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Abstract:  

In telecommunications networks, to enable a valid data transmission based on network 

coding, any intermediate node within a given network is allowed, if necessary, to perform coding 

operations. The more coding operations needed, the more coding resources consumed and thus the 

more computational overhead and transmission delay incurred.  

This paper investigates an efficient evolutionary algorithm to minimize the amount of coding 

operations required in network coding based multicast. Based on genetic algorithms, we adapt two 

extensions in the proposed evolutionary algorithm, namely a new crossover operator and a 

neighbourhood search operator, to effectively solve the highly complex problem being concerned. 

The new crossover is based on logic OR operations to each pair of selected parent individuals and 

the resulting offspring are more likely to become feasible. The aim of this operator is to intensify 

the search in regions with plenty of feasible individuals. The neighbourhood search consists of 

two moves which are based on greedy link removal and path reconstruction, respectively. Due to 

the specific problem feature, it is possible that each feasible individual corresponds to a number of, 

rather than a single, valid network coding based routing subgraphs. The neighbourhood search is 

applied to each feasible individual to find a fitter routing subgraph that consumes less coding 

resource. This operator not only improves solution quality but also accelerates the convergence. 

Experiments have been carried out on a number of fixed and randomly generated benchmark 

networks. The results demonstrate that with the two extensions, our evolutionary algorithm is 

effective and outperforms a number of state-of-the-art algorithms in terms of the ability of finding 

optimal solutions. 
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1. Introduction 

Multicast is a one-to-many communication technique that simultaneously 

delivers information from the source to a group of destinations (receivers) within the 

same network so that in a single transmission any receiver of the group is able to 

obtain the original information sent from the source [1]. With the emergence of 

increasingly more multimedia applications such as video conferencing and IPTV, 

multicast has become one of the key supporting technologies in modern 

communication networks [2,3]. 

Network coding, as a new communication paradigm, has received an increasing 

amount of research attention since 2000 [4]. It is superior to the traditional routing 

protocol in many aspects, including an increased multicast throughput, a balanced 

network payload, transmitting energy savings, and so on [5-8]. It is well known that 

traditional routing transmits information in the same way as fluids share pipes [8]. 

Different data streams (data information) transmitted share the limited network 

resources, however, are separately processed at the network-layer. In traditional 

routing, each intermediate node simply forwards the incoming data packets to its 

downstream node(s), adopting store-and-forward data forwarding scheme. However, 

the theoretical maximum throughput of a multicast may not be achieved by using such 

scheme [4,5]. In contrast, with code-and-forward data forwarding scheme at the 

network-layer, network coding allows any intermediate node to perform mathematical 

operations to data packets received from different incoming links if necessary, always 

achieving the maximized multicast throughput according to the MAX-FLOW MIN-

CUT theorem [5]. 

In the current literature, the majority of the research in network coding assumes 

that coding operations should be carried out at all coding-possible nodes. However, to 

obtain an expected throughput, coding may only be necessary at a subset of these 

nodes [9-11]. Since coding operation consumes computational overhead and increases 

data processing complexity, it is of great interest to minimize the amount of coding 

operations. Such problem is proven to be NP-Hard [9-11].  

Evolutionary algorithms (EAs) are a class of population-based meta-heuristic 

optimization techniques based on the mechanics of natural selection and reproduction 

[12]. EAs often perform well on approximating solutions to many types of 

optimization problems because there is no need for users to make any assumption 



about the underlying fitness landscape. It is well known that genetic algorithm (GA) is 

one of the mostly investigated evolutionary algorithms and has been successfully and 

widely applied in operations research, engineering, economics, and so on. Although 

GA is a general bio-inspired algorithm, care should be taken in designing effective 

operators to the given optimization problem to avoid potential problems such as pre-

maturity and slow convergence. In addition, the local exploitation ability in standard 

GAs cannot usually be fully achieved, motivating the advanced research in 

developing hybrid evolutionary algorithms including memetic algorithms [13,14]. 

In this paper, we present an efficient evolutionary algorithm with two new 

schemes to minimize the amount of coding operations required in network coding 

based multicast. In the first scheme, a new crossover operator is devised to intensify 

the exploration in the regions of solution space where the majority of individuals are 

feasible. Different from the standard crossover that swaps a subset of the selected 

parent individuals, the new crossover performs the logic OR operation to the selected 

parent individuals and thus can effectively produce feasible individuals. Our 

experimental results show that the global exploration has been improved by 

integrating the new crossover and simple mutation compared with using the uniform 

crossover and simple mutation. In the problem concerned, each feasible individual 

may correspond to several valid network coding based routing schemes which 

consume different amount of coding resources. We design a neighborhood search 

operator, by using two moves, to select a better routing scheme for the feasible 

individual. The experimental results also show that, with the neighbourhood search 

and the new crossover, the proposed algorithm is able to find an optimal solution in 

all instances, including x-copies and random networks. 

2. Problem Formulation and Related Work 

2.1 Problem Formulation 

A communication network can be modeled as a directed graph G = (V, E), where 

V and E denote the set of nodes and links, respectively [5]. We assume that each link 

eE has a unit capacity. Only integer flows are allowed in G so a link is either idle or 

occupied by a flow of unit rate [10,11]. In this paper, we only consider the 

multicasting function in telecommunications networks by using the network coding 

technology. A single-source network coding based multicast scenario can be defined 



as a 4-tuple set (G, s, T, R), where the information needs to be transmitted at data rate 

R from the source node sV to a set of sinks T = {t1,…,td}V in the graph G (V, E). 

The data rate R is achievable if there is a transmission scheme that enables each sink 

tk, k = 1, …, d, to receive the information at rate R [10,11]. As each link has a unit 

capacity, any single path connecting s and tk (k = 1, …, d) has a unit capacity. If we 

manage to set up R link-disjoint paths from s to each receiver tk, i.e. P1(s, tk),…,PR(s, 

tk), data rate R is achievable. 

We refer to a connected subgraph in G, including s and all sinks in T, as a 

network coding based routing subgraph Gs→T if the data rate from s to each tkT is of 

R units within this subgraph. In a routing subgraph, there are R link-disjoint paths 

from s to each receiver. To find a routing subgraph, we first find R link-disjoint paths 

for each tkT from G, i.e. P1(s, tk),…,PR(s, tk). There are Rd paths in total. We then 

mark those links and nodes in G which are being occupied by at least one of the Rd 

paths. The routing subgraph is the union of marked nodes and links in G. Note that in 

a routing subgraph, paths to the same receiver never join together since they are link-

disjoint. Hence, only those paths to different receivers are possible to be involved in 

coding. In routing subgraph, a node is called coding node if data streams from 

different incoming links of it are recombined together. An outgoing link of a coding 

node is called a coding link if the coded data stream is sent out via this link. 

In a network G, no coding occurs at a node with single incoming link. We refer 

to a non-sink intermediate node with multiple incoming links as a merging node 

[10,11]. Consider a merging node v with In(v) incoming links and Out(v) outgoing 

links, where In(v) ≥ 2 and Out(v) ≥ 1. We use a decision variable Aj = {aij | i = 1,…, 

In(v), j = 1,…,Out(v)}, where Aj is a block of length In(v), to represent the 

information of how many incoming links of v contributing to the output over the j-th 

outgoing link of v [10,11]. For each i{1,…, In(v)} and each j{1,…, Out(v)}, if the 

information from the i-th incoming link contributes to the coded output over the j-th 

outgoing link, aij = 1, otherwise aij = 0. We refer to the states of ‘1’ and ‘0’ as active 

and inactive states, respectively [10,11]. Network coding is performed at node v and 

the coded output is transmitted over link j only if at least two incoming link states of 

link j are active simultaneously. Fig.1 shows an example of a merging node and a 

possible set of link states, respectively [15]. The individual representation in our 

evolutionary algorithm consists of blocks of all potential coding links (refer to section 



3). We refer to each outgoing link of a merging node as a potential coding link. To 

determine if a potential coding link serves as a coding link, we need to check if the 

information via this link is dependent on a number of incoming links of the merging 

node. We only consider linear network coding which is sufficient for multicast [5]. 

