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Abstract The most difficult part in the design and anal-
ysis of Learning Automata (LA) consists of the formal
proofs of their convergence accuracies. The mathematical
techniques used for the different families (Fixed Structure,
Variable Structure, Discretized etc.) are quite distinct.
Among the families of LA, Estimator Algorithms (EAs)
are certainly the fastest, and within this family, the set of
Pursuit algorithms have been considered to be the pioneer-
ing schemes. Informally, if the environment is stationary,
their ε-optimality is defined as their ability to converge
to the optimal action with an arbitrarily large probability,
if the learning parameter is sufficiently small/large. The
existing proofs of all the reported EAs follow the same
fundamental principles, and to clarify this, in the interest
of simplicity, we shall concentrate on the family of Pur-
suit algorithms. Recently, it has been reported Ryan and
Omkar (J Appl Probab 49(3):795–805, 2012) that the pre-
vious proofs for ε-optimality of all the reported EAs have
a common flaw.The flaw lies in the condition which appar-
ently supports the so-called “monotonicity” property of the
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probability of selecting the optimal action, which states that
after some time instant t0, the reward probability estimates
will be ordered correctly forever. The authors of the various
proofs have rather offered a proof for the fact that the reward
probability estimates are ordered correctly at a single point
of time after t0, which, in turn, does not guarantee the order-
ing forever, rendering the previous proofs incorrect. While
in Ryan and Omkar (J Appl Probab 49(3):795–805, 2012),
a rectified proof was presented to prove the ε-optimality
of the Continuous Pursuit Algorithm (CPA), which was
the pioneering EA, in this paper, a new proof is provided
for the Absorbing CPA (ACPA), i.e., an algorithm which
follows the CPA paradigm but which artificially has absorb-
ing states whenever any action probability is arbitrarily
close to unity. Unlike the previous flawed proofs, instead
of examining the monotonicity property of the action prob-
abilities, it rather examines their submartingale property,
and then, unlike the traditional approach, invokes the theory
of Regular functions to prove that the probability of con-
verging to the optimal action can be made arbitrarily close
to unity. We believe that the proof is both unique and pio-
neering, and adds insights into the convergence of different
EAs. It can also form the basis for formally demonstrat-
ing the ε-optimality of other Estimator algorithms which are
artificially rendered absorbing.

Keywords Pursuit algorithms · CPA · Absorbing CPA ·
ε-optimality

1 Introduction

Learning automata (LA) have been studied as a typical
model of reinforcement learning for decades. A LA is an
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adaptive decision-making unit that learns the optimal action
from among a set of actions offered by the Environment
it operates in. At each iteration, the LA selects one action,
which triggers either a reward or a penalty as a response
from the Environment. Based on the response and the
knowledge acquired in the past iterations, the LA adjusts its
action selection strategy in order to make a “wiser” decision
in the next iteration. In such a way, the LA, even though it
lacks a complete knowledge about the Environment, is able
to learn through repeated interactions with the Environment,
and adapts itself to the optimal decision.

LA have found applications in a variety of fields, includ-
ing game playing [3, 4], parameter optimization [5], solving
knapsack-like problems and utilizing the solution in web
polling and sampling [6], vehicle path control [7], assign-
ing capacities in prioritized networks [8], and stochastically
optimally allocating limited resources [6, 9–11]. LA have
also been used in natural language processing, string taxon-
omy [12], graph patitioning [13], map learning [14], service
selection in stochastic environments [15], numerical opti-
mization [16], web crawling [17], microassembly path plan-
ning [18], multiagent learning [19], and in batch sequencing
and sizing in just-in-time manufacturing systems [20].

Initial LA were designed to be Fixed Structure Stochastic
Automata (FSSA), whose state update and decision func-
tions are time invariant. The most notable examples of this
type include the Tsetlin, Krylov and Krinsky automata [21].
Later, Variable Structure Stochastic Automata (VSSA) were
developed, which are characterized by functions that update
the probability of selecting the various actions. Representa-
tives of VSSA include the Linear Reward-Penalty (LR−P )
scheme, the Linear Reward-Inaction (LR−I ) scheme, the
Linear Inaction-Penalty (LI−P ) scheme and the Linear
Reward-εPenalty (LR−εP ) scheme [21]. As one observes,
the LR−I and LR−εP schemes assign more importance to
reward responses than to penalties; they are also ε-optimal
in all stationary environments. This is also the case with
FSSA, where, for example, the Krinsky automaton, which
treats rewards significantly “more seriously” than penalties,
is ε-optimal in all stationary environments, while the Tsetlin
automaton, which treats rewards and penalties equally, is
only ε-optimal when the largest reward probability is greater
than 0.5 [21].

Among the families of LA, Estimator Algorithms (EAs)
work with a noticeably different paradigm, and are certainly
the fastest and most accurate. Within this family, the set
of Pursuit Algorithms (PAs) were the pioneering schemes,
whose design and analysis were initiated by Thathachar and
Sastry [22]. EAs augment an action probability updating
scheme with the use of estimates of the reward probabil-
ities of the respective actions. The first Pursuit Algorithm
(PA) was designed to operate by updating the action prob-
abilities based on the LR−I paradigm. By the same token,

being an EA in its own right, the PA maintains running
Maximum Likelihood (ML) reward probability estimates,
which further determines the current “Best” action for the
present iteration. The PA then pursues the current best action
by linearly increasing its action probability. As the PA con-
siders both the short-term responses of the Environment and
the long-term reward probability estimates in formulating
the action probability updating rules, it outperforms tradi-
tional VSSA schemes in terms of its accuracy and its rate of
convergence.

