Skip to main content
Log in

A multi-objective artificial bee colony algorithm based on division of the searching space

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a new multi-objective artificial bee colony algorithm called dMOABC by dividing the whole searching space S into two independent parts S 1 and S 2. In this algorithm, two ”basic” colonies are assigned to search potential solutions in regions S 1 and S 2, while the so-called ”synthetic” colony explores in S. This multi-colony model could enable the good diversity of the population, and three colonies share information in a special way. A fixed-size external archive is used to store the non-dominated solutions found so far. The diversity over the archived solutions is controlled by utilizing a self-adaptive grid. For basic colonies, neighbor information is used to generate new food sources. For the synthetic colony, besides neighbor information, the global best food source gbest selected from the archive, is also adopted to guide the flying trajectory of both employed and onlooker bees. The scout bees are used to get rid of food sources with poor qualities. The proposed algorithm is evaluated on a set of unconstrained multi-objective test problems taken from CEC09, and is compared with 11 other state-of-the-art multi-objective algorithms by applying Friedman test in terms of four indicators: HV, SPREAD, EPSILON and IGD. It is shown by the test results that our algorithm significantly surpasses its competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. url= http://jmetal.sourceforge.net/

References

  1. Agrawal S, Dashora Y, Tiwari MK, Son YJ (2008) Interactive particle swarm: A pareto-adaptive metaheuristic to multiobjective optimization. IEEE Trans Syst Man Cybern A 38(2):258–277

    Article  Google Scholar 

  2. Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192(1):120–142

    Article  Google Scholar 

  3. Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52

    Article  Google Scholar 

  4. Arsuaga-Rios M, Vega-Rodriguez M, Prieto-Castrillo F (2011) Multi-objective artificial bee colony for scheduling in grid environments. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 1–7. IEEE

  5. Atashkari K, NarimanZadeh N, Ghavimi AR, Mahmoodabadi MJ, Aghaienezhad F (2011) Multi-objective optimization of power and heating system based on artificial bee colony. In: International Symposium on Innovations in Intelligent Systems and Applications (INISTA), pp. 64–68

  6. Chen CM, Chen YP, Zhang QF (2009) Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization. In: Proceeding of Congress on Evolutionary Computation, CEC’09, pp. 209–216. IEEE

  7. Coello Coello CA, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  8. Coello Coello CA, Sierra MR (2003) A co-evolutionary multi-objective evolutionary algorithm Proceedings of the congress on evolutionary computation, vol 1. CEC’03, New York, pp 482–489

  9. Corne DW, Knowles JD, Oates MJ (2000) The pareto envelope-based selection algorithm for multiobjective optimization Proceedings of the parallel problem solving from nature VI. Springer, pp 839–848

  10. Deb K (2001) Multi-objective optimization. Multi-objective optimization using evolutionary algorithms, pp. 13–46

  11. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  12. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(7):3–18

    Article  Google Scholar 

  13. Durillo J, Nebro A, Alba E (2010) The jmetal framework for multi-objective optimization: Design and architecture. In: CEC 2010, pp. 4138–4325

  14. Durillo JJ, Nebro AJ (2011) jmetal: A java framework for multi-objective optimization. Adv Eng Softw 42:760–771

    Article  Google Scholar 

  15. Durillo JJ, Nebro AJ, Luna F, Alba E (2008) Solving three-objective optimization problems using a new hybrid cellular genetic algorithm. In: Rudolph G, Jensen T, Lucas S, Poloni C, Beume N (eds) Parallel Problem Solving from Nature–PPSN X, Lecture Notes in Computer Science, vol 5199. Springer, pp 661–670. doi:10.1007/978-3-540-87700-466

  16. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, pp 39–43

  17. Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: Formulation,discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms, vol. 93, pp. 416–423. San Mateo and California

  18. Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Oper Res 39(3):687–697

    Article  MATH  Google Scholar 

  19. Goh C, Tan K, Liu D, Chiam S (2010) A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur J Oper Res 202(1):42–54

    Article  MATH  Google Scholar 

  20. Guliashki V, Toshev H, Korsemov C (2009) Survey of evolutionary algorithms used in multiobjective optimization. Problems of Engineering Cybernetics and Robotics, Bulgarian Academy of Sciences, vol 60

  21. Hedayatzadeh R, Hasanizadeh B, Akbari R, Ziarati K (2010) A multi-objective artificial bee colony for optimizing multi-objective problems. In: The 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol. 5, pp. 277–281

  22. Horn J, Nafpliotis N, Goldberg DE (1994) A niched pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, pp. 82–87

  23. Huang VL, Suganthan PN, Liang JJ (2006) Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems. Int J Intell Syst 21(2):209–226

    Article  MATH  Google Scholar 

  24. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech. rep., Engineering Faculty, Computer Engineering Department. Erciyes University

  25. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MATH  MathSciNet  Google Scholar 

  26. Kennedy J, Eberhart RC (1995) Particle swarm optimization Proceedings of the IEEE International Conference on Neural Networksl. USA, Washington, pp 1942–1948

  27. Knowles J, Corne D (1999) The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Proceeding of Congress on Evolutionary Computation, CEC’99, vol. 1. IEEE

  28. Knowles J, Corne D (2000) (1+1)-PAES skeleton program code. http://www.cs.man.ac.uk/jknowles/multi/paes.cc

  29. Kukkonen S, Lampinen J (2009) Performance assessment of generalized differential evolution 3 with a given set of constrained multi-objective test problems. In: Proceeding of Congress on Evolutionary Computation, CEC’09, pp. 1943–1950. IEEE