 

 

                                    (a) Merging node v               (b) Two blocks for outgoing links 
Fig.1  Node v with two incoming and two outgoing links, described by input variables A1= (a11, a21) 
and A2 = (a12, a22). 
 

The number of coding links (rather than coding nodes) is more accurate to 

indicate the total amount of coding operations involved [16]. We hereafter investigate 

on finding a routing subgraph Gs→T with minimized coding links. The following 

notations are defined: 

σij : a binary variable associated with the j-th outgoing link of the i-th 

merging node, i = 1,…,M, j = 1,…,Zi, where M is the total number of 

merging nodes and the i-th node has Zi outgoing links. σij = 1 if the j-th 

outgoing link of the i-th node serves as a coding link; σij = 0 otherwise. 

λ(s, tk) : the achievable rate between s and tk in Gs→T 

pi(s, tk) : the i-th link-disjoint path found between s and tk in Gs→T, i = 1,2,…,R. 

Wi(s, tk) : the link set of Pi(s, tk), i.e. Wi(s, tk) ={e | ePi(s, tk)}. 

Based on the above notations, we define in this paper the problem of finding a 

routing subgraph Gs→T where the number of coding links, Ф(Gs→T), is minimized 

while the desired data rate R is achieved, shown as follows:  
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Objective (1) defines our problem as to find a routing subgraph Gs→T with the 

minimum number of coding links; Constraint (2) defines that in Gs→T, the achievable 

data rate between s and each sink is R; Constraint (3) indicates that for an arbitrary tk 

the R constructed paths Pi(s, tk), i = 1,…,R, have no common link. 

 

2.2 Related Work 

In the past decade, a considerable amount of research has been dedicated to 

encoding-and-decoding approaches for network coding based data transmission [5,17-

20]. However, the minimization on coding resources in network coding based 

multicast has not received enough attention.  

The first seminal work on the minimization problem concerns two greedy 

approaches proposed, respectively. In [21], information flows are decomposed into a 

number of subtrees, where the same information is transported in the same subtree. 

Besides, a greedy algorithm is presented to construct a subtree graph involving 

minimal coding operations while supporting a valid network coding based data 

transmission. In [16], a given network is transformed into a new network first, where 

the degree of each node is at most three. After that, the authors remove links which 

make no contribution to the achievable data rate from the new graph to reduce the 

coding operations involved. However, the performance of the above two algorithms 

depends on the traversal order of links, e.g. an inappropriate link traversal order may 

significantly weaken the optimization performance. 

From then on, a number of evolutionary algorithms (EAs) were proposed. Kim et 

al used genetic algorithms (GAs) to optimize the required network coding resource 

[9-11]. In 2006, they proposed a GA on an algebraic framework [9]. Given a network 

G, they construct the corresponding labeled line graph G’ by using the information 

flow decomposition method [21]. Then each link eG’ is associated with a link 

coefficient. All the coefficients result into a specific solution based on which the 

consumed network coding resource can be calculated. The algebraic framework is the 

first method which maps the network coding problem to a GA framework. However, 

this GA is only applicable to acyclic networks. After that, Kim et al extend their work 

in [9] to a distributed GA to significantly reduce the computational time [10]. Besides, 

a graph decomposition method is proposed for both acyclic and cyclic networks. It 



decomposes each merging node in G into a number of auxiliary nodes to show 

explicitly how a flow passes through the merging node. This method then becomes a 

popular way to map the network coding problem to an EA framework. After that, Kim 

et al compare and analyse GAs with two different genotype encoding approaches, i.e. 

the binary link state (BLS) and the block transmission state (BTS), and their 

associated genetic operators [11]. Compared with BLS encoding, BTS encoding has a 

much smaller solution space and usually leads to better solutions. Besides, their GA-

based algorithms perform outstandingly better than the two greedy algorithms in [16] 

and [21] in terms of the best solutions achieved. However, as we observed in this 

paper, the major genetic operator, i.e. the uniform crossover, has a limited 

contribution to produce promising solutions. Recently, a path-oriented encoding, 

which leads to a completely feasible search space, is also designed for EAs for 

tackling the network coding problem [22]. Nevertheless, this encoding is complex (e.g. 

two-dimensional) and its size grows with the number of receivers. Hence EAs with 

the path-oriented encoding are limited to applications with relatively small multicast 

group. 

In addition to GAs, estimation of distribution algorithms (EDAs) are also used to 

solve the problem concerned. Two quantum-inspired evolutionary algorithms (QEAs) 

are proposed to minimize the coding operations involved [15,23]. QEAs maintain a 

population of quantum-bit individuals, each representing a linear superposition of all 

solutions in the search space. Simulation results demonstrate that the improved QEA 

outperforms a standard GA in some instances, however at the cost of additional 

computational time. Xing and Qu present a population based incremental learning 

algorithm (PBIL) which integrates GA with competitive learning [24]. PBIL 

maintains a real-valued probability vector which, when sampled, generates better 

solutions with a higher probability during the evolution. With a restart scheme, the 

PBIL usually finds decent solutions, however, consuming a considerable amount of 

computational time. Another PBIL is introduced to mainly consider how to adapt 

network coding in delay sensitive applications, where delay bound is concerned [25]. 

Later on, a compact genetic algorithm is proposed for minimizing the amount of 

coding operations in the network coding based multicast, where at each generation 

only one solution is sampled from the probability vector. It competes with the best 

solution of previous generations and the winner is used to update the probability 

vector [26]. 



Some researchers study the minimum-cost network coding problem using 

evolutionary approaches with entropy-based evaluation relaxation techniques in order 

to reduce the computational cost incurred during the evolution [27,28]. By making use 

of the inherent randomness feature of the individuals, the proposed EAs can rapidly 

recognize promising solutions with much fewer individuals to be evaluated. Recently, 

a multi-objective EA is adopted to balance the consumed resource and user 

experience during the network coding based multicast [29]. 

In general, standard EAs may be directly applied to a range of optimization 

problems. However, in some applications of EAs, its genetic operators are too general 

to warrantee an efficient and effective evolution. Our motivation in this paper is to 

investigate an effective EA with problem-specific genetic operators devised to the 

problem concerned based on the domain knowledge and characteristics obtained from 

the problem. 

  

3. The Proposed Algorithm 

Our evolutionary algorithm is based on GA and extended by employing an OR-

based crossover and a neighborhood search operator. This section first introduces the 

individual representation and fitness evaluation. After that, the two extensions are 

described in details. Finally, we provide the overall procedure of our algorithm. 

3.1 Individual Representation and Evaluation 

When designing EAs, chromosome representation is one of the most important 

issues. In this paper, we adopt the binary link state (BLS) encoding to represent 

solutions, because it has been successfully used in a number of network coding 

resource minimization problems [10,11,24-26].  

As mentioned in section 2, only merging nodes can perform coding if necessary. 