The most difficult part in the design and analysis of LA
consists of the formal proofs of their convergence accu-
racies. The mathematical techniques used for the various
families (FSSA, VSSA, Discretized etc.) are quite distinct.
The proof methodology for the family of FSSA is the sim-
plest: it quite simply involves formulating the Markov chain
for the LA, computing its equilibrium (or steady state) prob-
abilities, and then computing the asymptotic action selection
probabilities. The proofs of convergence for VSSA are more
complex and involve the theory of small-step Markov pro-
cesses, distance diminishing operators, and the theory of
Regular functions. The proofs for Discretized LA involve
the asymptotic analysis of the Markov chain that represents
the LA in the discretized space, whence the total probability
of convergence to the various actions is evaluated. However,
understandably, the most difficult proofs involve the family
of EAs. This is because the convergence involves two inter-
twined phenomena, namely the convergence of the reward
estimates and the convergence of the action probabilities
themselves. Ironically, the combination of these vectors in
the updating rule is what renders the EA fast. However, if
the accuracy of the estimates are poor because of inadequate
estimation (i.e., if the sub-optimal actions are not sampled
“enough number of times”), the convergence accuracy can
be diminished. Hence the dilemma!

The ε-optimality of the EAs, more specifically, the fam-
ily of Pursuit Algorithms including the Continuous Pursuit
Algorithm (CPA) and the Discretized Pursuit Algorithm
(DPA), have been studied and presented in [23–27]. The
basic result stated in these papers is that by utilizing a suf-
ficiently small/large value for the learning parameter, both
the CPA and the DPA will converge to the optimal action
with an arbitrarily large probability. However, these proofs
have a common flaw, which involves a very fine argument.
In fact, the proofs reported in these papers “deduced” the ε-
optimality based on the conclusion that after a sufficiently
large time instant, t0, the probability of selecting the optimal
action is monotonically increasing, which, in turn, is based
on the condition that the reward probability estimates are
ordered properly forever after t0. This ordering is, indeed,
true by the law of large numbers only if all the actions are
chosen infinitely often, which renders the time instant, t0,
to be infinite also. If such an “infinite” selection does not
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occur, the ordering cannot be guaranteed for all time instants
after t0. In other words, the authors of these papers misinter-
preted the concept of ordering “forever” with the ordering
“most of the time” after t0.

As a consequence of this misinterpretation, the condition
supporting the monotonicity property is false, which further
leads to an incorrect proof for both the CPA and the DPA
being ε-optimal. Even though this has been the accepted
argument for almost three decades (even by the third author
of this present paper who was the principal author of many
of the above-mentioned papers), we credit the authors of
[2] for discovering this flaw.1 Further, in [2], a rectified
proof was provided to prove the ε-optimality of the CPA.
The rectified proof is based on the monotonicity property of
the probability of selecting the optimal action, and further
requires an external condition that the learning parameter,
λ, is decreasing with time. We respectfully grant credit to
these authors for this proof which, to the best of our knowl-
edge, seems to be the only way to prove the ε-optimality of
the CPA.

One of the main messages in the paper [2] is that they
argue that probability calculations using a fixed t are not
enough to show ε-optimality. The reason for this is that so
little is known about the dynamics of the process {P(t)|t ≥
0},2 due to the complex dependencies, namely, because
{P(t)|t ≥ 0} depends on {D̂(t)|t ≥ 0} which, in turn,
dictates how {P(t ′)|t ′ ≥ t} is determined. The arguments
that the authors of [2] invoke show that by utilizing chang-
ing values of λ to control its behavior, they can ensure
that the companion process {d̂j (t)|∀j, t ≥ 0} is eventu-
ally properly ordered, i.e., monotonically, forever. Indeed,
their arguments demonstrate that any single-t probability
calculations cannot capture the “forever” behavior of the
monotonicity of these processes. From this perspective, we
believe that it is not trivial to extend their arguments even
for the submartinagale property if the value of λ is kept
fixed.3 However, the arguments that we present are dis-
tinct from the previously-used flawed arguments, because
we have not required that the process {d̂j (t)|t ≥ 0} satisfies
the monotonicity property. Rather, by constraining the pro-
cess to jump to an absorbing barrier in a single step when
any pj (t) ≥ T , where T is a user-defined threshold close
to unity, we have attempted to demonstrate ε-optimality
because of a weaker property, i.e., the submartinagale prop-
erty of pm(t), where t is greater than a finite time index, t0.
The latter absorbing version of the CPA will be explained
presently.

1While a detailed explanation of this is found in [2], in the interest of
completeness, a brief explanation of this issue is also included in this
paper, in Section 3.
2Please refer to Algorithm ACPA for the notations.
3We are grateful to an anonymous Referee of a previous version of this
paper for shedding light on this fine point.