  30. Lei DM (2009) Multi-objective intelligent optimization algorithm and applications. Science Press, Beijing

    Google Scholar 

  31. Leong WF, Yen GG (2008) Pso-based multiobjective optimization with dynamic population size and adaptive local archives. IEEE Trans Syst Man Cybern B (Cybernetics) 38(5):1270–1293

    Article  Google Scholar 

  32. Li JQ, Pan QK, Gao KZ (2011) Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int J Adv Manuf Technol 55(9-12):1159–1169

    Article  Google Scholar 

  33. Liu Hl, Li X (2009) The multiobjective evolutionary algorithm based on determined weight and sub-regional search. In: Proceeding of Congress on Evolutionary Computation, CEC’09, pp. 1928–1934. IEEE

  34. Liu M, Zou X, Chen Y, Wu Z (2009) Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances. In: Proceeding of Congress on Evolutionary Computation, CEC’09, pp. 2913–2918. IEEE

  35. Nebro AJ, Durillo J, Garcia-Nieto J, Coello Coello C, Luna F, Alba E (2009) SMPSO: A new pso-based metaheuristic for multi-objective optimization. In: IEEE symposium on computational intelligence in miulti-criteria decision-making, pp. 66–73. IEEE

  36. Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2009) Mocell: A cellular genetic algorithm for multiobjective optimization. Int J Intell Syst 24(7):726–746

    Article  MATH  Google Scholar 

  37. Nebro A J, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: Adapting Scatter Search to Multiobjective Optimization, vol 12

  38. Negro FdT, Ortega J, Ros E, Mota S, Paechter B, Martın J (2004) PSFGA: Parallel processing and evolutionary computation for multiobjective optimisation. Parallel Comput 30(5):721–739

    Article  Google Scholar 

  39. Omkar S, Senthilnath J, Khandelwal R, Naik GN, Gopalakrishnan S (2011) Artificial bee colony (ABC) for multi-objective design optimization of composite structures. Appl Soft Comput 11(1):489–499

    Article  Google Scholar 

  40. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2013) MOEA/D with adaptive weight adjustment. Evol Comput. doi:10.1162/EVCO_a_00109

    Google Scholar 

  41. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the first international conference on genetic algorithm, pp. 93–100. Lawrence Erlbaum

  42. Sierra MR, Coello CAC (2005) Improving pso-based multi-objective optimization using crowding, mutation and 𝜖-dominance. In: Evolutionary Multi-Criterion Optimization, pp. 505–519. Springer

  43. Sierra MR, Coello Coello CA (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  44. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol comput 2(3):221–248

    Article  Google Scholar 

  45. Tan KC, Yang Y, Goh CK (2006) A distributed cooperative coevolutionary algorithm for multiobjective optimization. Evol Comput IEEE Trans on 10(5):527–549

    Article  Google Scholar 

  46. Tiwari S, Fadel G, Koch P, Deb K (2009) Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems. In: Proceeding of Congress on Evolutionary Computation, CEC’09, pp. 1935–1942. IEEE

  47. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf Sci 177(22):5033–5049

    Article  MATH  MathSciNet  Google Scholar 

  48. Tseng LY, Chen C (2009) Multiple trajectory search for unconstrained/constrained multi-objective optimization. In: Proceeding of Congress on Evolutionary Computation, CEC’09, pp. 1951–1958. IEEE

  49. Xiang Y, Peng Y, Zhong Y, Chen Z, Lu X, Zhong X (2014) A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization. Comput Optim Appl 57(2):493–516

    Article  MATH  MathSciNet  Google Scholar 

  50. Yen GG, Leong WF (2009) Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern A: (Systems and Humans) 39(4):890–911

    Article  Google Scholar 

  51. Yen GG, Lu H (2003) Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. Evol Comput IEEE Trans on 7(3):253–274

    Article  Google Scholar 

  52. Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP instances. In: IEEE congress on evolutionary computing (CEC), Trondheim, pp. 18–21

  53. Zhang Q, Zhou A, Zhao S, Suganthan P N, Liu W, Tiwari S (2009) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, Special Session on Performance Assessment of Multi-Objective Optimization Algorithms, Technical Report

  54. Zhao SZ, Suganthan PN (2011) Two-lbests based multi-objective particle swarm optimizer. Eng Optim 43(1):1–17

    Article  MathSciNet  Google Scholar 

  55. Zheng YJ, Chen SY (2013) Cooperative particle swarm optimization for multiobjective transportation planning. Appl Intell 39(1):202–216

    Article  Google Scholar 

  56. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  57. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Proc. 8th International Conference on Parallel Problem Solving from Nature, PPSN VIII, pp. 832–842. Springer

  58. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm. Tech. rep., Computer Engineering and Networks Laboratory, Department of Electrical Engineering, Swiss Federal Institute of Technology. ETH) Zurich, Switzerland

    Google Scholar 

  59. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  60. Zou W, Zhu Y, Chen H, Shen H (2011) A novel multi-objective optimization algorithm based on artificial bee colony. In: Proceedings of the 13th annual conference companion on Genetic and evolutionary computation, pp. 103–104

Download references

Acknowledgments

The authors thank the anonymous reviewers for providing valuable comments to improve this paper, and add special thanks to J.J. Durillo and A.J. Nebro for their open source jMetal software package.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xiang or Hai-Lin Liu.

Additional information

This paper is supported by National Natural Science Foundation of China under Grant 61350003 and the Project of Department of Education of Guangdong Province(No.20131130543031) and by the major Research Project of Guangdong Baiyun University (No. BYKY201317).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, YB., Xiang, Y. & Liu, HL. A multi-objective artificial bee colony algorithm based on division of the searching space. Appl Intell 41, 987–1011 (2014). https://doi.org/10.1007/s10489-014-0555-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0555-8

Keywords

Navigation