To explicitly show all possible ways of how information flows via a particular 

merging node, the graph decomposition method is employed to decompose each 

merging node in G into a number of nodes connected by links [10,11]. As a result, a 

secondary graph GD is created. The detailed procedure is shown below. For the i-th 

merging node, let In(i) be the number of incoming links and Out(i) be the number of 

outgoing links, respectively. The original i-th merging node is decomposed into two 



sets of nodes: (1) In(i) nodes, u1,…,uIn(i), referred to as incoming auxiliary nodes, and 

(2) Out(i) nodes, w1,…,wOut(i), referred to as outgoing auxiliary nodes. The j-th 

incoming link of the i-th original merging node is redirected to node uj; and the k-th 

outgoing link of the i-th merging node is redirected to node wk. Besides, a directed 

link e(uj, wk) is inserted between uj and wk, j = 1,…,In(i), k = 1,…,Out(i). The graph 

decomposition method is widely adopted in the literature [10,11,24-26].  

In the BLS encoding, an individual (solution) X = {x1, x2,…, xm} is represented 

by a string of binary bits, where each bit xi is associated with one of the newly 

inserted links between auxiliary nodes, e.g. e(uj, wk) in GD. Value ‘1’ at bit xi means 

its corresponding link exists in GD, and value ‘0’ otherwise. Hence, each individual 

corresponds to an explicit secondary graph GD which may or may not support a valid 

network coding based multicast routing solution. 

To evaluate a given individual X, we first check if X is feasible. Each individual 

corresponds to a unique secondary graph GD. We compute the max-flow between the 

source s and an arbitrary receiver tkT in GD using max-flow algorithm introduced in 

[30]. As mentioned in section 2, we assume each link in G has a unit capacity. The 

max-flow between s and tk is thus equivalent to the number of link-disjoint paths 

between s and tk found by the max-flow algorithm. If all d max-flows are at least R, 

where d is the number of receivers, rate R is achievable and the individual X is 

feasible. Otherwise, X is infeasible. 

For each infeasible individual X, we set f(X) = Ψ, where f(X) is the fitness value 

of X and Ψ is a sufficiently large integer (in this paper, Ψ = 50). If X is feasible, we 

first find a routing subgraph Gs→T from GD and then calculate its fitness. For each sink 

tkT, we select R paths from the obtained link-disjoint paths from s to tk. We therefore 

obtain in total R·d paths, e.g. pi(s, tk), i = 1,…,R, k = 1,…,d. Gs→T is a subgraph of GD 

that only contains all these R·d paths. In Gs→T, coding operation happens at those 

outgoing auxiliary nodes with two or more incoming links. The fitness value f(X) is 

set to the number of coding links in Gs→T. 

Fig.2 shows an example of the graph decomposition and an obtained routing 

subgraph. Fig.2(a) is an original network where source s expects to transmit the 

information to two sinks t1 and t2 at a data rate of 2, i.e. R = 2. The graph has two 

merging nodes, i.e. v1 and v2. By using the graph decomposition method, the original 

graph is transformed into a decomposed graph, as shown in Fig.2(b). Nodes v1 and v2 



are decomposed into two groups of auxiliary nodes with newly inserted links e1, …, e8. 

We associate the i-th bit of an individual with link ei, i = 1,…,8. Given an individual 

‘01110111’, its corresponding secondary graph GD is shown in Fig.2(c). Based on GD, 

a routing subgraph Gs→T with only one coding node w2 is obtained, as shown in 

Fig.2(d). 

 
(a)                                                      (b) 

 

 
(c)                                                      (d) 

Fig.2  An example of the graph decomposition and an obtained routing subgraph (a) The original 
network (b) The decomposed network (c) The corresponding GD (d) The obtained routing subgraph 
 
 

3.2 The OR-based Crossover (ORX) 

As the problem concerned is highly constrained, infeasible solutions take up a 

considerable part of the solution space. The performance of GA could be seriously 

weakened if it cannot generate sufficient feasible individuals.  

Crossover is regarded as a major genetic operator [12]. To help GA to achieve a 

decent performance, when applied to a specific problem, crossover needs to be 



defined properly. Kim et al. adopt uniform crossover (UX) where each allele is 

exchanged between the selected pair of parent individuals with a given swapping 

probability (mixing ratio) typically set to 0.5 [12]. However, this crossover is too 

general and may not be appropriate to create feasible offspring for the problem 

concerned in this paper. Kim et al noticed the lack of feasible individuals in GA and 

inserted an all-one vector into the initial population to make sure that their algorithm 

starts with at least one feasible individual [10,11].  

Concerning the aforementioned individual representation, it can be seen that the 

more 1s in an individual, the more newly inserted links exist in the corresponding GD, 

and thus the higher possibility this individual is feasible. This is the reason why Kim 

et al use an all-one vector to warrantee at least one feasible individual in the evolution. 

Motivated by the idea that individuals containing more 1s have higher 

probabilities to be feasible, we propose a novel crossover operator based on the logic 

OR operation. Similar to the single-point crossover, our crossover is performed at a 

crossover probability pc, and at a crossover point to the selected pairs of individuals. 

However, the way the two offspring inherit genes from their parents in our crossover 

is based on the bitwise logic OR operation. Assume the length of each individual is L. 

The steps of the proposed crossover are as follows: 

1) Given a population {X1, X2,…, X2N}, the 2N individuals are randomly divided 

into N pairs, where N is an integer and 2N is the population size. 

2) For the i-th pair (Xj, Xk), we generate a random number ri and compare it with 

the crossover probability pc. If ri ≤ pc, we choose the i-th pair to perform crossover 

and go to step 3; otherwise, the i-th pair remains in the population. 

3) Randomly select a crossover point from {2,…,L} for the i-th pair, e.g. ℓ. We 

denote by X(m:n) the substring from the m-th bit to the n-th bit of an individual X. 

Then, the crossover to the i-th pair (Xj, Xk) is performed as follows. The first 

offspring directly inherits Xj(1:ℓ-1) as its 1 to ℓ-1 bits. Its ℓ to L bits are obtained by 

performing a bit-wise logic OR operation to Xj(ℓ:L) and Xk(ℓ:L). Similarly, the second 

offspring directly inherits Xk(ℓ:L) as its ℓ to L bits. The 1 to ℓ-1 bits of the second 

offspring are obtained by performing a bitwise logic OR operation to Xj(1:ℓ-1) and 

Xk(1:ℓ-1). 

4) After crossover, the population is updated by replacing parent individuals with 

their offspring. 



To show how the OR-based crossover (ORX) is performed, we use the same 

problem in Fig.2(a) as an example. The i-th bit of an individual is associated with the 

i-th inserted link, ei, i = 1,…,8 (see Fig.2(b)). Suppose a pair of individuals, parent1 = 

‘11001001’ and parent2 = ‘00110110’, are chosen for crossover. It is easy to see that 

these two individuals are both infeasible (for feasibility verification, see section 3.1). 

Assume the crossover point ℓ = 5. Fig.3 shows an example of the OR-based crossover 

on the two parent individuals to generate the two offspring, i.e. ‘11001111’ and 

‘11110110’, which are both feasible. It is obvious that the bitwise logic OR operator 

can help to increase the proportion of 1s in each offspring, while preserving 

characteristics of the parent individuals. The number of feasible individuals is 

potentially increasing after the crossover based on the OR operator. 

