Skip to main content
Log in

Ensemble learning from multiple information sources via label propagation and consensus

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Many applications are facing the problem of learning from multiple information sources, where sources may be labeled or unlabeled, and information from multiple information sources may be beneficial but cannot be integrated into a single information source for learning. In this paper, we propose an ensemble learning method for different labeled and unlabeled sources. We first present two label propagation methods to infer the labels of training objects from unlabeled sources by making a full use of class label information from labeled sources and internal structure information from unlabeled sources, which are processes referred to as global consensus and local consensus, respectively. We then predict the labels of testing objects using the ensemble learning model of multiple information sources. Experimental results show that our method outperforms two baseline methods. Meanwhile, our method is more scalable for large information sources and is more robust for labeled sources with noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adhikari A, Rao RR (2008) Synthesizing heavy association rules from different real data sources. Pattern Recognit Lett 29(1):59–71

    Article  Google Scholar 

  2. Adhikari A, Ramachandrarao P, Pedrycz W (2011) Study of select items in different data sources by grouping. Knowl Inf Syst 27(1):23–43

    Article  Google Scholar 

  3. Ahmed E, Nabli A, Gargouri F (2013) A new semi-supervised hierarchical active clustering based on ranking constraints for analysts groupization. Appl Intell 39(2):217–235

    Article  Google Scholar 

  4. Aksela M, Laaksonen J (2006) Using diversity of errors for selecting members of a committee classifier. Pattern Recognit 39:608–623

    Article  MATH  Google Scholar 

  5. Augsten N, Bohlen M, Gamper J (2013) The address connector: noninvasive synchronization of hierarchical data sources. Knowl Inf Syst 37(3):639–663

    Article  Google Scholar 

  6. Bache K, Lichman M (2013) UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA. http://archive.ics.uci.edu/ml

  7. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  MathSciNet  Google Scholar 

  8. Camacho D, Aler R, Borrajo D, Molina J (2006) Multi-agent plan based information gathering. Appl Intell 25(1):59–71

    Article  MATH  Google Scholar 

  9. Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning. MIT Press, Cambridge

    Book  Google Scholar 

  10. Czyz J, Kittler J, Vandendorpe L (2004) Multiple classifier combination for face-based identity verification. Pattern Recognit 37:1459–1469

    Article  Google Scholar 

  11. Dietterich T (2002) The handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  12. Freund Y (1990) Boosting a weak learning algorithm by majority. In: Proceedings of the third annual workshop on computational learning theory, pp 202–216

    Google Scholar 

  13. Freund Y (1996) Boosting a weak learning algorithm by majority. Inf Comput 121:256–285

    Article  MathSciNet  Google Scholar 

  14. Fujino A, Ueda N, Nagata M (2013) Adaptive semi-supervised learning on labeled and unlabeled data with different distributions. Knowl Inf Syst 37:129–154

    Article  Google Scholar 

  15. Fumera G, Roli F (2005) A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Trans Pattern Anal Mach Intell 27(6):942–956

    Article  Google Scholar 

  16. Gao J, Fan W, Sun Y, Han J (2009) Heterogeneous source consensus learning via decision propagation and negotiation. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining (KDD-09), Paris, France, June, pp 339–347

    Chapter  Google Scholar 

  17. Gao J, Liang F, Fan W, Sun Y, Han J (2009) Graph-based consensus maximization among multiple supervised and unsupervised models. In: Advances in neural information processing systems (NIPS-09), pp 585–593

    Google Scholar 

  18. Grossi V, Turini F (2012) Streaming mining: a novel architecture for ensemble-based classification. Knowl Inf Syst 30:247–281

    Article  Google Scholar 

  19. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  MATH  Google Scholar 

  20. Hansen L, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001

    Article  Google Scholar 

  21. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844

    Article  Google Scholar 

  22. Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20:226–239

    Article  Google Scholar 

  23. Kuncheva L, Rodriguez J (2012) A weighted voting framework for classifiers ensembles. Knowl Inf Syst. doi:10.1007/s10115-012-0586-6

    Google Scholar 

  24. Lee H, Kim E, Pedrycz W (2012) A new selective neural network ensemble with negative correlation. Appl Intell 37(4):488–498

