Skip to main content
Log in

A rough set-based association rule approach implemented on exploring beverages product spectrum

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

When items are classified according to whether they have more or less of a characteristic, the scale used is referred to as an ordinal scale. The main characteristic of the ordinal scale is that the categories have a logical or ordered relationship to each other. Thus, the ordinal scale data processing is very common in marketing, satisfaction and attitudinal research. This study proposes a new data mining method, using a rough set-based association rule, to analyze ordinal scale data, which has the ability to handle uncertainty in the data classification/sorting process. The induction of rough-set rules is presented as method of dealing with data uncertainty, while creating predictive if—then rules that generalize data values, for the beverage market in Taiwan. Empirical evaluation reveals that the proposed Rough Set Associational Rule (RSAR), combined with rough set theory, is superior to existing methods of data classification and can more effectively address the problems associated with ordinal scale data, for exploration of a beverage product spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abdellaoui M, Barrios C, Wakker P (2002) Reconciling introspective utility with revealed preference; experimental arguments based on prospect theory. Technical report, CREED, Department of Economics, Amsterdam, The Netherlands

  2. Agrawal R, Imilienski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207–216

    Chapter  Google Scholar 

  3. Agrawal R, Shafer J (1996) Parallel mining of association rules. IEEE Trans Knowl Data Eng 8(6):962–969

    Article  Google Scholar 

  4. Akter S, Bennett J (2013) Preference uncertainty in stated preference studies: facts and artifacts. Appl Econ 45(15):2107–2115

    Article  Google Scholar 

  5. Alisantoso D, Khoo LP, Lee BH, Fok SC (2005) A rough set approach to design concept analysis in a design chain. Int J Adv Manuf Technol 26:427–435

    Article  Google Scholar 

  6. Baker M (1996) Marketing—an introductory text. Macmillan Co., London

    Google Scholar 

  7. Batyrshin IZ, Rudas IR, Villa LA, Antonio PC (2013) On the monotone sum of basic t-norms in the construction of parametric families of digital conjunctors for fuzzy systems with reconfigurable logic. Knowl-Based Syst 38(1):27–36

    Article  Google Scholar 

  8. Bi Y, Anderson T, McClean S (2003) A rough set model with ontologies for discovering maximal association rules in document collections. Knowl-Based Syst 16(5–6):243–251

    Article  Google Scholar 

  9. Czerniecki JM, Turner AP, Williams RM, Hakimi KN, Norvell DC (2012) The effect of rehabilitation in a comprehensive inpatient rehabilitation unit on mobility outcome after dysvascular lower extremity amputation. Arch Phys Med Rehabil 93(8):1384–1391

    Article  Google Scholar 

  10. Denneberg D, Grabisch M (2004) Measure and integral with purely ordinal scales. J Math Psychol 48(1):15–27

    Article  MathSciNet  Google Scholar 

  11. Díaz S, García-Lapresta JL, Montes S (2008) Consistent models of transitivity for reciprocal preferences on a finite ordinal scale. Inf Sci 178(13):2832–2848

    Article  MATH  Google Scholar 

  12. Dolnicar S, Grün B (2007) How constrained a response: a comparison of binary, ordinal and metric answer formats. J Retail Consum Serv 14(2):108–122

    Article  Google Scholar 

  13. Castillo PA, Arenas MG, Rico N, Mora AM, García-Sánchez P, Laredo JLJ, Merelo JJ (2012) Determining the significance and relative importance of parameters of a simulated quenching algorithm using statistical tools. Appl Intell 37(2):239–254

    Article  Google Scholar 

  14. Chen YL, Weng CH (2008) Mining association rules from imprecise ordinal data. Fuzzy Sets Syst 159(4):460–474

    Article  MATH  MathSciNet  Google Scholar 

  15. Darshit Parmar TW, Blackhurst J (2007) MMR: an algorithm for clustering categorical data using rough set theory. Data Knowl Eng 63(6):879–893

    Article  Google Scholar 

  16. Dibb S, Simkin L, Pride W, Ferrell OC (1997) In: Marketing concepts and strategies. Houghton Mifflin, New York

    Google Scholar 

  17. Fan B, Zhang P (2009) Spatially enabled customer segmentation using a data classification method with uncertain predicates. Decis Support Syst 47:343–350

    Article  MathSciNet  Google Scholar 

  18. Felix R, Ushio T (1999) Rules induction from inconsistent and incomplete data using rough sets. In: Proceedings of IEEE international conference on systems, man, and cybernetics, pp 154–158

