Skip to main content
Log in

A resource enhanced HTN planning approach for emergency decision-making

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Hierarchical resource reasoning is one of the key issues to successfully apply Hierarchy Task Network (HTN) planning into emergency decision-making. This paper proposes a Resource Enhanced HTN (REHTN) planning approach for emergency decision-making with the objective to enhance the expressive power and improve the processing speed of hierarchical resource reasoning. In the approach, resource timelines are defined to describe various resource variables and constraints. Top-down resource reasoning is used for decomposing the resource constraints of upper-level tasks into those of lower-level tasks. Meanwhile, resource and temporal constraints of tasks in different branches are processed by causal links. After the tasks are decomposed into primitive tasks, resource profiles of consumable resources and reusable resources are checked by separate resource allocation processes. Furthermore, a constraint propagation accelerator is designed to speed up hierarchal resource reasoning. The effectiveness and practicability of REHTN are confirmed with some experiments from emergency logistics distribution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altay N, Green W (2006) OR/MS research in disaster operations management. Eur J Oper Res 175(1):475–493

    Article  MATH  Google Scholar 

  2. Sheu J (2007) An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transp Res, Part E, Logist Transp Rev 43(6):687–709

    Article  MathSciNet  Google Scholar 

  3. Asunción M, Castillo L, Fdez-Olivares J, Garcıa-Pérez O, González A, Palao F (2005) Knowledge and plan execution management in planning fire fighting operations. In: Planning, scheduling and constraint satisfaction: from theory to practice. IOS Press, Amsterdam, pp 149–158

    Google Scholar 

  4. Biundo S, Bercher P, Geier T, Muller F, Schattenberg B (2011) Advanced user assistance based on AI planning. Cogn Syst Res 12(3–4):219–236

    Article  Google Scholar 

  5. Kuzu M, Cicekli N (2012) Dynamic planning approach to automated web service composition. Int J Appl Intell 36(1):1–28. doi:10.1007/s10489-010-0238-z

    Article  Google Scholar 

  6. Nau D, Tsz-Chiu A, Okhtay I (2005) Applications of SHOP and SHOP2. IEEE Intell Syst 20(5):34–41

    Article  Google Scholar 

  7. Biundo S, Schattenberg B, Ghallab M, Hertzberg J, Traverso P (2002) On the identification and use of hierarchical resources in planning and scheduling. In: Proceedings of the 6th international conference on artificial intelligence planning systems (AIPS-2002), Toulouse, France, pp 263–272

    Google Scholar 

  8. Smith DE, Frank J, Honsson AK (2000) Bridging the gap between planning and scheduling. Knowl Eng Rev 15(1):47–83

    Article  Google Scholar 

  9. Asuncion M, Castillo L, Fdez-Olivares J, Garcia-Perez O, Gonzalez A, Palao F (2005) SIADEX: an interactive knowledge-based planner for decision support in forest fire fighting. AI Commun 18(4):257–268

    MathSciNet  Google Scholar 

  10. Nau D, Tsz-Chiu A, Okhtay I (2003) SHOP2: an HTN planning system. J Artif Intell Res 20(12):379–404

    MATH  Google Scholar 

  11. Sierbra C (2004) A unified approach to planning support in hierarchical coalitions. PhD Thesis, www.aiai.ed.ac.uk/project/ix/project/siebra/resources/SiebraThesis.pdf, Artificial Intelligence, Applications Institute, The University of Edinburgh

  12. Benton J, Do M, Kambhampati S (2009) Anytime heuristic search for partial satisfaction planning. Artif Intell 173(5–6):562–592

    Article  MathSciNet  MATH  Google Scholar 

  13. Potter S (2011) Critical reasoning: AI for emergency response. Int J Appl Intell. doi:10.1007/s10489-011-0331-y

    Google Scholar 

  14. Sapena O, Onaindia E (2008) Planning in highly dynamic environments: an anytime approach for planning under time constraints. Int J Appl Intell 29(1):90–109

    Article  Google Scholar 

  15. Bonet B, Geffner H (2001) Planning and control in artificial intelligence: a unifying perspective. Int J Appl Intell 14(3):237–252

    Article  MATH  Google Scholar 

  16. Ghallab M, Nau D, Traverso P (2004) Automated planning: theory and practice. Elsevier, Amsterdam

    MATH  Google Scholar 

  17. Bacchus F, Kabanza F (2000) Using temporal logic to express search control knowledge for planning. Artif Intell 116(1–2):123–191

    Article  MathSciNet  MATH  Google Scholar 

  18. Drabble B, Tate A (1994) The use of optimistic and pessimistic resource profiles to inform search in an activity based planner. In: Proceedings of the international conference on AI planning systems (AIPS-94), Chicago, USA, pp 243–248