With this as a background, we now move to the primary
intent of this work, i.e., to correct the above-mentioned flaw.
However, we shall introduce a new method which can, hope-
fully, be used to prove the ε-optimality of all EAs which are
specifically enhanced with artificially-enforced absorbing
states [28], in particular, the ACPA which is the CPA with
artificially-enforced absorbing states. Though the method
used in [2] is also applicable for absorbing EAs, we will
show that while the monotonicity property is sufficient for
convergence, it is not really necessary for proving that the
ACPA is ε-optimal. Rather, we will present a completely
new proof methodology which is based on the convergence
theory of submartingales and the theory of Regular func-
tions [21]. This current proof is, thus, distinct in principle
and an argument from the proof reported in [2]. Further, we
believe that our proof adds insights into the convergence of
different EAs, and that it can be easily extended to formally
demonstrate the ε-optimality of all the known EAs which
are artificially augmented with absorbing states.

2 Overview of the ACPA

The ACPA is the CPA with absorbing states that are cre-
ated artificially as explained below. Just as in the case of the
CPA, the ACPA follows a “pursuit” paradigm of learning,
which consists of three steps. Firstly, at time t , it maintains
an action probability vector P = [p1(t), p2(t), ..., pr(t)] to
determine the issue of which action is to be selected, where∑

j=1...r
pj (t) = 1, and where r is the number of actions. Sec-

ondly, it maintains running ML reward probability estimates
to determine which action can be reckoned to be the “best”
in the current iteration. Thirdly, based on the response of the
Environment and the knowledge of the current best action,
the ACPA increases the probability of selecting the current
best action as per the continuous LR−I rules. The only dif-
ference between the ACPA and the CPA is that if any one of
the action probabilities, pj (t + 1), surpasses the terminat-
ing Threshold, T , which is a user-defined quantity set to be
very close to unity, pj (t + 1) will jump directly to unity

and the learning process is terminated. At this juncture, we
say that the LA has been “absorbed” into one of the absorb-
ing barriers, where the r unit vectors are the absorbing
states.

When a LA is operating in a stationary environment,
i.e., where the reward probability for each action does not
change with time, the difference between the CPA and the
ACPA is trivial. This is because, in practice, the CPA does
not need to run for an infinite number of iterations. Rather,
the learning is terminated when one of the action proba-
bilities is greater than or equal to a value that is close to
unity, which is equivalent to the concept of the threshold
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introduced in the ACPA. However, on the other hand, the
difference between ACPA and the CPA is of fundamen-
tal importance as it provides a very convenient condition
using which one is able to analyze the convergence of the
pursuit algorithms, and in that sense, the ACPA is more
accurate when it concerns defining the learning process
which terminates within a finite number of times.

However, when it concerns dynamic environments, i.e.,
where the reward probabilities change from time to time, the
ACPA, due to its absorbing property, is no longer applicable.
This is because the CPA, without absorbing barriers, is able
(though limitedly) to draw back from a previously-learned
optimal action and to adjust itself to a new optimal action.
However, the proof of the CPA’s convergence in dynamic
environments remains unsolved.

We present below the ACPA’s notations and description,
after which we visit its proof of convergence.

3 Previous proofs for CPA’s ε-optimality

Since the ACPA has all the fundamental properties of the
CPA except near the absorbing boundary states, in this
section, all the descriptions and statements are made based
on the CPA, but are also applicable to the ACPA.

The formal assertions of the ε-optimality of the CPA [27]
are stated in Theorem 1, where ‘t’ is measured in terms of
the number of iterations.

Theorem 1 Given any ε > 0 and δ > 0, there exist a λ� >

0 and a t0 < ∞ such that for all time t ≥ t0 and for any
positive learning parameter λ < λ�,

Pr{pm(t) > 1 − ε} > 1 − δ.

The earlier reported proofs for the ε-optimality of the
CPA follow the same strategy, which consists of four steps.
Firstly, given a sufficiently small value for the learning
parameter λ, all actions will be selected enough number
of times before a finite time instant, t0. Secondly, for all
t > t0, d̂m will remain to be the maximum element of the
reward probability estimates vector, D̂. Thirdly, suppose d̂m
has been ranked as the largest element in D̂ since t0, the
action probability sequence of {pm(t)}, with t > t0, will be
monotonically increasing, whence one concludes that pm(t)

converges to 1 with probability 1. Finally, given that the
probability of d̂m being the largest element in D̂ is arbitrar-
ily close to unity, and that pm(t) → 1 w.p. 1, ε-optimality
is proven based on the axiom of total probability.

The formal assertions of these steps are catalogued
below.

1. The first step of the proof can be described mathemati-
cally by Theorem 2 for the CPA.

Algorithm ACPA
Parameters:
αj : The j th action that can be selected by the LA, and is an

element from the set {α1, . . . αr}.
pj : The j th element of the action probability vector P .
λ: The learning parameter, where 0 < λ < 1.
uj : The number of times αj has been rewarded when it has

been selected.
vj : The number of times αj has been selected.
d̂j : The j th element of the reward probability estimates

vector D̂, d̂j = uj
vj

.
m: The index of the optimal action.
h: The index of the greatest element of D̂.
R: The response from the Environment, where R = 0

corresponds to a Reward, and R = 1 to a Penalty.
T : A Threshold, where T ≥ 1 − ε.
Initialization:
1. pj (0) = 1/r , where r is the number of actions.
2. Initialize d̂j (0) = uj

vj
by selecting each action a small

number of times.
3. t:=1.
Method:
Loop
1. Select an action, α(t), by randomly sampling as per the

action probability vector P(t). Suppose α(t) = αi .
2. Update d̂i(t) based on the response from the Environ-

ment:

ui(t) = ui(t − 1)+ (1 − R(t))

vi(t) = vi(t − 1)+ 1

d̂i(t) = ui(t)

vi(t)
.

