Skip to main content
Log in

Modeling analysis of ant system with multiple tasks and its application to spatially adjacent cell state estimate

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The problem of multi-cell tracking plays an important role in studying dynamic cell cycle behaviors. In this paper, a novel ant system with multiple tasks is modeled for jointly estimating the number of cells and individual states in cell image sequences. In our ant system, in addition to pure cooperative mechanism used in traditional ant colony optimization algorithm, we model and investigate another two types of ant working modes, namely, dual competitive mode and interactive mode with cooperation and competition to evaluate the tracking performance on spatially adjacent cells. For adjacent ant colonies, dual competitive mode encourages ant colonies with different tasks to work independently, whereas the interactive mode introduces a trade-off between cooperation and competition. In simulations of real cell image sequences, the multi-tasking ant system integrated with interactive mode yielded better tracking results than systems adopting pure cooperation or dual competition alone, both of which cause tracking failures by under-estimating and over-estimating the number of cells, respectively. Furthermore, the results suggest that our algorithm can automatically and accurately track numerous cells in various scenarios, and is competitive with state-of-the-art multi-cell tracking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fuhai L, Xiaobo Z, Jinwen M, Wong STC (2010) Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis. IEEE Trans Med Imaging 29:96–105

    Article  Google Scholar 

  2. Padfield D, Rittscher J, Roysam B (2008) Spatio-temporal cell segmentation and tracking for automated screening. In: 5th IEEE international symposium on biomedical imaging: from nano to macro, ISBI 2008, pp 376–379

    Google Scholar 

  3. Quan W, Jean G, Luby-Phelps K (2007) Multiple interacting subcellular structure tracking by sequential Monte Carlo method. In: IEEE international conference on bioinformatics and biomedicine, BIBM 2007, pp 437–442

    Google Scholar 

  4. Xiaodong Y, Li H, Xiaobo Z (2006) Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans Circuits Syst I, Regul Pap 53:2405–2414

    Article  Google Scholar 

  5. Ray N, Acton ST, Ley K (2002) Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans Med Imaging 21:1222–1235

    Article  Google Scholar 

  6. Mukherjee DP, Ray N, Acton ST (2004) Level set analysis for leukocyte detection and tracking. IEEE Trans Image Process 13:562–572

    Article  Google Scholar 

  7. Hoseinnezhad R, Vo B-N, Vo B-T, Suter D (2012) Visual tracking of numerous targets via multi-Bernoulli filtering of image data. Pattern Recognit 45:3625–3635

    Article  Google Scholar 

  8. Meijering E, Dzyubachyk O, Smal I, van Cappellen WA (2009) Tracking in cell and developmental biology. Semin Cell Dev Biol 20:894–902

    Article  Google Scholar 

  9. Cuevas E, González M (2013) Multi-circle detection on images inspired by collective animal behavior. Appl Intell. doi:10.1007/s10489-012-0396-2

    Google Scholar 

  10. Cuevas E, Sención F, Zaldivar D, Pérez-Cisneros M, Sossa H (2012) A multi-threshold segmentation approach based on artificial bee colony optimization. Appl Intell 37:321–336

    Article  Google Scholar 

  11. Debeir O, Van Ham P, Kiss R, Decaestecker C (2005) Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans Med Imaging 24:697–711

    Article  Google Scholar 

  12. Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano, Italy

  13. Dorigo M, Gambardella LM (1997) Ant colonies for the travelling salesman problem. Biosystems 43:73–81

    Article  Google Scholar 

  14. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1:53–66

    Article  Google Scholar 

  15. Blum C (2005) Beam-ACO—hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput Oper Res 32:1565–1591

    Article  Google Scholar 

  16. Xu B, Chen Q, Wang X, Zhu J (2009) A novel estimator with moving ants. Simul Model Pract Theory 17:1663–1677

    Article  Google Scholar 

  17. Duan H, Liu S, Wang D, Yu X (2009) Design and realization of hybrid ACO-based PID and LuGre friction compensation controller for three degree-of-freedom high precision flight simulator. Simul Model Pract Theory 17:1160–1169

    Article  Google Scholar 

  18. Chialvo D, Millonas M (1995) How swarms build cognitive maps. In: Steels L (ed) The biology and technology of intelligent autonomous agents, vol 144. Springer, Berlin Heidelberg, pp 439–450

