Skip to main content
Log in

A dynamic scheme for scheduling complex tasks in manufacturing systems based on collaboration of agents

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The characteristics of scheduling tasks in the real world is a dynamic and challenging issue as the processes and the companies involved may change from time to time. For small flexible enterprises to respond to business opportunities, an effective scheme to facilitate dynamic coalition, share the core competencies and resources and support inter-enterprise collaboration must be developed. Although multi-agent systems (MAS) provide a paradigm for modeling these characteristics, scheduling tasks in MAS is a complex problem due to the computational complexity involved, distributed architecture for scheduling tasks by individual agents and dependency of different agents’ workflows. How to develop a problem solver that can be applied in MAS to achieve coherent and consistent workflow schedules that can meet a customer’s order is an important issue. In this paper, we propose a solution methodology for scheduling workflows in MAS. Our solution combines the multi-agent system architecture to dynamically discover services, workflow and activity models to specify the capabilities of agents, contract net protocol to facilitate negotiation and coordination of agents and optimization theories to optimize the cost for fulfilling an order. A problem solver for scheduling tasks in MAS has been implemented. An application scenario has also been provided to verify our solution methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Petrie C, Bussler C (2003) Service agents and virtual enterprises: a survey. Internet Comput 7(4):68–78

    Article  Google Scholar 

  2. Camarinha-Matos LM, Pantoja-Lima C (2001) Cooperation coordination in virtual enterprises. J Intell Manuf 12(2):133–150

    Article  Google Scholar 

  3. Hsieh FS, Lin JB (2012) Context-aware workflow management for virtual enterprises based on coordination of agents. J Intell Manuf. doi:10.1007/s10845-012-0688-8

    Google Scholar 

  4. Hsieh FS (2009) Developing cooperation mechanism for multiagent systems with Petri nets. Eng Appl Artif Intell 22(4–5):616–627

    Article  Google Scholar 

  5. Afsarmanesh H, Analide C (2009) Virtual enterprises—methods and ap-proaches for coalition formation. Int J Prod Res 47(17):4655–4659

    Article  MATH  Google Scholar 

  6. Camarinha-Matos LM, Oliveira A, Sesana M, Galeano N, Demsar D, Baldo F, Jarimo T (2009) A framework for computer-assisted creation of dynamic virtual organizations. Int J Prod Res 47(17):4661–4690

    Article  Google Scholar 

  7. Hoffner Y, Field S, Grefen P, Ludwig H (2001) Contract-driven creation and operation of virtual enterprises. Comput Netw 37(2):111–136

    Article  Google Scholar 

  8. Hsieh FS (2008) Holarchy formation and optimization in holonic manufacturing systems with contract net. Automatica 44(4):959–970

    Article  MATH  MathSciNet  Google Scholar 

  9. Camarinha-Matos LM, Cardoso T (1999) Selection of partners for a virtual enterprise. In: Camarinha-Matos LM, Afsarmanesh H (eds) Pro-VE’99 book, infrastructure for virtual enterprises: networking industrial enterprises. Kluwer Academic, Boston Dordrecht, pp 259–278

    Chapter  Google Scholar 

  10. Hsieh FS, Lin JB (2012) Virtual enterprises partner selection based on reverse auction. Int J Adv Manuf Technol 62(5–8):847–859

    Article  Google Scholar 

  11. Soares AL, Azevedo AL, De Sousa JP (2000) Distributed planning and control systems for the virtual enterprise: organizational requirements and development life-cycle. J Intell Manuf 11(3):253–270

    Article  Google Scholar 

  12. Grefen P, Mehandjiev N, Kouvas G, Weichhart G, Eshuis R (2009) Dynamic business network process management in instant virtual enterprises. Comput Ind 60(2):86–103

    Article  Google Scholar 

  13. Hsieh FS, Chiang CY (2011) Collaborative composition of processes in holonic manufacturing systems. Comput Ind 62(1):51–64

    Article  Google Scholar 

  14. Hsieh FS (2010) Design of reconfiguration mechanism for holonic manufacturing systems based on formal models. Eng Appl Artif Intell 23(7):1187–1199