3. If d̂h(t) is the largest element of D̂(t), update P(t) as:
If R(t) = 0 Then

pj (t + 1) = (1 − λ)pj (t), j �= h

ph(t + 1) = 1 − ∑

j �=h

pj (t + 1).

Else
P(t + 1) = P(t)

EndIf

4. If any pj (t + 1) ≥ T , make pj (t + 1) jump to 1 and
break the loop:
If pj (t + 1) ≥ T , ∀j ∈ (1, 2, ..., r)

pj (t + 1) = 1
Break

EndIf
t = t + 1

Theorem 2 For any given constants δ̂ > 0 and M <

∞, there exist a λ� > 0 and t0 < ∞ such that under the
CPA algorithm, for all positive λ < λ�,
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Pr{All actions are selected at least M times each

before time t0} > 1 − δ̂, for all t > t0.

The detailed proof for this result can be found in
[26].

2. The sequence of probabilities, {pm(t)(t>t0)}, is stated
to be monotonically increasing. The previous proofs
attempted to do this by showing that:

|pm(t)| ≤ 1, and

�pm(t) = E[pm(t + 1)− pm(t)|Ā(t0)]
= dmλ(1 − pm(t)) ≥ 0, t > t0, (1)

where Ā(t0) is the condition that after time t0, for any
j ∈ (1, 2, ..., r), d̂j remains within a small enough
neighborhood of dj so that d̂m remains the greatest ele-
ment in D̂. If this step of the “proof” was flawless4,
pm(t) can be shown to converge to 1 w.p. 1.

3. Since pm(t) → 1 w.p. 1, if it can, indeed, be proven that
Pr{Ā(t0)} > 1 − δ, by the axiom of total probability,
one can then see that:

Pr{pm(t)>1−ε} ≥Pr{pm(t) →1}Pr{Ā(t0)}>1−δ,

and ε-optimality is proven.

According to the sketch of the proof above, the key is to
prove Pr{Ā(t0)} > 1 − δ, i.e.,

Pr{Ā(t0)} = Pr{
⋂

t>t0

{d̂j (t)∀j is within a
w

2
neighborhood

of dj at time t}} > 1 − δ. (2)

In (2),w is defined as the difference between the two highest
reward probabilities.

In the proofs reported in the literature, (2) is considered
to be true according to the weak law of large numbers, i.e.,
if each αj has been selected enough number of times, then
for ∀j ,

Pr{d̂j (t) is within a
w

2
neighborhood of dj at time t}

> 1 − δ̄′, with δ̄′ = 1 − r
√

1 − δ,

(3)

so that5

∏

j=1,2,...,r

P r{d̂j (t) is within a
w

2
neighborhood of dj

at time t} > 1 − δ. (4)

4The error in the proofs lies precisely at this juncture, as we shall show
presently. One can also refer to [2] for the description of the error.
5In the interest of simplicity, at this juncture we have assumed that d̂j
are independent of each other. We believe that this assumption can be
easily relaxed by considering only the individual dj ’s as in (3), and not
all of them together, as in (4).

However, there is a flaw in the above argument. In fact, if
we define

A(t)={d̂j (t)∀j is within a
w

2
neighborhood of dj at time t},

then the result that can be deduced from the weak law of
large numbers when t > t0 is that

Pr{A(t)} =
∏

j=1,2,...,r

P r{d̂j (t) is within a
w

2
neighborhood of dj at time t}

> 1 − δ.

But, indeed, the condition which (1) is based on is:

Ā(t0) =
⋂

t>t0

A(t),

which means that for every single time instant in the future,
i.e., t > t0, d̂j (t)(∀j) needs to be within the w

2 neighborhood
of dj . The flaw in the previous proofs reported in the liter-
ature is that they made a mistake by reckoning that A(t) is
equivalent to Ā(t0). This renders the existing proofs for the
CPA being ε-optimal, to be incorrect.

The flaw is documented in [2], which further provided a
way of correcting the flaw, i.e., by proving Pr{Ā(t0)} > 1−
δ instead of provingPr{A(t)} > 1−δ. Although their proof
requires a sequence of decreasing values for the learning
parameter λ, to the best of our knowledge, it currently stands
as the only correct way to prove the ε-optimality of the CPA.
We applaud the authors of [2] for discovering this flaw, and
for submitting an accurate proof for the CPA for the scenario
when the λ’s are changing with time.

However, the proof methodology that we have used here
for the ACPA is quite distinct (and uses completely different
techniques) than the proof reported in [2]. The reasons why
we have sought an alternate proof are the following:

The monotonicity property which all the previous flawed
proofs and the proof in [2] were based on, is indeed, a very
strong condition. The condition requires that d̂m(t) is ranked
as the largest element in D̂(t) at every single point of time
for all t > t0, which, in turn, requires that for the CPA
to achieve its ε-optimality, one must rely on an additional
external assumption that the learning parameter, λ, is gradu-
ally decreasing during the learning process. Though there is,
currently, no way to circumvent this external constraint so
as to prove the CPA’s ε-optimality, the fine difference intro-
duced here in creating the ACPA, i.e., enhancing the CPA by
incorporating into it artificially-enforced absorbing states,
makes it possible for us to prove the ACPA’s ε-optimality
without including the constraint of decreasing the learning
parameter over time.