The OR-based crossover (ORX), on the one hand, is designed to intensify the 

search in a region with plenty of feasible individuals. It should usually find such a 

region within a short number of generations due to that the logic OR helps to produce 

increasingly more feasible individuals. On the other hand, however, different from the 

uniform crossover, the OR-based crossover will not help much to explore new regions 

in the solution space once feasible individuals are sufficient in the population. What 

the OR-based crossover does is to iteratively confine the search in a smaller and 

smaller region, and thus leading to pre-maturity. We therefore also employ mutation 

in our EA to diversify the population and assist local search (see section 3.4). 

 

 
Fig.3  An example of generating offspring using the OR-based crossover 
 

3.3 The Neighbourhood Search Operator 

As mentioned in section 3.1, each feasible individual corresponds to a secondary 

graph GD based on which a routing subgraph Gs→T can be found.  However, one issue 

to be addressed is that, it is possible that more than one feasible routing subgraph 



exists in the given GD, although by using the method in fitness evaluation we can only 

obtain one. For the example problem in Fig.2(a), the corresponding secondary graph 

and two possible feasible routing subgraphs obtained for an individual ‘11011110’ are 

shown in Fig.4, where the subgraph in Fig.4(c) has less coding links than in Fig.4(b). 

The better the routing subgraph found (i.e. the subgraph requires less coding 

operations), the higher the quality of the corresponding solution to the problem, and 

the faster the convergence of the algorithm. So, an interesting research question arises: 

shall we explore each secondary graph of each feasible individual to find better 

routing subgraph?  

 

 
(a)                                                   (b)                                                 (c) 

Fig.4  An example of different routing subgraphs obtained from a given secondary graph (a) The 
corresponding GD  (b) A feasible routing subgraph (c) Another feasible routing subgraph 
 
 

Inspired by the issue and question above, we design a neighborhood search 

operator to enhance the global exploration of our algorithm. Given a feasible 

individual X, we denote by Gs→T(start) the routing subgraph obtained by fitness 

evaluation (see section 3.1). Starting from Gs→T(start), our neighborhood search, by 

using two moves, explores GD to find a new routing subgraph which requires less 

coding operations. The two moves, i.e. the link removal based move (M1) and the 

path reconstruction based move (M2), are cascaded to find better routing subgraphs. 

We denote the incumbent routing subgraph found by M1 and M2 as Gs→T(M1) and 

Gs→T(M2), respectively. We hereafter call a routing subgraph as a coding-free routing 

subgraph if this subgraph does not require any coding operation.  

M1 aims to remove those incoming links in GD which contribute to coding 

operations yet are redundant to the data rate R. Fig.5 shows the procedure of M1.  



 

1) Set Gtemp = GD and Gs→T(M1) = Gs→T(start).  

2) If Gs→T(M1) is coding-free, stop the procedure and output Gs→T(M1). 

3) Mark all coding nodes in Gs→T(M1) as untraversed. 

4) Randomly select an untraversed coding node in Gs→T(M1), e.g. node nc. Assume nc has 

In(nc) incoming links in Gs→T(M1), where In(nc) ≥ 2. Number these incoming links in 

any order. 

5) For i = 1 to In(nc) 

a) Delete the i-th incoming link of nc from Gtemp. 

b) Check if a new routing subgraph Gs→T(new) can be obtained from Gtemp by the fitness 

evaluation in section 3.1. If Gs→T(new) is found and Ф(Gs→T(new)) ≤ Ф(Gs→T(M1)), 

set Gs→T(M1) = Gs→T(new) and go to step 2; Otherwise, reinsert the i-th incoming 

link to Gtemp. 

6) Mark nc as a traversed coding node in Gs→T(M1). If all coding nodes in Gs→T(M1) are 

traversed, stop the procedure and output Gs→T(M1); otherwise, go to step 4. 

Fig.5  Procedure of the link removal based move (M1) 
 

 

After M1, the routing subgraph obtained, i.e. Gs→T(M1), may be substantially 

improved compared with Gs→T(start). However, it is still possible that some coding 

nodes remain in Gs→T(M1). This is because M1 operates in a greedy fashion. 

Although it is simple to implement, M1’s performance may vary with the structure of 

GD(start) and different traversal order of incoming links. Especially when GD(start) 

does not contain enough incoming links for deletion, M1 may not be able to eliminate 

all coding nodes in Gs→T(M1). Hence, using M1 does not guarantee to result in a 

coding-free routing subgraph. To optimize the structure of Gs→T(M1), we design M2 

to further reduce the number of coding nodes. Set Gs→T(M2) = Gs→T(M1), and then 

M2 starts from Gs→T(M2). 

As mentioned in section 2, each routing subgraph consists of Rd paths, where R 

is the data rate and d is the number of sinks. Only those paths to different sinks may 

contribute to a coding operation. M2 aims to avoid each coding node by 

reconstructing some paths in Gs→T(M2) that contribute to the coding at the node.  

For each coding node, path reconstruction includes four steps: (1) Determine 

which paths in Gs→T(M2) are involved in the coding at the node. (2) For each involved 

path, select the start and end points of a subpath that needs to be reconstructed. (3) 

Find an alternative subpath between the start and end points that do not contribute to 

any coding node. (4) Update the structure of Gs→T(M2). 



For convenience, we number all paths in Gs→T(M2), i.e. pi(s,tk), i = 1, 2, …, R, k 

= 1,2,…,d, as path 1, 2, …, Rd. We identify how many paths occupy a link 

eGs→T(M2), and label each e with the indices of paths that occupy e. For example, 

we number the four paths of the routing subgraph in Fig.4(b), where R = 2 and d = 2, 

i.e. 

p1(s,t1) = s→a→t1; 

p2(s,t1) = s→b→u2→w1→c→u3→w3→t1; 

p1(s,t2) = s→a→u1→w1→c→u3→w4→t2; 

p2(s,t2) = s→b→t2; 

as path 1, 2, 3 and 4, respectively, with labels on each link as shown in Table 1. We 

hereafter use paths 1,2,…,Rd to represent all paths in Gs→T(M2). Let SubPath(i,u,v) 

denote the subpath of path i from node u to node v. 

 

Table 1  Links and Their Path Labels in Fig.4(b) 

Link Label Link Label Link Label
s→a 1,3 b→u2 2 u3→w3 2 
s→b 2,4 u1→w1 3 u3→w4 3 
a→t1 1 u2→w1 2 w3→t1 2 
b→t2 4 w1→c 2,3 w4→t2 3 
a→u1 3 c→u3 2,3   

 

Fig.6 illustrates an example of path reconstruction within Gs→T(M2) by using M2. 

Note that number(s) attached to each link is the path label of the link. We see that four 

subpaths, i.e. SubPath(1,u1,v1), SubPath(4,u2,v2), SubPath(6,u3,v3) and 

SubPath(8,u3,v3), form the coding node nc. Due to SubPath(6,u3,v3) = 

SubPath(8,u3,v3), M2 treats them the same when reconstructing subpath from u3 to v3. 

After path reconstruction, subpaths SubPath(1,u1,v1), SubPath(6,u3,v3) and 

SubPath(8,u3,v3) are reconstructed and the original coding operation at node nc is 

avoided. Beside, Gs→T(M2) with these new subpaths is still feasible as each sink can 

still receive a data rate of R. In this way, M2 can reduce the number of coding nodes 

in Gs→T(M2) while keeping the feasibility of Gs→T(M2). 

 



 
(a) Before reconstruction                (b) After reconstruction 

Fig.6  An example of path reconstruction. (a) target subpath in  Gs→T(M1) that forms a coding node nc 
(b) subgraph obtained after reconstruction.  
 
 

 
The determination of which paths contribute to a given coding node nc is easy. 