    Google Scholar 

  19. Felix R, Ushio T (1999) Rough sets based machine learning using a binary discernibility matrix. In: Proceedings of the second international conference on intelligent processing and manufacturing of materials (IPMM ’99). IEEE Operation Center Press, Hawaii, pp 299–305

    Google Scholar 

  20. Godo L, Zapico A (2001) On the possibilistic-based decision model: characterization of preference relations under partial inconsistency. Appl Intell 14(3):319–333

    Article  MATH  Google Scholar 

  21. Griffith A Jr., Ryans KJ (1997) Organizing global communications to minimize private spill-over damage to brand equity. J World Bus 38:35–45

    Google Scholar 

  22. Griffin G, Chen Z (1998) Rough set extension of Tcl for data mining. Knowl-Based Syst 11(3–4):249–253

    Article  Google Scholar 

  23. Grsbisch M (2008) How to score alternatives when criteria are scored on an ordinal scale. J Multi-Criteria Decis Anal 15(1):31–44

    Article  Google Scholar 

  24. Guo QL, Zhang M (2009) Implement web learning environment based on data mining. Knowl-Based Syst 22(6):439–442

    Article  Google Scholar 

  25. Han SW, Kim JY (2008) Rough set-based decision tree using a core attribute. Int J Inf Technol Decis Mak 7(2):275–290

    Article  MATH  Google Scholar 

  26. Hassan YF (2011) Rough sets for adapting wavelet neural networks as a new classifier system. Appl Intell 35(2):260–268

    Article  Google Scholar 

  27. Hicks J, Allen A (1934) A reconsideration of the theory of value: I, II. Economica 1(52–75):196–219

    Article  Google Scholar 

  28. Huang CL, Li TS, Peng TK (2005) A hybrid approach of rough set theory and genetic algorithm for fault diagnosis. Int J Adv Manuf Technol 27:119–127

    Article  Google Scholar 

  29. Lee JWT, Yeung DS, Tsang CC (2006) Rough sets and ordinal reducts. Soft Comput 10(1):27–33

    Article  Google Scholar 

  30. Jullien-Ramasso S, Mauris G, Valet L, Bolon P (2012) A decision support system for animated film selection based on a multi-criteria aggregation of referees’ ordinal preferences. Expert Syst Appl 39(4):4250–4257

    Article  Google Scholar 

  31. Khoo LP, Tor SB, Zhai LY (1999) A rough-set based approach for classification and rule induction. Int J Adv Manuf Technol 15:438–444

    Article  Google Scholar 

  32. Khoo LP, Tor SB, Li JR (2001) A rough set approach to the ordering of basic events in a fault tree for fault diagnosis. Int J Adv Manuf Technol 17:769–794

    Article  Google Scholar 

  33. Khoo LP, Zhai LY (2001) Multiconcept classification of diagnostic knowledge to manufacturing systems: analysis of incomplete data with continuous-valued attributes. Int J Prod Res 39(17):3941–3957

    Article  MATH  Google Scholar 

  34. Kotler P (1997) Marketing management: analysis. Houghton Mifflin, New York

    Google Scholar 

  35. Kryszkiewicz M (1998) Rough set approach to incomplete information systems. Inf Sci 112:39–49

    Article  MATH  MathSciNet  Google Scholar 

  36. Kryszkiewicz M (1999) Rules in incomplete information systems. Inf Sci 113:71–292

    Article  MathSciNet  Google Scholar 

  37. Lalla M, Facchinetti G, Mastroleo G (2005) Ordinal scales and fuzzy set systems to measure agreement: an application to the evaluation of teaching activity. Qual Quant 38(5):577–601

    Article  Google Scholar 

  38. Li WH, Chen SB, Wang B (2008) A variable precision rough set based modeling method for pulsed GTAW. Int J Adv Manuf Technol 36:1072–1079

    Article  MathSciNet  Google Scholar 

  39. Liao SH, Ho HH, Yang FC (2010) Ontology-based data mining approach implemented on exploring product and brand spectrum. Expert Syst Appl 36(9):11730–11744

    Article  Google Scholar 

  40. Lingras P (2001) Unsupervised rough set classification using gas. J Intell Inf Syst 16:215–228

    Article  MATH  Google Scholar 

  41. Liou JH, Tzen GH (2010) A dominance-based rough set approach for customer behavior in the airline market. Inf Sci 180(11):2230–2238

    Article  Google Scholar 

  42. Mi JS, Wu WZ, Zhang WX (2004) Approaches to knowledge reduction based on variable precision rough set model. Inf Sci 159(3–4):255–272