In the next section, we shall correct the above-mentioned
flaw that exists in the previous proofs of EAs. As mentioned,
our new proof strategy for the ε-optimality of the ACPA
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does not require that the learning parameter λ is gradually
decreasing.

The new proof is based on the convergence theory of
submartingales, and on the theory of Regular functions.

4 The new proof for the ACPA’s ε-optimality

4.1 The moderation property of ACPA

The property of moderation can be described precisely by
Theorem 2, which have been proven in [26]. This implies
that under the ACPA, by utilizing a sufficiently small value
for the learning parameter, λ, each action will be selected an
arbitrarily large number of times.

4.2 The key condition B̄(t0) for {pm(t)t>t0} being a
submartingale

In our proof strategy, instead of examining the condition
for {pm(t)t>t0} being monotonically increasing, we will
investigate the condition for {pm(t)t>t0} being a submartin-
gale. By doing this, the previous strong condition required
by the authors of [2], i.e., of Ā(t0), which asserts that
{pm(t)t>t0} possesses the property of monotonicity, will not
be necessary any longer. Instead, we base our arguments
on the weaker submartingale phenomena, B̄(t0), defined as
follows:

qj (t) = Pr{|d̂j (t)− dj | < w

2
},

q(t) = Pr{|d̂j (t)− dj | < w

2
, ∀j ∈ (1, 2, ..., r)}

=
∏

j=1,2,...,r

qj (t), (5)

B(t) = {q(t) > 1 − δ̄}, δ̄ ∈ (0, 1),

B̄(t0) = {
⋂

t>t0

{q(t) > 1 − δ̄}}. (6)

Note that Ā(t0) is stronger than B̄(t0) in the sense that the
former requires that when t > t0, d̂j (t) is absolutely within
a w

2 neighborhood of dj , while the latter requires the d̂j (t) to
be within a w

2 neighborhood of dj , with an arbitrarily large
probability.

Our goal in this step is to prove the following result,
formulated in Theorem 3.

Theorem 3 Given a δ̄ ∈ (0, 1), there exists a time instant
t0 < ∞, such that the condition B̄(t0) holds. In other words,
for this given δ̄, there exists a t0 < ∞, such that ∀t > t0:

q(t) > 1 − δ̄.

Proof First of all, we set δ̄′ = 1− r
√

1 − δ̄. We observe that
∀t > t0, if

for ∀j, qj (t) > 1 − δ̄′,

then

q(t) =
∏

j=1,2,...,r

qj (t) >
∏

j=1,2,...,r

(1 − δ̄′) = 1 − δ̄.

We thus need to prove that for ∀t > t0 and ∀j ,

qj (t) = Pr{|d̂j (t) − dj | < w

2
} > 1 − δ̄′.

If we define nj (t) as the number of times αj has been
selected up to the time instant t , then by applying the
Hoeffding’s inequality [29], we have:

Pr{|d̂j (t)− dj | ≥ w

2
|nj (t) = k} ≤ 2e−

2k2( w2 )2

k = 2e−
kw2

2 ,

and hence

qj (t) = Pr{|d̂j (t) − dj | < w

2
|nj (t) = k} > 1 − 2e−

kw2
2 .

Then, we only need to set

δ̄′ ≥ 2e−
kw2

2 , (7)

to certainly have

qj (t)=Pr{|d̂j (t)−dj |< w

2
|nj (t) = k}>1−2e−

kw2
2 ≥1−δ̄′.

Besides, from (7), we also have

k ≥ −2 ln δ̄′
2

w2 , (8)

which means that for a given specific value of δ̄′, αj needs

to be selected for at least
−2 ln δ̄′

2
w2 times to guarantee that

qj (t) > 1 − δ̄′.
As the above arguments apply to ∀j ∈ (1, 2, ..., r), we

can draw the following conclusion: for the given δ̄ ∈ (0, 1)

and δ̄′ = 1− r
√

1 − δ̄, we can define t0 as a time instant such
that within t0, each action has been selected for more than

�−2 ln δ̄′
2

w2 � times. If that is the case, then B̄(t0) holds, i.e., for

∀t > t0, q(t) > 1 − δ̄, thus proving Theorem 3.

4.3 {pm(t)t>t0} is a submartingale under the ACPA

We now prove the submartingale properties of {pm(t)t>t0}
for the ACPA6.

Theorem 4 Under the ACPA, the quantity {pm(t)t>t0} is a
submartingale.

6Because we are maintaining the parameter λ to be a constant, we
cannot currently prove that the corresponding quantity for the CPA, in
and of itself, is a submartingale. It appears as if we have to currently
enforce the artificial absorbing barrier.
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Table 1 The various possibilities for updating pm for the next iteration of the ACPA whenever any pj(t) < T , where T is the user defined
threshold close to unity

Selected action Responses The greatest element in D̂ Updating pm

pm(t + 1)

αm, (pm)
Reward, (dm)

d̂m, (q) (1 − λ)pm(t) + λ

d̂j , j �= m, (1 − q) (1 − λ)pm(t)

Penalty, (1 − dm) d̂j , j = 1...r , (1) pm(t)

αj , j �= m, (pj )
Reward, (dj )

d̂m, (q) (1 − λ)pm(t) + λ

d̂j , j �= m, (1 − q) (1 − λ)pm(t)

Penalty, (1 − dj ) d̂j , j = 1...r , (1) pm(t)

Proof Firstly, since pm(t) is a probability, we have
E[pm(t)] ≤ 1 < ∞.

