Skip to main content
Log in

Temporality and Context for detecting adverse drug reactions from longitudinal data

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper introduces a method for mining co-occurring events from longitudinal data, and applies this method to detecting adverse drug reactions (ADRs) from patient data. Electronic health records are richer than older data sources (such as spontaneous report records) and thus are ideal for ADR mining. However, current data mining methods, such as disproportionality ratios and temporal itemset mining, ignore certain important aspects of the longitudinal data in patient records. In this paper, we highlight two specific problems with current methods, which we name temporal and contextual sensitivity, and discuss why these two properties are vital to mining patterns from longitudinal data. We also propose two sensitive longitudinal rate comparison measures, which utilize condition occurrence rates and length of drug eras, for mining ADRs from this type of data. These novel methods are then used to rank potential ADRs, along with existing state-of-the-art methods, under many simulated yet realistic datasets. In 48 out of 60 experiments, the proposed longitudinal rate comparison methods significantly outperform other methods in mining known ADRs from other drug / condition pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD ’93, pp. 207–216. ACM, New York, NY, US (1993). doi:10.1145/170035.170072

  2. Ahmed I, Dalmasso C, Haramburu F, Thiessard F, Brot P, Tubert-Bitter P (2010) False discovery rate estimation for frequentist pharmacovigilance signal detection methods. Biom 66(1):301–309. doi:10.1111/j.1541-0420.2009.01262.x

    Article  MATH  Google Scholar 

  3. Bate A (2003) The use of bayesian confidence propagation neural network in pharmacovigilance. Ph.D. thesis. Ume University, Pharmacology and Clinical Neuroscience

    Google Scholar 

  4. Bate A, Lindquist M, Edwards IR, Olsson S, Orre R, Lansner A, De Freitas RM (1998) A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol 54(4):315—321

    Article  Google Scholar 

  5. DS B, DA P, KN W, AB M, TJ S, JL A (2006) JAMA 296(15):1858–1866. doi:10.1001/jama.296.15.1858

    Article  Google Scholar 

  6. Dumouchel W (1999) Bayesian data mining in large frequency tables, with an application to the fda spontaneous reporting system. Am Stat 53(3):177–190. doi:10.1080/00031305.1999.10474456

    Google Scholar 

  7. DuMouchel W, Pregibon D Empirical bayes screening for multi-item associations. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining pp. 67–76 (2001). doi:10.1145/502512.502526

  8. Ernst FR, Grizzle AJ (2001) Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Pharm Assoc (Wash) 41(2):192–199

    Google Scholar 

  9. Evans S (2002) Statistical methods of signal detection. John Wiley & Sons, pp 273–279. Ltd. doi:10.1002/0470853093.ch20

  10. Evans SJ, Waller PC, Davis S (2001) Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf 10(6):483–486. doi:10.1002/pds.677

    Article  Google Scholar 

  11. Hauben M, Reich L (2005) Potential utility of data-mining algorithms for early detection of potentially fatal/disabling adverse drug reactions: a retrospective evaluation. J Clin Pharmacol 45(4):378–384

    Article  Google Scholar 

  12. Krishnamoorthy K, Thomson J (2004) A more powerful test for comparing two poisson means. J Stat Plan Infer 119(1):23–35

    Article  MATH  MathSciNet  Google Scholar 

  13. Li Y, Ning P, Wang X, Jajodia S (2003) Discovering calendar-based temporal association rules. Data Knowl Eng 44(2):193–218. http://www.sciencedirect.com/science/article/pii/S0169023X02001350

    Article  Google Scholar 

  14. Lin S, Qiao J, Wang Y (2014) Frequent episode mining within the latest time windows over event streams. Appl Intell 40(1):13–28. doi:10.1007/s10489-013-0442-8

    Article  Google Scholar 

  15. Lindquist M, Stahl M, Bate A, Edwards IR, Meyboom R.H.B. (2000) A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database. Drug Saf 23(6):533– 542

    Article  Google Scholar 

  16. Liu W, Zheng Y, Chawla S, Yuan J, Xing X Discovering spatio-temporal causal interactions in traffic data streams. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pp. 1010–1018. ACM, New York, NY, USA (2011). doi:10.1145/2020408.2020571

  17. Mannila H, Toivonen H Discovering generalized episodes using minimal occurrences. In KDD 96: Proc. 2nd International Conference on Knowledge Discovery and Data Mining, pp. 146–151. AAAI Press (1996)

  18. Mohan P, Shekhar S, Shine J, Rogers J (2012) Cascading spatio-temporal pattern discovery. Knowl Data Eng IEEE Trans 24(11):1977–1992. doi:10.1109/TKDE.2011.146

    Article  Google Scholar 

  19. Moore N, Kreft-Jais C, Haramburu F, Noblet C, Andrejak M, Ollagnier M, Bgaud B (1997) Reports of hypoglycaemia associated with the use of ACE inhibitors and other drugs: a case/non-case study in the French pharmacovigilance system database. Br J Clin Pharmacol 44(5):513–518

    Google Scholar 

  20. Murray RE, Ryan PB, Reisinger SJ (2011) Design and validation of a data simulation model for longitudinal healthcare data. AMIA Annu Symp Proc 2011:1176–1185

    Google Scholar 

  21. Noren G, Hopstadius J, Bate A, Star K, Edwards I (2010) Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Discov 20(3):361–387. doi:10.1007/s10618-009-0152-3

    Article  MathSciNet  Google Scholar 

  22. (OMOP) OMOP Observational medical dataset simulator generation 1 (2009). Available from OMOP at http://www.omop.org

  23. Przyborowski J, Wilenski H (1940) Homogeneity of results in testing samples from poisson series: With an application to testing clover seed for dodder. Biometrika 31(3-4):313–323. http://biomet.oxfordjournals.org/content/31/3-4/313.short

    Article  MathSciNet  Google Scholar 

  24. Sakaeda T, Tamon A, Kadoyama K, Okuno Y (2013) Data mining of the public version of the FDA adverse event reporting system. Int J Med Sci 10(7):796–803

    Article  Google Scholar 

  25. Food U.S., Administration Drug FAERS Patient Outcomes by Year. U.S. Food and Drug Administration (2012). http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/surveillance

  26. Yen SJ, Lee YS (2013) Mining non-redundant time-gap sequential patterns. Appl Intell 39(4):727–738. doi:10.1007/s10489-013-0426-8

    Article  MathSciNet  Google Scholar 

  27. Zorych I, Madigan D, Ryan P, Bate A (2013) Disproportionality methods for pharmacovigilance in longitudinal observational databases. Stat Methods Med Res 22(1):39–56

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank MITRE corporation for its support of this project in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, H., Ding, W. & Nazeri, Z. Temporality and Context for detecting adverse drug reactions from longitudinal data. Appl Intell 41, 1069–1080 (2014). https://doi.org/10.1007/s10489-014-0568-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0568-3

Keywords

Navigation