    Article  Google Scholar 

  15. Hsieh FS (2009) Dynamic composition of holonic processes to satisfy timing constraints with minimal costs. Eng Appl Artif Intell 22(7):1117–1126

    Article  Google Scholar 

  16. Jagdev H, Vasiliu L, Browne J, Zaremba M (2008) A semantic web service environment for B2B and B2C auction applications within extended and virtual enterprises. Comput Ind 59(8):786–797

    Article  Google Scholar 

  17. Wang D, Nagalingam SV, Lin GCI (2007) Development of an agent-based virtual CIM architecture for small to medium manufacturers. Robot Comput-Integr Manuf 23(1):1–16

    Article  Google Scholar 

  18. Smith RG (1980) The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans Comput 29(12):1104–1113

    Article  Google Scholar 

  19. McFarlane DC, Bussmann S (2000) Developments in holo-nic production planning and control. Int J Prod Plann Control 11(6):522–536

    Article  Google Scholar 

  20. Parunak HVD (1987) Manufacturing experiences with the contract net. In: Huhns M (ed) Distributed artificial intelligence. Pitman, London, pp 285–310

    Chapter  Google Scholar 

  21. Ramos C (1996) A holonic approach for task scheduling in manufacturing systems. In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp 2511–2516

    Google Scholar 

  22. Brennan RW, Norrie DH (2001) Evaluating the performance of reactive control architectures for manufacturing production control. Comput Ind 46(3):235–245

    Article  Google Scholar 

  23. Neligwa T, Fletcher M (2003) An HMS operational model. In: Deen SM (ed) Agent-based manufacturing: advances in the holonic approach. Springer, Berlin, pp 163–191

    Chapter  Google Scholar 

  24. Sandholm TW (1998) Contract types for satisfying task alloca-tion: I theoretical results. In: AAAI spring symposium series: satisficing models, Stanford University, CA, March, pp 68–75

    Google Scholar 

  25. van der Aalst WMP (1998) The application of Petri nets to workflow management. J Circuits Syst Comput 8(1):21–66

    Article  Google Scholar 

  26. van der Aalst WMP, Kumar A (2001) A reference model for team-enabled workflow management systems. Data Knowl Eng 38(3):3355–3363

    Google Scholar 

  27. Weske M, van der Aalst WMP, Verbeek HMW (2004) Advances in business process management. Data Knowl Eng 50(1):1–8

    Article  Google Scholar 

  28. Hsieh FS, Lin JB (2014) Development of context-aware workflow systems based on Petri net markup language. Comput Stand Interfaces 36(3):672–685

    Article  Google Scholar 

  29. Billington J, Christensen S, van Hee K, Kindler E, Kummer O, Petrucci L, Post R, Stehno C, Weber M (2003) In: The Petri net markup language: concepts, technology, and tools. Lecture notes in computer science, vol 2679, pp 483–505

    Google Scholar 

  30. Java agent development framework. http://jade.tilab.com/

  31. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  32. Karageorgos A, Mehandjiev N, Weichhart G, Hämmerle A (2003) Agent-based optimisation of logistics and production planning. Eng Appl Artif Intell 16(4):335–348

    Article  Google Scholar 

  33. Hsieh FS, Lin JB (2013) A self-adaptation scheme for workflow management in multi-agent systems. J Intell Manuf. doi:10.1007/s10845-013-0818-y

    Google Scholar 

  34. Leitão P, Restivo F (2006) ADACOR: a holonic architecture for agile and adaptive manufacturing control. Comput Ind 57(2):121–130

    Article  Google Scholar 

  35. Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow problems. J ACM 19(2):248–264

    Article  MATH  Google Scholar 

  36. Polyak BT (1969) Minimization of unsmooth functionals. USSR Comput Math Math Phys 9:14–29

    Article  Google Scholar 

  37. Ferber J (1999) Multi-agent systems, an introduction to distributed artificial intelligence. Addison Wesley, Reading

    Google Scholar 

  38. Nilsson NJ (1998) Artificial intelligence: a new synthesis. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  39. Russel SJP (2006) Norvig, artificial intelligence—a modern approach, 2nd edn. Pearson Education Asia Limited, New York