Secondly, we proceed to explicitly calculate E[pm(t)].
Using the ACPA’s updating rule, we can describe the update
of pm(t) as per Table 1. Thus, we have:

E[pm(t + 1)|P(t)] = pm (dm (q[(1 − λ)pm + λ]
+ (1 − q)[(1 − λ)pm])+ (1 − dm)pm)

+
∑

j �=m

pj

(
dj (q[(1 − λ)pm + λ]

+ (1 − q)[(1 − λ)pm])+ (1 − dj )pm

)

= pmdmqλ− dmλp
2
m + pm

+ λ(q − pm)
∑

j �=m

pjdj

= pm + λ(q − pm)
∑

j=1...r

pj dj ,

where pm(t) and q(t) are respectively written as pm and q

in the interest of conciseness. Thus,

Diffpm(t) = E[pm(t + 1)|P(t)] − pm(t)

= λ(q(t)− pm(t))
∑

j=1...r

pj (t)dj .

Invoking the definition of a submartingale, we know that
if for all t > t0, we have Diffpm(t) > 0, i.e., q(t)−pm(t) >

0, then {pm(t)t>t0} is a submartingale. We now invoke the
terminating condition for the ACPA, in which we force the
learning process to jump to the absorbing state and attain
convergence if pj (t) > T = 1− ε, (j = 1, 2, ..., r). There-
fore, if we set the quantity (1 − δ̄) defined in Theorem 3
to be greater than the threshold T , then as per Theorem 3,
there exists a time instant t0 < ∞, such that for every sin-
gle time instant subsequent to t > t0, q(t) > 1 − δ̄ >

T > pm(t), which, in turn, guarantees that {pm(t)t>t0} is a
submartingale. Hence the result!

One may also notice that for the original CPA, i.e., which
does not possess artificially created absorbing barriers, the
quantity Diffpm(t) will never be certainly greater than 0.
This is because there is no such time instant that after which,
q(t) > pm(t) is guaranteed. Consequently, as far as we
can see, we do not believe that we can prove the CPA’s ε-
optimality by invoking the submartingale property alone. It

appears as if the method utilized in [2] is currently the only
way to achieve this proof.7

4.4 Pr{pm(∞) = 1} → 1 under the ACPA

We can now finally prove the ε-optimality of the ACPA.

Theorem 5 The ACPA is ε-optimal in all random station-
ary Environments. More formally, let T = 1 − ε be a value
arbitrarily close to 1, with ε being arbitrarily small. Then,
given any 1 − δ̄ > T , there exists a positive integer λ� < 1
and a time instant t0 < ∞, such that for all learning param-
eters λ < λ� and for all t > t0, q(t) > 1 − δ̄, the quantity8

Pr{pm(∞) = 1} → 1.

Proof Since we are dealing with the ACPA, as per the
submartingale convergence theory [21],

pm(∞) = 0 or 1.

If we denote ej as the unit vector with the j th element
being 1, then pm(∞) = 1 is equivalent to the assertion that
P(∞) = em. If we define the convergence probability

�m(P ) = Pr{P(∞) = em|P(0) = P },
our task is to now prove:

�m(P ) → 1. (9)

To prove (9), we shall use the theory of Regular func-
tions, and the arguments used follow the lines of the
arguments found in [21] for the convergence proofs of
Absolutely Expedient schemes.

7This does not, however, mean that the result, in and of itself, is false.
Indeed, it has been rigorously demonstrated with numerous exper-
iments and by many authors that the CPA with a fixed parameter
converges to an accuracy that is arbitrarily close to unity. The dis-
couraging point is that no one has succeeded in proving why this is
true!
8Since the ACPA has absorbing barriers, whenever pm(t) > T =
1 − ε, pm(t + 1) will jump to unity. This is why we can assert that
P r{pm(∞) = 1} → 1 instead of P r{pm(∞) > 1 − ε} → 1 here.

980 X. Zhang et al.



Let 	(P ) as a function of P . We define an operator U as

U	(P ) = E[	(P (t + 1))|P(t) = P ].
If we now repeatedly apply U , we get the result of the t-step
invocation of U as:

Ut	(P ) = E[	(P (t))|P(0) = P ].
We refer to the function 	(P ) as being:

• Superregular: If U	(P ) ≤ 	(P ). Then applying U

repeatedly yields:

	(P ) ≥ U	(P ) ≥ U2	(P ) ≥ ... ≥ U∞	(P ). (10)

• Subregular: If U	(P ) ≥ 	(P ). In this case, if we
apply U repeatedly, we have

	(P ) ≤ U	(P ) ≤ U2	(P ) ≤ ... ≤ U∞	(P ). (11)

• Regular: If U	(P ) = 	(P ). In such a case, it follows
that:

	(P ) = U	(P ) = U2	(P ) = ... = U∞	(P ). (12)

Moreover, if 	(P ) satisfies the boundary conditions

	(em) = 1 and 	(ej ) = 0, (for j �= m), (13)

then, as per the definition of Regular functions and the
submartingale convergence theory, we have