    Chapter  Google Scholar 

  19. Kanade PM, Hall LO (2007) Fuzzy ants and clustering. IEEE Trans Syst Man Cybern, Part A, Syst Hum 37:758–769

    Article  Google Scholar 

  20. Handl J, Knowles J, Dorigo M (2004) Strategies for the increased robustness of ant-based clustering. In: Engineering self-organising systems. Springer, Berlin, pp 90–104

    Chapter  Google Scholar 

  21. Ramos V, Fernandes C, Rosa AC (2006) On self-regulated swarms, societal memory, speed and dynamics. In: Int conf on the simulation and synthesis of living systems, Bloomington, Indiana, USA, 3–7 June 2006. arXiv:cs/0512002

    Google Scholar 

  22. Wu J, Abbas-Turki A, El Moudni A (2012) Cooperative driving: an ant colony system for autonomous intersection management. Appl Intell 37:207–222

    Article  Google Scholar 

  23. Rivero J, Cuadra D, Calle J, Isasi P (2012) Using the ACO algorithm for path searches in social networks. Appl Intell 36:899–917

    Article  Google Scholar 

  24. Favuzza S, Graditi G, Sanseverino ER (2006) Adaptive and dynamic ant colony search algorithm for optimal distribution systems reinforcement strategy. Appl Intell 24:31–42

    Article  Google Scholar 

  25. Huang Y, Essa I (2005) Tracking multiple objects through occlusions. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005, vol 2, pp 1051–1058

    Google Scholar 

  26. Bose B, Wang X, Grimson E (2007) Multi-class object tracking algorithm that handles fragmentation and grouping. In: IEEE conference on computer vision and pattern recognition, CVPR’07, pp 1–8

    Chapter  Google Scholar 

  27. Qian Y, Medioni G (2009) Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association. IEEE Trans Pattern Anal Mach Intell 31:2196–2210

    Article  Google Scholar 

  28. Wei Q, Schonfeld D, Mohamed M (2007) Real-time distributed multi-object tracking using multiple interactive trackers and a magnetic-inertia potential model. IEEE Trans Multimed 9:511–519

    Article  Google Scholar 

  29. Khan SM, Shah M (2009) Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans Pattern Anal Mach Intell 31:505–519

    Article  Google Scholar 

  30. Cielniak G, Duckett T, Lilienthal AJ (2010) Data association and occlusion handling for vision-based people tracking by mobile robots. Robot Auton Syst 58:435–443

    Article  Google Scholar 

  31. Tao Y, Quan P, Jing L, Li SZ (2005) Real-time multiple objects tracking with occlusion handling in dynamic scenes. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005, vol 1, pp 970–975

    Google Scholar 

  32. Xue J, Zheng N, Geng J, Zhong X (2008) Tracking multiple visual targets via particle-based belief propagation. IEEE Trans Syst Man Cybern, Part B, Cybern 38:196–209

    Article  Google Scholar 

  33. Xu B, Xu H, Zhu J (2011) Ant clustering PHD filter for multiple-target tracking. Appl Soft Comput 11:1074–1086

    Article  Google Scholar 

  34. Dufour A, Shinin V, Tajbakhsh S, Guillen-Aghion N, Olivo-Marin JC, Zimmer C (2005) Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans Image Process 14:1396–1410

    Article  Google Scholar 

  35. Nguyen NH, Keller S, Norris E, Huynh TT, Clemens MG, Shin MC (2011) Tracking colliding cells in vivo microscopy. IEEE Trans Biomed Eng 58:2391–2400

    Article  Google Scholar 

  36. Fuzhi Z, Yujing M, Na H, Hui L (2008) An ant-based fast text clustering approach using pheromone. In: Fifth international conference on fuzzy systems and knowledge discovery, FSKD ’08, pp 385–389

    Google Scholar 

  37. Lee J-W, Choi B-S, Lee J-J (2011) Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones. IEEE Trans Ind Inform 7:419–427

    Article  MathSciNet  Google Scholar 

  38. Misra S, Dhurandher SK, Obaidat MS, Verma K, Gupta P (2010) A low-overhead fault-tolerant routing algorithm for mobile ad hoc networks: a scheme and its simulation analysis. Simul Model Pract Theory 18:637–649

    Article  Google Scholar 

  39. Ramos V, Almeida F (2004) Artificial ant colonies in digital image habitats-a mass behaviour effect study on pattern recognition. arXiv:cs/0412086

  40. Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl Intell 18:105–111

    Article  MATH  Google Scholar 

  41. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc, Ser C, Appl Stat 28:100–108

