qu R (2010) A hybrid scatter search meta-heuristic for delay-constrained multicast routing problems. Appl Intell. doi:10.1007/s10489-010-0256-x

  16. Araújo AFR, Garrozi C (2010) MulRoGA: a multicast routing genetic algorithm approach considering multiple objectives. Appl Intell 32:330–345. doi:10.1007/s10489-008-0148-5

    Article  Google Scholar 

  17. Kim SJ, Choi MK (2007) Evolutionary algorithms for route selection and rate allocation in multirate multicast networks. Appl Intell 27:197–215 doi:10.1007/s10489-006-0014-2

    Article  Google Scholar 

  18. Fragouli C, Soljanin E (2006) Information flow decomposition for network coding. IEEE Trans Inf Theory 52(3):829–848

    Article  MathSciNet  Google Scholar 

  19. Xing H, Qu R (2011) A population based incremental learning for delay constrained network coding resource minimization. In: Proceedings of evoapplications 2011, Torino, Italy, pp 51–60

    Google Scholar 

  20. Pelikan M, Goldberg DE, Lobo FG (2002) A survey of optimization by building and using probabilistic models. Comput Optim Appl 21:5–20

    Article  MathSciNet  MATH  Google Scholar 

  21. Baluja S, Simon D (1998) Evolution-based methods for selecting point data for object localization: applications to computer-assisted surgery. Appl Intell 8:7–19

    Article  Google Scholar 

  22. Sukthankar R, Baluja S, Hancock J (1998) Multiple adaptive agents for tactical driving. Appl Intell 9:7–23

    Article  Google Scholar 

  23. Harik GR, Lobo FG, Goldberg DE (1999) The compact genetic algorithm. IEEE Trans Evol Comput 3(4):287–297

    Article  Google Scholar 

  24. Gallagher JC, Vigraham S, Kramer G (2004) A family of compact genetic algorithms for intrinsic evolvable hardware. IEEE Trans Evol Comput 8(2):111–126

    Article  Google Scholar 

  25. Aporntewan C, Chongstitvatana P (2001) A hardware implementation of the compact genetic algorithm. In: Proceedings of IEEE congress evolutionary computation. pp 624–629

    Google Scholar 

  26. JI Hidalgo, Baraglia R, Perego R, Lanchares J, Tirado F (2001) A parallel compact genetic algorithm for multi-FPGA partitioning. In: Proceedings of the 9th workshop on parallel and distributed processing, Mantova. pp 113–120

    Google Scholar 

  27. Silva RR, Lopes HS, Erig Lima CR (2008) A compact genetic algorithm with elitism and mutation applied to image recognition. In: Proceedings of the 4th international conference on intelligent computing (ICIC’08). pp 1109–1116

    Google Scholar 

  28. Lin SF, Chang JW, Hsu YC (2010) A self-organization mining based hybrid evolution learning for TSK-type fuzzy model design. Appl Intell. doi:10.1007/s10489-010-0271-y

  29. Ahn CW, Ramakrishna RS (2003) Elitism-based compact genetic algorithm. IEEE Trans Evol Comput 7(4):367–385

    Article  Google Scholar 

  30. Goldberg AV (1985) A new max-flow algorithm. MIT Technical report MIT/LCS/TM-291, Laboratory for Computer Science

  31. Yang S, Yao X (2008) Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput 12(5):542–561

    Article  Google Scholar 

  32. Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanlai Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, H., Qu, R. A compact genetic algorithm for the network coding based resource minimization problem. Appl Intell 36, 809–823 (2012). https://doi.org/10.1007/s10489-011-0298-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-011-0298-8

Keywords

Navigation