U∞	(P ) = E[	(P (∞))|P(0) = P ]
=

r∑

j=1

	(em)P r{P(∞) = ej |P(0) = P }

= Pr{P(∞) = em|P(0) = P }
= �m(P ). (14)

Comparing (14) with (12), we see that �m(P ) is exactly
the function 	(P ) upon which if U is applied an infinite
number of times, the sequence of operations will lead to
a function that equals the function 	(P ) itself, because it
would then be a Regular function. This observation read-
ily leads us to the conclusion that �m(P ) can be indirectly
obtained by investigating a Regular function of P . How-
ever, as in the case of Absolutely Expedient LA, a Regular
function is not easily found, although its existence is guar-
anteed. Fortunately, (10) and (11) tell us that �m(P ), i.e.,
the Regular function of P , can be bounded from above
(below) by the superregular (subregular) function of P . Fur-
thermore, as we are most interested in the lower bound of
�m(P ), our goal is to find a proper Subregular function
of P , which also satisfies the boundary conditions given
by (13), which will then guarantee to bound �m(P ) from
below.

Consider a specific instantiation of 	 to be the function
	m, defined below as:

	m(P ) = e−xmpm,

where xm is a positive constant. Then, under the ACPA,

U(	m(P ))−	m(P ) = E[	m(P (n+ 1))|P(n) = P ] −	m(P )

= E[e−xmpm(n+1)|P(n) = P ] − e−xmpm

=
∑

j=1...r

e−xm(pm(1−λ)+λ)pj dj q

+
∑

j=1...r

e−xm(pm(1−λ))pj dj (1 − q)

+
∑

j=1...r

e−xmpmpj (1 − dj )− e−xmpm

=
∑

j=1...r

pj dj e
−xmpm

(
qe−xm(1−pm)λ

+ (1 − q)exmpmλ − 1
)
.

Our task is to determine a proper value for xm such that
	m(P ) is superregular, i.e.,

U(	m(P ))−	m(P ) ≤ 0.

This is equivalent to solving the following inequality:

qe−xm(1−pm)λ + (1 − q)exmpmλ − 1 ≤ 0. (15)

We know that when b > 0 and x → 0,

bx=̇1 + (ln b)x + (ln b)2

2
x2.

If we set b = e−xm , when λ → 0, (15) can be re-written as

q

(

1 + (ln b)(1 − pm)λ+ (ln b)2

2
(1 − pm)

2λ2
)

+(1 − q)

(

1 + (ln b)pmλ+ ln b2

2
p2
mλ

2

)

− 1 ≤ 0.

Substituting b with e−xm , we see that

xm

(

xm − 2(q(1 − pm)+ pm(1 − q))

λ(q − 2qpm + p2
m)

)

≤ 0.

As xm is defined as a positive constant, we have

0 < xm ≤ 2(q(1 − pm)+ pm(1 − q))

λ(q − 2qpm + p2
m)

. (16)

If we denote

xm0 = 2(q(1 − pm)+ pm(1 − q))

λ(q − 2qpm + p2
m)

,

we have xm0 > 0, implying that when λ → 0, xm0 → ∞.
We now introduce another function

φm(P ) = 1 − e−xmpm

1 − e−xm
,

where xm is the same as defined in 	m(P ). Moreover, we
observe the property that if 	m(P ) = e−xmpm is a superreg-
ular (subregular), then φm(P ) = 1−e−xmpm

1−e−xm is a subregular
(superregular) [21]. Therefore, the quantity xm, as defined
in (16), which renders 	m(P ) to be superregular, makes the
φm(P ) to be subregular.
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Table 2 Bernoulli distributed
reward probabilities used in the
benchmark configurations

Config./Actions 1 2 3 4 5 6 7 8 9 10

1 0.70 0.50 0.30 0.20 - - - - - -

2 0.10 0.45 0.84 0.76 - - - - - -

3 0.70 0.50 0.30 0.20 0.40 0.50 0.40 0.30 0.50 0.20

4 0.10 0.45 0.84 0.76 0.20 0.40 0.60 0.70 0.50 0.30

Obviously, φm(P ) meets the boundary conditions, i.e.,

φm(P ) = 1 − e−xmpm

1 − e−xm
=

{
1, when P = em,

0, when P = ej .

Therefore, according to (11),

�m(P ) ≥ φm(P ) = 1 − e−xmpm

1 − e−xm
. (17)

As (17) holds for every xm bounded by (16), we take the
greatest value xm0 . Moreover, as λ → 0, xm0 → ∞, whence
�m(P ) → 1. We thus shown that Pr{pm(∞) = 1} → 1,
proving the claim of the theorem!

Remark 1 Note that the statement that when λ is main-
tained as a constant satisfying λ → 0, the conclusion that
Pr{pm(∞) = 1} → 1 confirms that we do not have to
continuously decrease the value λ over time as the proof in
[2] requires. This result can be summarized to see that there
exists a sufficiently small (but not continuously decreasing
value) λ� ∈ (0, 1) such that xm0 will be sufficiently large so
as to make �m(P ) to be sufficiently close to unity.