    Article  MATH  MathSciNet  Google Scholar 

  43. Pal SK, Dasgupta B, Mitra P (2004) Rough self organizing map. Appl Intell 21(3):289–299

    Article  MATH  Google Scholar 

  44. Pawlak Z (1982) Rough Sets Int J Comput Inf Sci 11:341–356

    Article  MATH  MathSciNet  Google Scholar 

  45. Pawlak Z, Skowron A (2007) A rough sets and boolean reasoning. Inf Sci 177(1):41–73

    Article  MATH  MathSciNet  Google Scholar 

  46. Rauch J (2005) Logic of association rules. Appl Intell 22(1):9–28

    Article  MATH  Google Scholar 

  47. Rebai A, Aouni B, Martel JM (2006) A multi-attribute method for choosing among potential alternatives with ordinal evaluation. Eur J Oper Res 174(1):360–373

    Article  MATH  Google Scholar 

  48. Sai Y, Yao Y, Zhong N (2001) Data analysis and mining in ordered information tables. In: IEEE international conference on data mining, pp 497–504

    Google Scholar 

  49. Santos E, Santos EE, Nguyen H, Pan L, Korah J (2011) A large-scale distributed framework for information retrieval in large dynamic search spaces. Appl Intell 35(3):375–398

    Article  Google Scholar 

  50. Schwer CH (2002) Formalizing calendars with the category of ordinals. Appl Intell 17(3):275–295

    Article  MATH  Google Scholar 

  51. Shie BE, Yu PS, Tseng VS (2013) Mining interesting user behavior patterns in mobile commerce environments. Appl Intell 38(3):418–435

    Article  Google Scholar 

  52. Skowron A, Rauszer C 1992) The discernibility matrices and functions in information systems, in intelligent decision support—handbook of advances and applications of the rough set theory. Kluwer Academic, Dordrecht, pp 331–362

    Google Scholar 

  53. Swiniarski RW, Skowron A (2003) Rough set methods in feature selection and recognition. Pattern Recognit Lett 24:833–849

    Article  MATH  Google Scholar 

  54. Tastle WJ, Wierman MJ (2006) An information theoretic measure for the evaluation of ordinal scale data. Behav Res Methods 38(3):487–494

    Article  Google Scholar 

  55. Wang H, Wang S (2009) Discovering patterns of missing data in survey databases: an application of rough sets. Expert Syst Appl 36(3):6256–6260

    Article  Google Scholar 

  56. Wang YT, Cheng JT (2011) Mining periodic movement patterns of mobile phone users based on an efficient sampling approach. Appl Intell 35(1):32–40

    Article  Google Scholar 

  57. Wakker P (1989) Additive representations of preferences. Kluwer Academic, Dordrecht

    Book  MATH  Google Scholar 

  58. Walczak B, Massart DL (1999) Rough sets theory. Chenom Intell Lab Syst 47(1):1–16

    Article  Google Scholar 

  59. Wu CD, Zhang Y, Li MX, Yue Y (2006) A rough set GA-based hybrid method for robot path planning. Int J Autom Comput 3:29–34

    Article  Google Scholar 

  60. Yue K, Yao Y, Li J, Liu WY (2010) Qualitative probabilistic networks with reduced ambiguities. Appl Intell 33(2):159–178

    Article  Google Scholar 

  61. Zhai LY, Khoo LP, Fok SC (2001) Derivation of decision rules for the evaluation of product performance using genetic algorithms and rough set theory. In: Brasha D (ed) Data mining for design and manufacturing, methodology and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  62. Zhang WX, Qiu GF, Wu WZ (2007) A general approach to attribute reduction in rough set theory. Sci China, Ser F 50(2):188–197

    Article  MATH  MathSciNet  Google Scholar 

  63. Zhao L, Wang L, Xu Q (2012) Data stream classification with artificial endocrine system. Appl Intell 37(3):390–404

    Article  Google Scholar 

  64. Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46:39–59

    Article  MATH  MathSciNet  Google Scholar 

  65. Ziarko W (1994) Rough sets and knowledge discovery: an overview. In: Ziarko W (ed) Rough sets, fuzzy sets and knowledge discovery—proceedings of the international workshop on rough sets and knowledge discovery (RSKD ‘93). Springer, London, pp 11–15

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Council, Taiwan, Republic of China, under contract No. NSC 100-2410-H-032-018-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hsien Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, SH., Chen, YJ. A rough set-based association rule approach implemented on exploring beverages product spectrum. Appl Intell 40, 464–478 (2014). https://doi.org/10.1007/s10489-013-0465-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0465-1

Keywords

Navigation