To identify them, we only need to check path labels of incoming links of nc. Some 

incoming links of nc are occupied by multiple paths (e.g. u3→nc in Fig.6(a)) while 

others are occupied by single path (e.g. u1→nc in Fig.6(a)).  

The following steps are to determine the start point and end point of a subpath 

for path reconstruction (e.g. u1 and v1 in Fig.6): 

- For any incoming link of nc occupied by multiple paths, we randomly choose one 

path (e.g. PathA) and check the upstream and downstream nodes of nc along the 

path (PathA). Given a node n along PathA, we denote the incoming link of n 

along PathA by ein(n,PathA) and the outgoing link of n along PathA by 

eout(n,PathA). Let Λ(ein(n,PathA)) and Λ(eout(n,PathA)) denote the labels of 

ein(n,PathA) and eout(n,PathA), respectively. When searching upstream, we refer 

to a node n1 as a start point for path reconstruction if n1 satisfies the following 

conditions: Λ(eout(n1,PathA)) = Λ(ein(nc,PathA)) and Λ(ein(n1,PathA)) ≠ 

Λ(ein(nc,PathA)). We stop the upstream search once such n1 is found. If n1 cannot 

be found from the search, we set the source s as the start point. Similarly, when 

searching downstream, we refer to a node n2 as an end point for path 

reconstruction if n2 satisfies the following conditions: Λ(ein(n2,PathA)) = 

Λ(ein(nc,PathA)) and Λ(eout(n2,PathA)) ≠ Λ(ein(nc,PathA)). We stop the 

downstream search once n2 is found. Otherwise, we set the sink of PathA as the 

end point. Based on the pair of start and end points, the subpath occupied by 



multiple paths between them needs to be reconstructed to avoid the coding at nc. 

It is not difficult to understand that the above subpath is the maximal length 

subpath the multiple paths share in common. Such subpath enables us to treat 

multiple paths as a whole when reconstructing subpaths.  

- For any incoming link occupied by a single path, we search along this single path 

and use the above same rule to determine a pair of start and end points for path 

reconstruction. 

To remove the coding operation at nc from Gs→T(M2), we need to find alternative 

subpaths (from start point to end point) to replace the conflicting subpaths (see 

Fig.6(b)).  

Assume nc has In(nc) incoming links in Gs→T(M2), where In(nc) ≥ 2. We have 

In(nc) pairs of start and end points. Let ui and vi, i = 1, 2, …, h, be the i-th pair of start 

point and end point, respectively. Among these pairs of nodes, we can avoid the 

coding at nc if we successfully reconstruct In(nc) –1 subpaths by using arbitrary In(nc) 

–1 pairs of nodes. In other words, one of the In(nc) original subpaths can remain. As 

shown in Fig.6, the original subpath SubPath(4,u2,v2) does not need to be 

reconstructed. We define the maximum graph GMAX as the secondary graph GD 

corresponding to the individual ’11…1’, where each newly introduced link exists in 

the graph. Using GMAX is the most likely secondary graph to find alternative paths for 

reconstruction. 

The steps of reconstructing a subpath from ui to vi is illustrated in Fig.7. Note that 

if the original subpath is occupied by multiple paths, update must be made to each of 

the relevant paths. Take Fig.6(b) as an example, the new subpath from u3 to v3 is 

occupied by paths 6 and 8, so the two paths must be updated by using the new subpath.  

Fig.8 shows the procedure of the path reconstruction based move (M2). M2 only 

operates on some subpaths so only the involved subpaths are changed while the 

remaining structure of Gs→T(M2) is not affected. It is not difficult to understand that (1) 

the initial routing subgraph, i.e Gs→T(M1), influences the performance of M2, and (2) 

M2 is more effective to avoid coding at a coding node with less incoming links.  

After the neighbourhood search, the newly obtained routing subgraph Gs→T(M2) 

is returned as the corresponding routing subgraph of the given individual X. Instead of 

Ф(Gs→T(start)), the fitness value f(X) of X is set to Ф(Gs→T(M2)), i.e. the number of 

coding links in Gs→T(M2). 

 



1) Delete Gs→T(M2) completely from GMAX. Denote the newly obtained subgraph as GNEW. 

2) Insert the subpath that needs to be reconstructed into GNEW. 

3) Delete the corresponding incoming link of nc from GNEW. 

4) Find a subpath from ui to vi from GNEW by using Dijkstra algorithm, a classical shortest path 

algorithm [32]. If it is successful, update Gs→T(M2) by replacing the original subpath in 

Gs→T(M2) with the reconstructed subpath. Otherwise, Gs→T(M2) remains unchanged.  

Fig.7  Steps for reconstructing a subpath. 
 

1) Set Gs→T(M2) = Gs→T(M1). 

2) If Gs→T(M2) is coding-free, stop the procedure and output Gs→T(M2). 

3) Mark all coding nodes in Gs→T(M2) as untraversed. 

4) Randomly select an untraversed coding node in Gs→T(M2), e.g. node nc. Assume nc has In(nc) incoming links 

in Gs→T(M2). Number these incoming links in any order. Set counter c = 0. 

5) For i = 1 to In(nc) 

a) Determine the i-th pair of start and end points (ui,vi). // see steps of determining start and end points. 

b) Find an alternative subpath from ui to vi. If the subpath is successfully reconstructed, update the relevant 

paths in Gs→T(M2) and set c = c + 1. // see Fig.7 for detail. 

d) If c = In(nc) − 1 or i = In(nc), go to step 6. 

6) Mark nc as a traversed coding node in Gs→T(M2). If all coding nodes in Gs→T(M2) are traversed, stop the 

procedure and output Gs→T(M2); otherwise, go to step 4. 

Fig.8  Procedure of the path reconstruction based move (M2)  
 

3.4 The Structure of the Proposed Algorithm 

The pseudo-code of the proposed EA is shown in Fig.9 with the following two 

extensions for solving the problem concerned: (1) an OR-based crossover adopted as 

the recombination operator, and (2) a neighborhood search operator embedded.  

Note that the selection and mutation in this paper is the tournament selection and 

simple mutation, respectively. The tournament selection repeatedly selects the best 

individual of a randomly chosen subset of the population, where the subset size is 

referred to as tournament size [12]. In the simple mutation, each bit of an individual is 

flipped at a given mutation probability. 

The genotype encoding approach used in the proposed EA is the binary link state 

(BLS) encoding. For any outgoing link of an arbitrary merging node with k incoming 

links, an alphabet of cardinality 2 in the BLS encoding is sufficient to represent all 

possible 2k states of k links [11] to the outgoing link.  

 

 



1) Initialization 

2) Randomly create a population {X1, X2,…, X2N} with 2N individuals 

3) Evaluate each individual Xi, i = 1,…,2N, by the following: 

4)     if Xi is feasible then  // see section 3.1 for feasibility verification 

5)         Execute the neighborhood search to improve the fitness of Xi // see section 3.3 

6)     else  

7)         Assign a sufficiently large value Ψ to Xi as its fitness value 

8) Repeat 

9) Select a new population from the old population by using tournament selection 

10) Execute the OR-based crossover to each selected pair of individuals at a crossover 

probability pc // see section 3.2 

11) Execute a simple mutation to the population where each bit is flipped independently at a 

mutation probability pm  

12) Evaluate each individual Xi, i = 1,…,2N, by the following: 

13)     if Xi is feasible then  // see section 3.1 for feasibility verification 

14)         Execute the neighborhood search to improve the fitness of Xi // see section 3.3 

15)     else  

16)         Assign a sufficiently large value Ψ to Xi as its fitness value 

17) until the termination condition is met 

Fig.9  The pseudo-code of the proposed algorithm 

 

Before initialization, the parameters of the EA, i.e. the population size 2N, the 

tournament size, the crossover probability pc and the mutation probability pm need to 

be defined. In the initialization, a population {X1, X2,…, X2N} is randomly generated 

and then evaluated. In the evaluation, we check the feasibility of each individual Xi, 

i.e. verify if the individual corresponds to a secondary graph GD where a feasible 

routing subgraph Gs→T(start) can be found. If Xi is feasible, its corresponding GD and 

Gs→T(start) are passed on to the neighborhood search where the two moves, i.e. M1 

and M2 are executed to find a new and better routing subgraph from the neighbors of 

Gs→T(start). After that, the fitness of Xi is set to the number of coding links in the new 

routing subgraph, i.e. Ф(Gs→T(M2)). On the other hand, if Xi is an infeasible 

individual, we assign a sufficiently large number Ψ to Xi as its fitness value (in this 

paper, Ψ = 50). 