Remark 2 Having proven the ACPA’s ε-optimality, we can
also use the above arguments to provide expressions for t0
and the number of times each action needs to be selected.
Let δ̄′ = 1 − r−1

√
1 − δ̄, where δ̄ is the quantity specified in

the statement of Theorem 5. Then, the theorem confirms the
existence of a time instant, t0, where:

r∑

j=1

⌈
−2 ln δ̄′

2

w2

⌉

≤ t0 < ∞, (18)

and where for this time instant t0, we can guarantee that each

action will have been selected more than

⌈
−2 ln δ̄′

2
w2

⌉

times.

It should be noted that the quantity t0 defined in (18) is
very conservative. In other words, it has been rendered to

be very large to ensure that {pm(t)t>t0} is a submartingale.
This is consistent with the fact that the learning parameter λ
has to be very small to ensure the ACPA’s ε-optimality. This
is because it is only when λ is sufficiently small that each
action will have been “sampled” enough number of times
by the time instant t0, in which case, the estimates of the
reward probabilities can be ordered correctly with an arbi-
trarily large probability, i.e., greater than 1 − δ̄, to ensure
the submartingale property of {pm(t)t>t0}. From this per-
spective, the rather conservative theoretical assumption for
λ leads to an analogous very conservative value for t0 that is
much larger than the actual, practically-obtained value. We
will justify this with the following experimental results that
are based on the benchmark environments shown in Table 2.

Table 3 shows the comparison between the t0 calculated
from (18) and the average number of iterations needed for
the LA to converge, in practice. As the CPA and ACPA are
well-established algorithms, we know that numerous exper-
iments have been conducted to confirm their validity, and so
we merely use the figures from [30] to record the practical
results.

As the reader will observe from Table 3, the quantity t0,
though it is not equivalent to the theoretical number of iter-
ations required for the LA to converge, is used as a rough
theoretical metric for us to compare the analytic results with
the practical results. The reason why we have done this is
twofold: Firstly, due to the fact that the state space of the
CPA/ACPA is open and varies with time, we are not able
to analyze the learning process after t0, which makes it
impossible for us to calculate the theoretical convergence
time and to compare it in a meaningful way to the practi-
cal convergence time. Secondly, as mentioned earlier, t0 is
very conservative. In all the experiments we conducted, this
index is much larger than the practical convergence time as
one can see from Table 3. For example, in Table 3 and in
Conf. 1, when δ is set to be 0.001, each action needs to

Table 3 The comparison
between t0 and the average
number of iterations for the
ACPA to converge in
benchmark configurations

Conf. t0 (when δ = 0.001) Average No. of times to converge [30]

Conf. 1 ≥ 435 × 4 654.220

Conf. 2 ≥ 2719 × 4 3155.000

Conf. 3 ≥ 490 × 10 1876.370

Conf. 4 ≥ 3062 × 10 7645.190
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be selected 435 times by t0, which implies that t0 must be
greater than or equal to 1, 740 (i.e., 435 × 4). As opposed
to this, the time to converge in practice, obtained by averag-
ing over all the 750 experiments in which the LA converged
to the optimal action, was only 654.220, and was much less
than t0.

We can thus confidently affirm that t0 is, indeed, a
very conservative quantity due to the choice of a very
small learning parameter. However, we emphasize that t0
is finite. This implies that within this time, the submartin-
gale property of {pm(t)t>t0} can be guaranteed, whence the
ε-optimality of the ACPA can be further proven.

5 Conclusions

Estimator algorithms are acclaimed to be the fastest Learn-
ing Automata (LA), and within this family, the set of
Pursuit algorithms have been considered to be the pioneer-
ing schemes. But, as is well known, the most difficult part in
the design and analysis of LA consists of the formal proofs
of their convergence accuracies. The ε-optimality of Pursuit
algorithms is of fundamental importance and has been stud-
ied for years. In almost all the existing papers, the proofs
involved in demonstrating the ε-optimality of the Pursuit
algorithms have a common flaw. The flaw was discovered
by the authors of [2], whom we applaud for this. While
a correct proof has been provided for the CPA in [2], it
requires the scheme’s parameter to be constantly decreasing.
This paper aims at removing the latter stringent require-
ment by defining the CPA’s modified version, the ACPA,
whose boundary states are artificially absorbing. The paper
provides a formal proof for the ACPA’s ε-optimality.

Rather than examining the monotonicity property of the
{pm(t)(t>t0)} sequence as done in the previous papers and
in [2], our current proof studies the submartingale prop-
erty of {pm(t)(t>t0)}. Accordingly, instead of constraining
the reward probability to be ordered correctly forever after
a certain time instant, t0, we merely require a weaker condi-
tion, i.e., one that only requires that the reward probability of
the optimal action is ranked as the largest with a sufficiently
large probability. Thereafter, by virtue of the submartingale
property and the weaker condition, the new proof invokes
the theory of Regular functions, and does not require the
learning parameter to decrease gradually.

Our current proof is distinct in principle and argument
from the proof reported in [2]. We believe that our proof can
be easily extended to formally demonstrate the ε-optimality
of other Absorbing Estimator Algorithms, without changing
their respective learning parameters.

Finally, we suggest that the open unsolved problem lies in
understanding the true dynamics of the process {P(t)(t≥0)}
in terms of the complex dependencies between it and

{D̂(t)(t≥0)}. We believe that a different proof methodol-
ogy is not possible unless the research community obtains
a deeper understanding of the inter-dependencies between
both these processes.
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