Skip to main content

Advertisement

Log in

Incremental 3D reconstruction using Bayesian learning

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

We present a novel algorithm for 3D reconstruction in this paper, converting incremental 3D reconstruction to an optimization problem by combining two feature-enhancing geometric priors and one photometric consistency constraint under the Bayesian learning framework. Our method first reconstructs an initial 3D model by selecting uniformly distributed key images using a view sphere. Then once a new image is added, we search its correlated reconstructed patches and incrementally update the result model by optimizing the geometric and photometric energy terms. The experimental results illustrate our method is effective for incremental 3D reconstruction and can be further applied for large-scale datasets or to real-time reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multi view stereopsis. IEEE Trans Pattern Anal Mach Intell 32(8):1362–1376

    Article  Google Scholar 

  2. Pons J-P, Keriven R, Faugeras OD (2007) Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. Int J Comput Vis 72(2):179–193

    Article  Google Scholar 

  3. Tran S, Davis L (2006) 3d surface reconstruction using graph cuts with surface constraints. In: European conference on computer vision (ECCV), pp 219–231

    Google Scholar 

  4. Vogiatzis G, Torr PH, Cipolla R (2005) Multi-view stereo via volumetric graph-cuts. In: Computer vision and pattern recognition (CVPR), pp 391–398

    Google Scholar 

  5. Hornung A, Kobbelt L (2006) Hierarchical volumetric multi-view stereo reconstruction of manifold surfaces based on dual graph embedding. In: Computer vision and pattern recognition (CVPR), pp 503–510

    Google Scholar 

  6. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  7. Hernández Esteban C, Schmitt F (2004) Silhouette and stereo fusion for 3D object modeling. Comput Vis Image Underst 96(3):367–392

    Article  Google Scholar 

  8. Furukawa Y, Ponce J (2009) Carved visual hulls for image-based modeling. Int J Comput Vis 81(1):53–67

    Article  Google Scholar 

  9. Goesele M, Curless B, Seitz SM (2006) Multi-view stereo revisited. In: Computer vision and pattern recognition (CVPR), pp 2402–2409

    Google Scholar 

  10. Strecha C, Fransens R, Gool LV (2006) Combined depth and outlier estimation in multi-view stereo. In: Computer vision and pattern recognition (CVPR), pp 2394–2401

    Google Scholar 

  11. http://www.cse.unsw.edu.au/~lambert/java/3d/delaunay.html

  12. http://grail.cs.washington.edu/software/pmvs

  13. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    MATH  Google Scholar 

  14. Diebel JR, Thrun S (2006) A Bayesian method for probable surface reconstruction and decimation. ACM Trans Graph 25(1):39–59

    Article  Google Scholar 

  15. http://www.cs.washington.edu/homes/furukawa/research/mview/index.html

  16. http://vision.middlebury.edu/mview/data/

  17. Furukawa Y, Curless B, Seitz SM, Szeliski R (2010) Towards Internet-scale multi-view stereo. In: Computer vision and pattern recognition (CVPR), pp 1434–1441

    Google Scholar 

  18. Furukawa Y, Ponce J (2009) Accurate camera calibration from multi-view stereo and bundle adjustment. Int J Comput Vis 84(3):257–268

    Article  Google Scholar 

  19. Klein G, DW Murray (2007) Parallel tracking and mapping for small AR workspaces. In: International symposium on mixed and augmented reality (ISMAR), pp 225–234

    Google Scholar 

  20. Davison AJ, Reid ID, Molton ND, Stasse O (2007) MonoSLAM: real-time single camera SLAM. IEEE Trans Pattern Anal Mach Intell 29(6):1052–1067

    Article  Google Scholar 

  21. Davison A (2003) Real-time simultaneous localization and mapping with a single camera. In: International conference on computer vision (ICCV), pp 1403–1410

    Chapter  Google Scholar 

  22. Eade E, Drummond T (2006) Scalable monocular SLAM. In: Computer vision and pattern recognition (CVPR), vol 1, pp 469–476

    Google Scholar 

  23. Merrell P, Akbarzadeh A, Wang L, Mordohai P, Frahm J, Yang R, Nistér D, Pollefeys M (2007) Real-time visibility-based fusion of depth maps. In: International conference on computer vision (ICCV), pp 1–8

    Google Scholar 

  24. Pollefeys M, Nistér D, Frahm J-M, Akbarzadeh A, Mordohai P, Clipp B, Engels C, Gallup D, Kim SJ, Merrell P, Salmi C, Sinha SN (2008) Detailed real-time urban 3D reconstruction from video. Int J Comput Vis 78(o):2–3. 143–167

    Google Scholar 

  25. Lovi D, Birkbeck N, Cobzas D, Jägersand M (2010) Incremental free-space carving for real-time 3D reconstruction. In: Fifth international symposium on 3D data processing visualization and transmission (3DPVT)

    Google Scholar 

  26. Hilton A (2005) Scene modeling from sparse 3D data. Image Vis Comput 23(10):900–920

    Article  Google Scholar 

  27. Pan Q, Reitmayr G, Drummond T (2009) ProFORMA: probabilistic feature-based on-line rapid model acquisition. In: British machine vision conference (BMVC)

    Google Scholar 

  28. Nistér D, Naroditsky O, Bergen JR (2004) Visual odometry. In: Computer vision and pattern recognition (CVPR), pp 652–659

    Google Scholar 

  29. Agarwal S, Snavely N, Seitz SM, Szeliski R (2010) Bundle adjustment in the large. In: European conference on computer vision (ECCV), pp 29–42

    Google Scholar 

  30. Osada R, Funkhouser TA, Chazelle B, Dobkin DP (2002) Ops shape distributions. ACM Trans Graph 21(4):807–832

    Article  Google Scholar 

  31. Thang ND, Kim T-S, Lee Y-K, Lee S (2011) Estimation of 3-D human body posture via co-registration of 3-D human model and sequential stereo information. Appl Intell 35(2):163–177

    Article  Google Scholar 

  32. Kang J-G, Kim S, An S-Y, Oh S-Y (2012) A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization. Appl Intell 36(1):242–269

    Article  Google Scholar 

  33. Bonev B, Cazorla M, Martín F, Matellán V (2012) Portable autonomous walk calibration for 4-legged robots. Appl Intell 36(1):136–147

    Article  Google Scholar 

  34. Bayrak AG, Polat F (2012) Formation preserving path finding in 3-D terrains. Appl Intell 36(2):348–368

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Natural Science Foundation of China under Grant No. 61272218 and 61021062, the 973 Program of China under Grant No. 2010CB327903, and the Program for New Century Excellent Talents under NCET-11-0232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Huan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, ZH., Lu, T. Incremental 3D reconstruction using Bayesian learning. Appl Intell 39, 761–771 (2013). https://doi.org/10.1007/s10489-012-0410-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0410-8

Keywords

Navigation