Skip to main content
Log in

An improved Differential Evolution algorithm using learning automata and population topologies

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

A new variant of Differential Evolution (DE), called ADE-Grid, is presented in this paper which adapts the mutation strategy, crossover rate (CR) and scale factor (F) during the run. In ADE-Grid, learning automata (LA), which are powerful decision making machines, are used to determine the proper value of the parameters CR and F, and the suitable strategy for the construction of a mutant vector for each individual, adaptively. The proposed automata based DE is able to maintain the diversity among the individuals and encourage them to move toward several promising areas of the search space as well as the best found position. Numerical experiments are conducted on a set of twenty four well-known benchmark functions and one real-world engineering problem. The performance comparison between ADE-Grid and other state-of-the-art DE variants indicates that ADE-Grid is a viable approach for optimization. The results also show that the proposed ADE-Grid improves the performance of DE in terms of both convergence speed and quality of final solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fogel DB (1997) The advantages of evolutionary computation. In: Proceedings of the international conference on bio-computing and emergent computation. World Scientific, pp 1–11

  2. Storn R, Price K (1995) Differential Evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, Berkeley. Tech. Rep. TR-95–012

  3. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. doi:10.1023/A:1008202821328

    Article  MATH  MathSciNet  Google Scholar 

  4. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11:1679–1696. doi:10.1016/j.asoc.2010.04.024

    Article  Google Scholar 

  5. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15:55–66. doi:10.1109/TEVC.2010.2087271

    Article  Google Scholar 

  6. Brest J, Zamuda A, Boskovic B et al (2009) Dynamic optimization using self-adaptive differential evolution. In: IEEE congress on evolutionary computation, pp 415–422

  7. Noroozi V, Hashemi AB, Meybodi MR (2012) Alpinist CellularDE: a cellular based optimization algorithm for dynamic environments. In: Proceedings of the fourteenth international conference on genetic and evolutionary computation conference companion. ACM, New York, pp 1519–1520

  8. Kordestani JK, Rezvanian A, Meybodi M (2014) CDEPSO: a bi-population hybrid approach for dynamic optimization problems. Appl Intell 40:682–694. doi:10.1007/s10489-013-0483-z

    Article  Google Scholar 

  9. Xue F, Sanderson AC, Graves RJ (2003) Pareto-based multi-objective differential evolution. In: The 2003 congress on evolutionary computation, pp 862–869

  10. Santana-Quintero LV, Coello CAC (2005) An algorithm based on differential evolution for multi-objective problems. Int J Comput Intell Res 1:151–169

    Article  MathSciNet  Google Scholar 

  11. Huang VL, Qin AK, Suganthan PN, Tasgetiren MF (2007) Multi-objective optimization based on self-adaptive differential evolution algorithm. In: IEEE congress on evolutionary computation, pp 3601–3608

  12. Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study for differential evolution. In: Grmela A, Mastorakis NE (eds) Advances in intelligent systems, fuzzy systems, evolutionary computation. WSEAS Press, Interlaken, pp 293–298

    Google Scholar 

  13. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13:398–417. doi:10.1109/TEVC.2008.927706

    Article  Google Scholar 

  14. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15:4–31. doi:10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  15. Ali M, Pant M, Abraham A (2013) Unconventional initialization methods for differential evolution. Appl Math Comput 219:4474–4494. doi:10.1016/j.amc.2012.10.053

    Article  MathSciNet  Google Scholar 

  16. Rahnamayan S, Tizhoosh HR, Salama MMA (2007) A novel population initialization method for accelerating evolutionary algorithms. Comput Math Appl 53:1605–1614. doi:10.1016/j.camwa.2006.07.013

    Article  MATH  MathSciNet  Google Scholar 

  17. Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12:64–79. doi:10.1109/TEVC.2007.894200

    Article  Google Scholar 

  18. Das S, Konar A, Chakraborty UK (2005) Two improved differential evolution schemes for faster global search. In: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM, Washington DC, pp 991–998