    Google Scholar 

  19. Schattenberg B (2009) Hybrid planning and scheduling. PhD Thesis, http://vts.uni-ulm.de/docs/2009/6895/vts_6895_9580.pdf, Institute of Artificial Intelligence, Ulm University

  20. Verfaillie G, Praclet C, Lemaitre M (2010) How to model planning and scheduling problems using constraint networks on timelines. Knowl Eng Rev 25(3):319–336

    Article  Google Scholar 

  21. Castillo L, Fdez-Olivares J, Garc Ma-Perez O (2006) Temporal enhancements of an HTN planner. In: Lecture notes in computer science. Springer, Berlin, pp 429–438

    Google Scholar 

  22. Garrido A, Barber F (2001) Integrating planning and scheduling. Appl Artif Intell 15(5):471–491

    Article  Google Scholar 

  23. Sapena O, Onaindia E, Garrido A, Arangu M (2008) A distributed CSP approach for collaborative planning systems. Eng Appl Artif Intell 21(5):698–709

    Article  Google Scholar 

  24. Mouhoub M, Sukpan A (2012) Conditional and composite temporal CSPs. Int J Appl Intell 36(1):90–107. doi:10.1007/s10489-010-0246-z

    Article  Google Scholar 

  25. Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49(1–3):61–95

    Article  MathSciNet  MATH  Google Scholar 

  26. Laborie P (2003) Algorithms for propagating resource constraints in AI planning and scheduling: existing approaches and new results. Artif Intell 143(2):151–188

    Article  MathSciNet  MATH  Google Scholar 

  27. Nareyek A, Freuder E, Fourer R, Giunchiglia E, Goldman R, Kautz H, Rintanen J, Tate A (2005) Constraints and AI planning. IEEE Intell Syst 20(2):62–72

    Article  Google Scholar 

  28. Lemai S, Ingrand F (2003) Interleaving temporal planning and execution IXTETEXEC. In: Proceedings of international conference on automated planning and scheduling (ICAPS-03) workshop on plan execution, Trento, Italy, pp 1–10

    Google Scholar 

  29. Castillo L, Fdez-Olivares J, Garc Ma-Perez O (2006) Efficiently handling temporal knowledge in an HTN planner. In: Proceedings of international conference on automated planning and scheduling (ICAPS-06), Cumbria, UK, pp 63–72

    Google Scholar 

  30. Penna G, Magazzeni D, Mercorio F (2012) A universal planning system for hybrid domains. Int J Appl Intell 36(4):932–959. doi:10.1007/s10489-011-0306-z

    Article  Google Scholar 

  31. Yaman F, Nau D (2002) Timeline: an HTN planner that can reason about time. In: Proceedings of the 6th international conference on artificial intelligence planning systems (AIPS-02) workshop on planning for temporal domains, Toulouse, France, pp 75–81

    Google Scholar 

  32. Alan K (1977) Consistency in networks of relations. Artif Intell 8(1):99–118

    Article  MATH  Google Scholar 

  33. Allen J (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(1):832–843

    Article  MATH  Google Scholar 

  34. Erol K, Hendler J, Nau D (1994) HTN planning: complexity and expressivity. In: Proceedings of the national conference on artificial intelligence (NCAI-94), Seattle, USA, pp 1123–1128

    Google Scholar 

  35. Erol K, Hendler J, Nau D (1994) UMCP: a sound and complete procedure for hierarchical task-network planning. In: Proceedings of the international conference on AI planning system (AIPS-94), Chicago, USA, pp 249–254

    Google Scholar 

  36. Erol K, Hendler J, Nau D (1996) Complexity results for HTN planning. Ann Math Artif Intell 18(1):69–93

    Article  MathSciNet  MATH  Google Scholar 

  37. Tate A, Drabble B, Kirby R (1994) O-Plan2: an open architecture for command, planning and control. In: Intelligence scheduling. Morgan Kaufmann, San Francisco, pp 213–239

    Google Scholar 

  38. Edelkamp S, Hoffmann J (2004) PDDL2.2: the language for the classical part. In: 4th international planning competition (IPC-04), Whistler, Canada

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Jingjing Li for the domain knowledge modeling of emergency logistics distribution problem. We would also like to express our thanks to Dr. Yongchang Wei and Dr. Pan Tang for numerous discussions of this paper. This work was supported by the National Science Foundation Grant of China, projects No. 90924301, No. 91024032 and No. 71125001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, HW., Qi, C. et al. A resource enhanced HTN planning approach for emergency decision-making. Appl Intell 38, 226–238 (2013). https://doi.org/10.1007/s10489-012-0367-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0367-7

Keywords

Navigation