In the loop, the tournament selection selects fitter individuals from the old 

population to form a new population. Then, the OR-based crossover is performed to 

each selected pair of individuals to create new and fitter offspring. Later, simple 

mutation is applied to diversify the population. After mutation, evaluation is 



performed in the same way as that in the initialization. The selection, OR-based 

crossover and mutation are repeated iteratively to evolve the population until the 

evolution stops. 

The termination conditions can be: (1) finding a coding-free routing subgraph, or 

(2) reaching a predefined number of generations. 

 

4. Performance Evaluation 

We first investigate the effectiveness of the two extensions in EA, i.e. the OR-

based crossover and the neighbourhood search operator, respectively. Experiments 

were conducted on four testing networks, 3-copies, 7-copies, 15-copies, and 31-copies 

which are usually used to test the performance of algorithms on the network coding 

resource minimization problem [11, 24, 26]. The n-copies networks are generated 

based on the network shown in Fig.4(a) by cascading n-copies of it, where each sink 

of the upper copy is a source of the lower copy. The n-copies network has n + 1 sinks, 

to which the maximum data transmission rate from the source is 2. The length of each 

individual is 32 bits in 3-copies network, 80 bits in 7-copies network, 176 bits in 15-

copies network, and 368 bits in 31-copies network, respectively. All experimental 

results are collected by running each algorithm 50 times. 

 

4.1 The effectiveness of the OR-based crossover 

As mentioned in section 3.2, the OR-based crossover (ORX) helps to produce 

feasible individuals during the evolution. We examine the effectiveness of this 

operator by comparing the performance of the following three algorithms on 3-copies, 

7-copies, 15-copies and 31-copies networks: 

 GA-UX-M: GA with tournament selection, uniform crossover (UX) and 

simple mutation. Uniform crossover decides which parent individual will contribute 

to each position in the offspring individual, with a mixing ratio [12]. In simple 

mutation, each bit is flipped independently at a mutation probability pm. GA-UX-M is 

used to solve the problem concerned in this paper [11].  

 GA-M: GA with tournament selection and simple mutation. Crossover is 

excluded. 



 GA-ORX-M: GA with tournament selection, ORX and simple mutation.  

As we see, the differences among these algorithms lie in whether they have 

crossover and if so which crossover they use. For the three algorithms, the initial 

population is randomly generated with an all-one vector inserted. This is to ensure 

each algorithm begins with at least one feasible individual [10,11]. The population 

size in the three experiments is set to 20. The termination condition is 100 generations 

of evolution. The tournament size for selection is fixed at 2, which is a typical setting 

for tournament selection [12]. The mutation probability is set to 0.006 [11]. As to the 

crossover probability pc, we set 0.25, 0.50, and 0.75 to GA-UX-M and GA-ORX-M.  

For each algorithm, the mean and standard deviation (std) of the best solutions 

obtained over 20 runs are shown in Table 2. First, we can see that GA-ORX-M 

significantly outperforms GA-UX-M and GA-M in each instance. This evidence 

demonstrates that the adoption of ORX can effectively improve the performance of 

GA. Besides, if we look at GA-ORX-M with different crossover probabilities, it is 

easily seen that pc = 0.25 leads to the best performance. As aforementioned, ORX can 

increase the number of feasible individuals in the population. A larger pc is more 

likely to result into a faster growing of feasible individuals. If pc is sufficiently large, 

ORX will restrict the search around a small region (where all-one vector is the centre) 

in the solution space and harm the population diversity. On the contrary, ORX with a 

smaller pc not only slowly compensates for the loss of feasible individuals in the 

population during the evolution, but also has a lower impact on the diversification of 

GA. This is why GA-ORX-M with a smaller pc performs better. Regarding the 

performance of GA-UX-M and GA-M, one may find that the former only performs 

slightly better except for the 7-copies network. This evidence shows that using UX 

may not be appropriate for the GA regarding the optimization problem in this paper. 

 

Table 2  Results of GA-UX-M, GA-M and GA-ORX-M (The Best Results are in Bold) 

Algorithm pc 
3-copies 7-copies 15-copies 31-copies 

mean std mean std mean std mean std 

GA-UX-M 0.25 0.84 1.36 0.70 1.94 9.48 7.97 25.72 10.02 

0.50 0.30 0.90 0.98 2.35 7.46 6.12 22.48 6.93 

0.75 0.60 1.21 1.04 2.44 6.72 5.83 21.96 8.35 

GA-M / 0.78 1.32 2.28 3.27 8.24 9.68 23.38 8.77 

GA-ORX-M 0.25 0.00 0.00 0.00 0.00 1.20 0.92 11.32 1.91 

0.50 0.00 0.00 0.00 0.00 1.78 0.97 13.30 1.86 

0.75 0.00 0.00 0.00 0.00 3.54 1.77 15.64 2.52 

 



4.2 The effectiveness of the neighbourhood search operator 

As discussed in section 3.3, a neighbourhood search operator with two moves, i.e. 

M1 and M2, is applied to each feasible individual to enhance global exploration. In 

order to verify the effectiveness of the operator, we carry out the following 

experiments: collect randomly ten feasible individuals for each of the four testing 

networks, i.e. 3-copies, 7-copies, 15-copies and 31-copies networks. For each 

individual, we compare two routing subgraphs obtained before and after 

implementing the neighbourhood search in terms of the number of coding links, i.e. 

ФBEF and ФAFT. To show the performance of each move, we run neighbourhood 

search with the following settings: (1) only M1 is included, (2) only M2 is included, 

and (3) both M1 and M2 are included. For convenience, we number the ten feasible 

individuals obtained for each network by ФBEF they have. 

The experimental results are shown in Table 3. First, it can be seen that ФAFT is 

always smaller than ФBEF and the difference between them is sometimes significant 

especially in the 15-copies and 31-copies networks, demonstrating the effect of the 

neighbourhood search. With respect to the power of each move, we see that (1) M1 

and M2 are both feasible and effective. (2) For the 3-copies and 7-copies networks, 

M1 sometimes performs worse than M2. (3) For the 15-copies and 31-copies 

networks, M1 is more likely to obtain a routing subgraph containing less number of 

coding links than M2. As mentioned before, M1 is to delete redundant links from a 

secondary graph GD(M1). If GD(M1) does not have enough links for deletion, the 

performance of M1 is deteriorated. In addition, the uncertainty of link traversal order 

also affects the results of M1. On the other hand, M2 only focuses on reconstructing a 

part of Gs→T(M2) each time. So, M2 is mainly affected by the input routing subgraph. 