    Article  Google Scholar 

  25. Li T, Ogihara M (2005) Semisupervised learning from different information sources. Knowl Inf Syst 7:289–309

    Article  Google Scholar 

  26. Pise N, Kulkarni P (2008) A survey of semi-supervised learning methods. In: Proceedings of 2008 international conference on computational intelligence and security (CIS-08), pp 30–34

    Chapter  Google Scholar 

  27. Preece A, Hui K, Gray A, Matri P (2001) Designing for scalability in a knowledge fusion system. Knowl-Based Syst 14:173–179

    Article  Google Scholar 

  28. Schapire R (1990) The strength of weak learnability. Mach Learn 5:197–227

    Google Scholar 

  29. Schapire R, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37:297–336

    Article  MATH  Google Scholar 

  30. Tang XL, Han M (2010) Semi-supervised Bayesian ARTMAP. Appl Intell 33(3):202–317

    Article  MathSciNet  Google Scholar 

  31. The DBLP Computer Science Bibliography. http://www.informatik.uni-trier.de/~ley/db/

  32. Verma B, Hassan S (2011) Hybrid ensemble approach for classification. Appl Intell 34(2):258–278

    Article  Google Scholar 

  33. Wang CW, You WH (2013) Boosting-SVM: effective learning with reduced data dimension. Appl Intell 39(3):465–474

    Article  Google Scholar 

  34. Wu X, Zhang S (2003) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowl Data Eng 15(2):353–367

    Article  Google Scholar 

  35. Ye M, Wu X, Hu X, Hu D (2013) Multi-level rough set reduction for decision rule mining. Appl Intell 39(3):642–658

    Article  Google Scholar 

  36. Yin X, Han J, Yang J, Yu PS (2006) Efficient classification across multiple database relations: a CrossMine approach. IEEE Trans Knowl Data Eng 18(6):770–783

    Article  Google Scholar 

  37. Yuan L, Wang Y, Thompson P, Narayan VA, Ye J (2012) Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61:622–632

    Article  Google Scholar 

  38. Zhang S, You X, Jin Z, Wu X (2009) Mining globally interesting patterns from multiple databases using kernel estimation. Expert Syst Appl 36(8):10863–10869

    Article  Google Scholar 

  39. Zhang P, Zhu X, Tan J, Guo L (2010) Classifier and cluster ensembles for mining concept drifting data streams. In: Proceedings of the 10th IEEE international conference on data mining (KDD-10), pp 1175–1180

    Google Scholar 

  40. Zhao Z, Glotin H, Xie Z, Gao J, Wu X (2012) Cooperative sparse representation in two opposite directions for semi-supervised image annotation. IEEE Trans Image Process 21(9):4218–4231

    Article  MathSciNet  Google Scholar 

  41. Zhou D, Bousque O, Lal TN, Weston J (2004) Learning with local and global consistency. In: Proceedings of advances in neural information processing systems (NIPS-04), pp 321–328

    Google Scholar 

  42. Zhu X (2005) Semi-supervised learning literature survey. Technical report 1530, Department of Computer Sciences, University of Wisconsin, Madison

  43. Zhu X, Jin R (2009) Multiple information sources cooperative learning. In: Proceedings of the 21st international joint conference on artificial intelligence (IJCAI-09), California, July, pp 1369–1376

    Google Scholar 

  44. Zhu X, Li B, Wu X, Dan H, Zhang C (2011) CLAP: collaborative pattern mining for distributed information systems. Decis Support Syst 52(1):40–51

    Article  Google Scholar 

  45. Zhuang F, Luo P, Xiong H, Xiong Y (2010) Cross-domain learning from multiple sources: a consensus regularization perspective. IEEE Trans Knowl Data Eng 22(12):1664–1678

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National 863 Program of China under grant 2012AA011005, the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of the Ministry of Education of China under grant IRT13059, the National 973 Program of China under grant 2013CB329604, the Natural Science Foundation of China (under grants 61379021, 61273292, 61229301), the US National Science Foundation (NSF) under grant CCF-0905337 and the Industrial Science and Technology Pillar Program of Changzhou, Jiangsu, China, under grant CE20120026.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaojin Lin or Xuegang Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Hu, X. & Wu, X. Ensemble learning from multiple information sources via label propagation and consensus. Appl Intell 41, 30–41 (2014). https://doi.org/10.1007/s10489-013-0508-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0508-7

Keywords

Navigation