    Google Scholar 

  40. Conry SE, Kuwabara K, Lesser VR, Meyer RA (1991) Multistage negotiation for distributed constraint satisfaction. IEEE Trans Syst Man Cybern 21(6):1462–1477

    Article  MATH  Google Scholar 

  41. Ameri F, McArthur C (2013) A multi-agent system for autonomous supply chain configuration. Int J Adv Manuf Technol 66(5–8):1097–1112

    Article  Google Scholar 

  42. Long Q, Lin J, Sun Z (2011) Modeling and distributed simulation of supply chain with a multi-agent platform. Int J Adv Manuf Technol 55(9–12):1241–1252

    Article  Google Scholar 

  43. Zhang WJ, Xie SQ (2007) Agent technology for collaborative process planning: a review. Int J Adv Manuf Technol 32(3–4):315–325

    Article  Google Scholar 

  44. Merdan M, Moser T, Vrba P, Biffl S (2011) Investigating the robustness of re-scheduling policies with multi-agent system simulation. Int J Adv Manuf Technol 55(1–4):355–367

    Article  Google Scholar 

  45. Thomas A, Trentesaux D, Valckenaers P (2012) Intelligent distributed production control. J Intell Manuf 23(6):2507–2512

    Article  Google Scholar 

  46. Radakovič M, Obitko M, Mařík V (2012) Dynamic explicitly specified behaviors in distributed agent-based industrial solutions. J Intell Manuf 23(6):2601–2621

    Article  Google Scholar 

  47. Sabar M, Montreuil B, Frayret J-M (2012) An agent-based algorithm for personnel shift-scheduling and rescheduling in flexible assembly lines. J Intell Manuf 23(6):2623–2634

    Article  Google Scholar 

  48. Aissani N, Bekrar A, Trentesaux D, Beldjilali B (2012) Dynamic scheduling for multi-site companies: a decisional approach based on reinforcement multi-agent learning. J Intell Manuf 23(6):2513–2529

    Article  Google Scholar 

  49. Graves SC (1981) A review of production scheduling. Oper Res 29(4):646–675

    Article  MATH  MathSciNet  Google Scholar 

  50. Nedić A, Bertsekas D (2001) Convergence rate of incremental subgradient algorithm. Stoch Optim Algorithms Appl 54:223–264

    Article  Google Scholar 

  51. Fisher ML (2004) Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12):1861–1871

    Google Scholar 

  52. Akkiraju R, Keskinocak P, Murthy S, Wu F (2001) An agent-based approach for scheduling multiple machines. Appl Intell 14(2):135–144

    Article  MATH  Google Scholar 

  53. Choi S, Baik M, Gil J, Jung S, Hwang C (2006) Adaptive group scheduling mechanism using mobile agents in peer-to-peer grid computing environment. Appl Intell 25(2):199–221

    Article  MATH  Google Scholar 

  54. Mouhoub M, Sukpan A (2012) Managing dynamic CSPs with preferences. Appl Intell 37(3):446–462

    Article  Google Scholar 

  55. Su C, Li H (2012) An affective learning agent with Petri-net-based implementation. Appl Intell 37(4):569–585

    Article  MathSciNet  Google Scholar 

  56. Günay A, Yolum P (2013) Constraint satisfaction as a tool for modeling and checking feasibility of multiagent commitments. Appl Intell 39(3):489–509

    Article  Google Scholar 

  57. Li C, Li L, Luo Y (2013) Agent based sensors resource allocation in sensor grid. Appl Intell 39(1):121–131

    Article  Google Scholar 

Download references

Acknowledgements

This paper is currently supported in part by National Science Council of Taiwan under Grant NSC102-2410-H-324-014-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Shiung Hsieh.

Appendices

Appendix A: Structure of workflows

Appendix B: Structure of resource activities

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, FS., Lin, JB. A dynamic scheme for scheduling complex tasks in manufacturing systems based on collaboration of agents. Appl Intell 41, 366–382 (2014). https://doi.org/10.1007/s10489-014-0521-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0521-5

Keywords

Navigation