Last but not least, the results obtained by cascading M1 and M2 also illustrate M2 is a 

useful complement to M1 as M2 can further optimize the routing subgraph obtained 

by M1. We therefore conclude that the neighbourhood search operator helps to 

improve the performance of our algorithm as long as enough feasible individuals are 

generated. 

 

 

 

 

 



Table 3  Experimental Results of The Neighbourhood Search 

Feasible 
Individual No. 

3-copies 7-copies 15-copies 31-copies 

ФBEF settings ФAFT ФBEF settings ФAFT ФBEF settings ФAFT ФBEF settings ФAFT

1 
2 

M1 only 0 
2 

M1 only 0 
9 

M1 only 1 
29 

M1 only 0 

M2 only 0 M2 only 0 M2 only 0 M2 only 4 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

2 
2 

M1 only 0 
2 

M1 only 0 
10

M1 only 1 
31 

M1 only 0 

M2 only 0 M2 only 0 M2 only 2 M2 only 6 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

3 
2 

M1 only 0 
3 

M1 only 0 
10

M1 only 1 
32 

M1 only 2 

M2 only 0 M2 only 0 M2 only 0 M2 only 3 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

4 
2 

M1 only 0 
5 

M1 only 0 
11

M1 only 0 
33 

M1 only 1 

M2 only 0 M2 only 0 M2 only 0 M2 only 5 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

5 
2 

M1 only 0 
5 

M1 only 0 
13

M1 only 2 
34 

M1 only 0 

M2 only 0 M2 only 0 M2 only 2 M2 only 7 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

6 
2 

M1 only 0 
6 

M1 only 2 
14

M1 only 1 
35 

M1 only 0 

M2 only 0 M2 only 0 M2 only 4 M2 only 5 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

7 
2 

M1 only 1 
7 

M1 only 0 
17

M1 only 1 
35 

M1 only 1 

M2 only 0 M2 only 0 M2 only 4 M2 only 5 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

8 
3 

M1 only 0 
7 

M1 only 1 
18

M1 only 0 
35 

M1 only 1 

M2 only 0 M2 only 0 M2 only 4 M2 only 8 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

9 
3 

M1 only 1 
7 

M1 only 1 
19

M1 only 0 
35 

M1 only 0 

M2 only 0 M2 only 0 M2 only 6 M2 only 7 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

10 
3 

M1 only 1 
7 

M1 only 1 
20

M1 only 2 
36 

M1 only 0 

M2 only 0 M2 only 0 M2 only 6 M2 only 7 

M1&M2 0 M1&M2 0 M1&M2 0 M1&M2 0 

 

4.3 Overall performance evaluation 

In order to thoroughly analyse the overall performance of the proposed EA, we 

compare it with six state-of-the-art algorithms in the literature. The objectives are to 

minimize coding operations involved while meeting the expected data rate: 

− GA1: BLS encoding based GA [11]. Different from GA-UX-M used in section 

4.1, GA1 employs a greedy sweep operator after the evolution to improve the quality 

of the best solution found by flipping each of the remaining 1’s to 0 if it results into a 

feasible solution. 



− GA2: GA with the block transmission state encoding and operators [11]. The 

same greedy sweep operator is applied at the end of evolution as in GA1. 

− QEA1: the quantum-inspired evolutionary algorithm (QEA) proposed in [15]. 

This QEA is featured with a multi-granularity evolution mechanism, an adaptive 

quantum mutation and a penalty-function-based fitness function. 

− QEA2: QEA proposed in [23]. The evolutionary parameters of QEA2 are 

adaptively adjusted according to the current and previous fitness values of the 

individual.  

− PBIL: Population based incremental learning algorithm [24]. PBIL maintains a 

real-valued probability vector (PV) which, when sampled, produces promising 

solutions with higher probabilities. A restart scheme is introduced to help PBIL to 

escape from local optima. 

− cGA: compact genetic algorithm [26]. Similar to PBIL, cGA also maintains a 

PV. However, PV in cGA is only sampled once at each generation. The new sample is 

compared with the best-so-far sample and between the two the winner is used to 

update the PV.  

− pEA: path-oriented encoding evolutionary algorithm [22]. Each chromosome is 

represented by a union of paths originating from the source and terminating at one of 

the receivers. A local search operator is used to improve the solution quality. 

− EA: the proposed algorithm, i.e. GA with ORX, mutation and the 

neighbourhood search. 

The population size for each population-based algorithm is set to 20. The 

crossover probability pc and mutation probability pm are set to 0.8 and 0.006 for GA1 

and 0.8 and 0.012 for GA2, respectively [11]. We use the best parameter settings for 

QEA1, QEA2, PBIL and cGA [15, 23, 24, 26]. In EA, we set pc = 0.25, pm = 0.006. 

Experiments have been carried out upon four fixed and ten randomly-generated 

directed networks. Each algorithm terminates when a coding-free routing subgraph 

(i.e. optimal solution) is found or a predefined generation (200 for each instance) is 

reached. Table 4 shows the networks and parameter setup. To encourage scientific 

comparisons, the detailed information of all 14 instances is provided at 

http://www.cs.nott.ac.uk/~hxx/. Note that the testing networks are relatively small in 

size and may not be able to precisely reflect the real-world problems.  



All experiments were run on a Windows XP computer with Intel(R) Core(TM)2 

Duo CPU E8400 3.0GHz, 2G RAM. The results are achieved by running each 

algorithm 50 times. 

 

Table 4  Experimental Networks 

Network nodes links sinks rate L 

3-copies 25 36 4 2 32 
7-copies 57 84 8 2 80 

15-copies 121 180 16 2 176 

31-copies 249 372 32 2 368 

Rand-1 20 37 5 3 43 

Rand-2 20 39 5 3 50 

Rand-3 30 60 6 3 86 

Rand-4 30 69 6 3 112 

Rand-5 40 78 9 3 106 

Rand-6 40 85 9 4 64 

Rand-7 50 101 8 3 145 

Rand-8 50 118 10 4 189 

Rand-9 60 150 11 5 235 

Rand-10 60 156 10 4 297 

Note: L: the encoding length of individuals 
 

Table 5 illustrates the mean and standard deviation (std) of the best solutions 

obtained over 50 runs by the eight algorithms. The mean value of 0.00 indicates an 

algorithm can obtain an optimal solution (which corresponds to a coding-free routing 

subgraph) at each run. The results show that EA and pEA can always find an optimal 

solution for each instance while the others in some instances cannot guarantee an 

optimal solution. To further support this observation, the statistical results of 

comparing algorithms by two-tailed t-test [31] with 98 degrees of freedom at a 0.05 

level of significance are given in Table 6. The result of Algorithm-1↔Algorthm-2 is 

shown as “+”, “–”, or “~” when Algorithm-1 is significantly better than, significantly 

worse than, or statistically equivalent to Algorithm-2, respectively. It can be seen that 

EA performs no worse but usually better than the other algorithms, indicating positive 

contributions of the OR-based crossover and neighbourhood search.  

On the other hand, pEA also performs well in each instance. This is because the 

test problems are relatively small in size, i.e. the number of receivers is limited. As 

aforementioned, pEA maintains a population of path-oriented chromosomes which are 

two-dimensional. With a small set of receivers, pEA could gain descent performance. 

However, with the number of receivers growing, the structure of the chromosome 



becomes increasingly larger and more complex, which would lead to a weakened 

optimization performance. 