    MATH  Google Scholar 

  42. Brutzer S, Hoferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1937–1944

    Google Scholar 

  43. Wu M, Peng X (2010) Spatio-temporal context for codebook-based dynamic background subtraction. AEÜ, Int J Electron Commun 64:739–747

    Article  Google Scholar 

  44. Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20:1709–1724

    Article  MathSciNet  Google Scholar 

  45. Bandi SR, Varadharajan A, Masthan M (2012) Performance evaluation of various foreground extraction algorithms for object detection in visual surveillance. Comput Eng Res 2:1339–1443

    Google Scholar 

  46. Smal I, Draegestein K, Galjart N, Niessen W, Meijering E (2008) Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis. IEEE Trans Med Imaging 27:789–804

    Article  Google Scholar 

  47. Juang RR, Levchenko A, Burlina P (2009) Tracking cell motion using GM-PHD. In: IEEE international symposium on biomedical imaging: from nano to macro, ISBI’09, pp 1154–1157

    Google Scholar 

  48. Lu M, Xu B, Sheng A (2012) Cell automatic tracking technique with particle filter. In: Advances in swarm intelligence. Springer, Berlin, pp 589–595

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by national natural science foundation of China (No. 61273312), natural science foundation of Jiangsu province (No. BK2010261), and partially supported by national natural science foundation of China (No. 61104186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benlian Xu.

Appendix

Appendix

Proof

The function q(t) in Eq. (9) can be rewritten as

$$ q(t) = P\bigl[R + q(t - 1)\bigr] $$
(14)
$$ \tau (t + 1) = \rho \tau (t) + q(t) + R $$
(15)

Take a constant λ, let λ=PR, then we have

$$ \lambda = \frac{P}{1 - P}R $$
(16)

Then, the Eq. (14) is reduced to

$$ q(t) - \lambda = P\bigl[q(t - 1) - \lambda \bigr] $$
(17)

Due to q(0)=q 0, then

$$ q(t) = \lambda + (q_{0} - \lambda )P^{t} $$
(18)

Substituting Eq. (18) into Eq. (15), we have

$$ \tau (t + 1) = \rho \tau (t) + AP^{t} + B $$
(19)

where A=q 0λ,B=R+λ are constants, let ν is constant

$$ \nu = \frac{B}{1 - \rho} $$
(20)

The Eq. (18) can be rewritten as

$$ \frac{\tau (t + 1) - \nu}{P^{t}} = \frac{\rho}{P} \cdot \frac{\tau (t) - \nu}{P^{t - 1}} + A $$
(21)

Case 1: If ρP, let κ is constant

$$ \kappa = \frac{A}{1 - \frac{\rho}{P}} $$
(22)

Then Eq. (21) can be rewritten as

$$ \frac{\tau (t + 1) - \nu}{P^{t}} - \kappa = \frac{\rho}{P}\biggl( \frac{\tau (t) - \nu}{P^{t - 1}} - \kappa \biggr) $$
(23)

The above form can be rewritten as

$$ \frac{\tau (t) - \nu}{P^{t - 1}} - \kappa = C\biggl(\frac{\rho}{P} \biggr)^{t} $$
(24)

where C is constant, due to τ 0=τ(0), then C=P(τ 0ν)−κ, so we have

$$ \tau (t) = \nu + \kappa P^{t - 1} + \frac{C}{P} \rho^{t} $$
(25)

Due to ρ,P∈(0,1), when t>0, we have

$$ \bigl\vert \tau (t) \bigr\vert \le \vert \nu \vert + \biggl\vert \frac{\kappa}{P} \biggr\vert + \biggl\vert \frac{C}{P} \biggr\vert $$
(26)

So, we say,τ(t) is bounded

Case 2: If ρ=E, Then Eq. (21) can be rewritten as

$$ \frac{\tau (t + 1) - \nu}{P^{t}} = \frac{\tau (t) - \nu}{P^{t - 1}} + A $$
(27)

The above form can be rewritten as

$$ \frac{\tau (t) - \nu}{P^{t - 1}} = At + C $$
(28)

where C is constant, then

$$ \tau (t) = \nu + (At + C)P^{t - 1} $$
(29)

Due to P∈(0,1), we say τ(t) is bounded.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Xu, B., Sheng, A. et al. Modeling analysis of ant system with multiple tasks and its application to spatially adjacent cell state estimate. Appl Intell 41, 13–29 (2014). https://doi.org/10.1007/s10489-013-0496-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0496-7

Keywords

Navigation