Skip to main content
Log in

Linear discriminant analysis with spectral regularization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Linear discriminant analysis (LDA) is a popular technique that works for both dimensionality reduction and classification. However, LDA faces the problem of small sample size in dealing with high dimensional data. Several approaches have been proposed to overcome this issue, but the resulting transformation matrix fails to extract shared structures among data samples. In this paper, we propose trace norm regularized LDA that not only tackles the problem of small sample size but also uncover the underlying structures between target classes. Specifically, our formulation characterizes the intrinsic dimensionality of a transformation matrix owing to the appealing property of trace norm. Evaluations over nine real data sets deliver the effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

  2. http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.

  3. http://www.ics.uci.edu/~mlearn/MLSummary.html.

  4. http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

  5. http://trec.nist.gov.

References

  1. Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D, Levine A (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96(12):6745–6750

    Article  Google Scholar 

  2. Amit Y, Fink M, Srebro N, Ullman S (2007) Uncovering shared structures in multiclass classification. In: International conference on machine learning, vol 24

    Google Scholar 

  3. Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73(3):243–272

    Article  Google Scholar 

  4. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  5. Cai D, He X, Han J (2007) Spectral regression: a unified approach for sparse subspace learning. In: Proceedings of the international conference on data mining (ICDM’07)

    Google Scholar 

  6. Cai D, He X, Han JS (2008) An efficient algorithm for large-scale discriminant analysis. IEEE Trans Knowl Data Eng 20(1):1–12

    Article  Google Scholar 

  7. Cai J, Candès E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Control Optim 20(4):1956–1982

    Article  MATH  Google Scholar 

  8. Candes EJ, Li X, Ma Y, Wright J (2009) Robust principal component analysis? arXiv:0912.3599

  9. Candès EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen J, Ye J, Li Q (2007) Integrating global and local structures: a least squares framework for dimensionality reduction. In: IEEE conference on computer vision and pattern recognition. IEEE, New York, pp 1–8

    Google Scholar 

  11. Chung F (1997) Spectral graph theory. American Mathematical Society, Reading

    MATH  Google Scholar 

  12. Damper RI, Gunn SR, Gore MO (2000) Extracting phonetic knowledge from learning systems: perceptrons, support vector machines and linear discriminants. Appl Intell 12(1–2):43–62

    Article  Google Scholar 

  13. Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  14. Dudoit S, Fridlyand J, Speed T (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  MATH  MathSciNet  Google Scholar 

  15. Fazel M, Hindi H, Boyd SP (2001) A rank minimization heuristic with application to minimum order system approximation. In: proceedings of the American control conference, vol 6. IEEE, New York, pp 4734–4739

    Google Scholar 

  16. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175

    Article  Google Scholar 

  17. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, New York

    MATH  Google Scholar 

  18. Harchaoui Z, Douze M, Paulin M, Dudik M, Malick J (2012) Large-scale image classification with trace-norm regularization. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 3386–3393

    Google Scholar 

  19. Hastie T, Buja A, Tibshirani R (1995) Penalized discriminant analysis. Ann Stat 23(1):73–102

    Article  MATH  MathSciNet  Google Scholar 

  20. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  Google Scholar 

  21. Howland P, Jeon M, Park H (2003) Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J Matrix Anal Appl 25(1):165–179

    Article  MATH  MathSciNet  Google Scholar 

  22. Howland P, Park H (2004) Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans Pattern Anal Mach Intell, 995–1006

  23. Hu Y, Zhang D, Ye J, Li X, He X (2013) Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal Mach Intell 35(9):2117–2130. doi:10.1109/TPAMI.2012.271

    Article  Google Scholar 

  24. Ji S, Tang L, Yu S, Ye J (2010) A shared-subspace learning framework for multi-label classification. ACM Trans Knowl Discov Data 4(2):8

    Article  Google Scholar 

  25. Ji S, Ye J (2009) An accelerated gradient method for trace norm minimization. In: Proceedings of the 26th annual international conference on machine learning. ACM, New York, pp 457–464

    Google Scholar 

  26. Jin Z, Yang J, Hu Z, Lou Z (2001) Face recognition based on the uncorrelated discriminant transformation. Pattern Recognit 34(7):1405–1416

    Article  MATH  Google Scholar 

  27. Jin Z, Yang J, Tang Z, Hu Z (2001) A theorem on the uncorrelated optimal discriminant vectors. Pattern Recognit 34(10):2041–2047

    Article  MATH  Google Scholar 

  28. Lee S, Park YT, d’Auriol BJ et al (2012) A novel feature selection method based on normalized mutual information. Appl Intell 37(1):100–120

    Article  Google Scholar 

  29. Liu Z, Pu J, Huang T, Qiu Y (2013) A novel classification method for palmprint recognition based on reconstruction error and normalized distance. Appl Intell, 1–8

  30. Lofberg J (2004) Yalmip: a toolbox for modeling and optimization in Matlab. In: IEEE international symposium on computer aided control systems design. IEEE, New York, pp 284–289

    Google Scholar 

  31. Martinez A, Kak A (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  32. Martinez AM (1998) The ar face database. CVC technical report 24

  33. Park C, Park H (2005) A relationship between linear discriminant analysis and the generalized minimum squared error solution. SIAM J Matrix Anal Appl 27(2):474–492

    Article  MATH  MathSciNet  Google Scholar 

  34. Raudys S, Duin R (1998) Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognit Lett 19(5):385–392

    Article  MATH  Google Scholar 

  35. Sim T, Baker S, Bsat M (2001) The cmu pose, illumination, and expression (pie) database of human faces. Tech rep CMU-RI-TR-01-02, Robotics Institute, Pittsburgh, PA

  36. Srebro N, Rennie JDM, Jaakkola TS (2005) Maximum-margin matrix factorization. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems, vol 17. MIT Press, Cambridge, pp 1329–1336

    Google Scholar 

  37. Swets D, Weng J (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8):831–836

    Article  Google Scholar 

  38. Ye J, Li Q (2005) A two-stage linear discriminant analysis via qr-decomposition. IEEE Trans Pattern Anal Mach Intell 27(6):929–941

    Article  Google Scholar 

  39. Ye J, Wang T (2006) Regularized discriminant analysis for high dimensional, low sample size data. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 454–463

    Chapter  Google Scholar 

  40. Ye J, Yu B (2005) Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J Mach Learn Res 6:483–502

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the anonymous referees for their critical comments. This work was supported in part by 863 Program of China under Grant 2008AA02Z310 and NSFC under Grant 60873133, together with Shanghai Committee of Science and Technology under Grants 08411951200 and 08JG05002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, X., Lu, H. Linear discriminant analysis with spectral regularization. Appl Intell 40, 724–731 (2014). https://doi.org/10.1007/s10489-013-0485-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0485-x

Keywords

Navigation