 

Table 5  Experimental Results of Different Algorithms (The Best Results are in Bold) 

 GA1 GA2 QEA1 QEA2 
Scenarios mean std mean std mean std mean std 
3-copies 0.36 0.74 0.08 0.27 0.00 0.00 0.00 0.00 
7-copies 1.96 1.92 0.68 0.84 0.18 0.62 0.48 0.70 
15-copies 7.48 5.12 3.66 2.13 3.10 4.18 5.80 1.62 
31-copies 28.75 7.97 18.66 22.58 19.10 5.76 20.00 0.00 
Rand-1 0.52 0.88 0.44 0.50 0.00 0.00 0.00 0.00 
Rand-2 0.26 0.66 0.02 0.14 0.00 0.00 0.00 0.00 
Rand-3 0.44 0.83 0.02 0.14 0.00 0.00 0.00 0.00 
Rand-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-5 2.78 2.71 1.16 0.61 0.46 0.50 0.48 0.54 
Rand-6 0.22 0.41 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-7 1.58 0.92 1.36 0.66 0.66 0.47 0.58 0.53 
Rand-8 2.52 1.44 2.28 0.94 0.98 0.82 0.48 0.61 
Rand-9 2.82 1.22 2.34 1.34 1.64 0.98 1.94 1.16 
Rand-10 3.26 2.68 1.38 0.69 0.66 0.68 0.42 0.64 
 PBIL cGA pEA Proposed EA 
Scenarios mean std mean mean std mean mean std 
3-copies 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7-copies 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
15-copies 2.14 4.31 0.00 0.00 0.00 0.00 0.00 0.00 
31-copies 28.90 10.30 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-5 0.04 0.28 0.08 0.27 0.00 0.00 0.00 0.00 
Rand-6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rand-7 0.38 0.60 0.22 0.41 0.00 0.00 0.00 0.00 
Rand-8 0.60 1.56 0.24 0.43 0.00 0.00 0.00 0.00 
Rand-9 0.06 0.23 0.10 0.30 0.00 0.00 0.00 0.00 
Rand-10 0.00 0.00 0.08 0.27 0.00 0.00 0.00 0.00 

 

The average computational time consumed by each algorithm is shown in Table 

7. Compared with other algorithms, EA usually spends less computational time. In 

particular, the saving of time by using EA is sometimes significant, e.g. in 15-copies 

and 31-copies networks. This is interesting as the neighbourhood search usually needs 

a considerable amount of time when applied to each feasible individual. In fact, the 

reason that EA consumes less computational time is, as examined in section 4.2, the 

neighbourhood search is powerful and makes full use of each feasible individual. So, 

neighbourhood search is only applied to a small number of feasible individuals before 

an optimal solution is found. EA stops whenever an optimal solution is found.  

To summarize, the proposed EA has similar performance with pEA and 

outperforms other existing algorithms with respect to the statistical results.  

 



Table 6  The t-Test Results of Comparing Different Algorithms on 14 Instances 

Scenarios EA↔GA1 EA↔GA2 EA↔QEA1 EA↔QEA2 EA↔PBIL EA↔cGA EA↔pEA

3-copies        

7-copies        

15-copies        

31-copies        

Rand-1        

Rand-2        

Rand-3        

Rand-4        

Rand-5        

Rand-6        

Rand-7        

Rand-8        

Rand-9        

Rand-10        

 

Table 7  Computational Time Obtained by Different Algorithms (seconds) 

Scenarios GA1 GA2 QEA1 QEA2 PBIL cGA  pEA EA 

3-copies 0.99 1.61 0.24 0.21 0.10 0.02 0.09 0.02 

7-copies 12.42 11.98 8.54 10.41 2.20 0.15 0.33 0.12 

15-copies 55.85 49.27 89.88 91.61 66.14 2.09 1.57 1.22 

31-copies 232.92 200.73 728.13 750.70 543.64 29.55 20.79 15.31 

Rand-1 2.95 3.30 0.73 0.50 0.29 0.23 0.16 0.03 

Rand-2 1.14 1.33 0.37 0.40 0.13 0.06 0.11 0.04 

Rand-3 5.13 5.07 0.68 0.75 0.23 0.06 0.27 0.11 

Rand-4 3.19 3.13 0.57 0.81 0.26 0.12 0.23 0.06 

Rand-5 16.57 14.52 13.82 14.38 6.09 5.62 0.63 1.81 

Rand-6 3.54 3.34 0.72 0.84 0.17 0.06 0.23 0.05 

Rand-7 24.13 20.78 24.35 22.52 24.29 6.83 2.10 11.17 

Rand-8 38.37 30.89 38.04 31.47 27.43 20.11 0.95 14.19 

Rand-9 62.46 50.73 73.73 73.94 47.29 19.54 1.93 14.11 

Rand-10 71.25 55.46 64.12 52.39 31.81 17.42 1.15 9.27 

 

 

5. Conclusion and Future Work 

In this paper, we investigate an improved evolutionary algorithm (EA) to solve 

the problem of minimizing coding resource in network coding based multicast. Two 

extensions have been made to improve the performance of our EA. The first extension 

is an OR-based crossover which performs OR operations to each selected pair of 

parents. It shows to be able to constantly produce feasible individuals during the 

evolution. The proposed crossover operator shows to be crucial in designing an 



effective EA for the highly contained problem concerned. The other extension is a 

neighborhood search with two moves applied to each feasible secondary graph, 

leading to an improved routing subgraph. The intensification of search around 

promising local regions of the search space further improves the effectiveness of the 

proposed EA. The effectiveness and efficiency of the EA, which is adapted with 

specific characteristics of the highly constrained problem, have been evaluated via a 

large amount of systematic simulations. The experimental results show that the 

proposed EA outperforms other existing algorithms in the literature in terms of high-

quality solution and low computational time, which undoubtedly deserves the best 

algorithm to date. In a word, the proposed EA is a suitable algorithm to solve the 

problem concerned. 

In nature, a telecommunications network is featured with dynamic environment 

and full of uncertainty. The network environment is changing all the time. In the 

future, we will extend the coding operations minimization problem by considering the 

dynamic environment features, such as, the changing topology, nodes/links failures, 

and dynamic multicast group. In the meanwhile, we will develop more efficient online 

search algorithms to rapidly trace the optimal (near optimal) solution and respond to 

the environment change. As in the real world the network scale is relatively large, 

centralized search algorithms would be inefficient to handle the dynamics and 

uncertainties in the networks. Hence, we plan to study and develop decentralized 

online search algorithm(s) which can be implemented in a distributed real world 

network environment. Besides, to evaluate the performance of the proposed 

decentralized algorithm, the test problems used in the paper will be extended so as to 

reflect the dynamic features of the real world networks. 

The optimization problem studied in the paper has a single objective, i.e. to 

minimize the amount of coding operations incurred during the NCM. In this problem, 

the expected data rate is regarded as a constraint that must be satisfied. Nevertheless, 

the expected data rate could be considered as an objective as well since it is also 

interesting to maximize the achievable data rate for the NCM. Hence, in the future, 

we will extend the original single-objective optimization problem to a bi-objective 

optimization problem, where the coding cost is minimized and the achievable data 

rate is maximized simultaneously. The two objectives may conflict with each other, 

meaning that to improve one objective may weaken the other. There is no such a 

solution which is optimized in both objectives [33-36]. The optimal solution set for 



the bi-objective optimization problem is known as the Pareto-optimal set. We plan to 

investigate the problem by using MOEAs, such as NSGA-II, epsilon-NSGA-II, 

SPEA2, etc. The outcome of the research could provide an insightful view on how to 

balance between the coding cost and the achievable data rate for decision makers. 
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