  19. Brest J, Greiner S, Boskovic B et al (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10:646–657. doi:10.1109/TEVC.2006.872133

    Article  Google Scholar 

  20. Brest J, Sepesy Mauèec M (2008) Population size reduction for the differential evolution algorithm. Appl Intell 29:228–247. doi:10.1007/s10489-007-0091-x

    Article  Google Scholar 

  21. Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9:448–462. doi:10.1007/s00500-004-0363-x

    Article  MATH  Google Scholar 

  22. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13:945–958. doi:10.1109/TEVC.2009.2014613

    Article  Google Scholar 

  23. Gong W, Fialho Á, Cai Z (2010) Adaptive strategy selection in differential evolution. In: Proceedings of the 12th annual conference on genetic and evolutionary computation. ACM, Portland, pp 409–416

  24. Sun J, Zhang Q, Tsang EPK (2005) DE/EDA: a new evolutionary algorithm for global optimization. Inf Sci 169:249–262. doi:10.1016/j.ins.2004.06.009

    Article  MathSciNet  Google Scholar 

  25. Zhang W-J, Xie X-F (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE international conference on systems, man and cybernetics, pp 3816–3821

  26. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, pp 1942–1948

  27. Halder U, Das S, Maity D (2013) A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments. IEEE Trans Cybern 43:881–897. doi:10.1109/TSMCB.2012.2217491

    Article  Google Scholar 

  28. Storn R, Price KV, Lampinen J (2005) Differential evolution-a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  29. Price KV (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover F et al (eds) New ideas in optimization. McGraw-Hill Ltd, London, pp 79–108

    Google Scholar 

  30. Wang Y, Cai Z, Zhang Q (2012) Enhancing the search ability of differential evolution through orthogonal crossover. Inf Sci 185:153–177. doi:10.1016/j.ins.2011.09.001

    Article  MathSciNet  Google Scholar 

  31. Das S, Konar A, Chakraborty UK (2007) Annealed differential evolution. In: IEEE congress on evolutionary computation, pp 1926–1933

  32. Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 congress on evolutionary computation, pp 1931–1938

  33. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of congress on evolutionary computation, pp 1671–1676

  34. Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern Part C Appl Rev 36:515–519. doi:10.1109/TSMCC.2006.875410

    Article  Google Scholar 

  35. Mendes R, Kennedy J, Neves J (2003) Watch thy neighbor or how the swarm can learn from its environment, pp 88–94

  36. Omran MH, Engelbrecht A, Salman A (2006) Using the ring neighborhood topology with self-adaptive differential evolution. In: Jiao L, Wang L, Gao X et al (eds) Advances in natural computation. Springer, Berlin Heidelberg, pp 976–979

    Chapter  Google Scholar 

  37. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13:526–553. doi:10.1109/TEVC.2008.2009457

    Article  Google Scholar 

  38. Han M-F, Liao S-H, Chang J-Y, Lin C-T (2013) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell 39:41–56. doi:10.1007/s10489-012-0393-5

    Article  Google Scholar 

  39. Narendra KS, Thathachar MA (1974) Learning automata-a survey. IEEE Trans Syst Man Cybern:323–334. doi:10.1109/TSMC.1974.5408453

  40. Thathachar MA, Sastry PS (2002) Varieties of learning automata: an overview. IEEE Trans Syst Man Cybern Part B Cybern 32:711–722. doi:10.1109/TSMCB.2002.1049606

    Article  Google Scholar 

  41. Rezvanian A, Meybodi M (2010) LACAIS: learning automata based cooperative artificial immune system for function optimization. In: Ranka S, Banerjee A, Biswas K et al (eds) Contemporary computing. Springer, Berlin Heidelberg, pp 64–75

    Chapter  Google Scholar 

  42. Hashemi AB, Meybodi MR (2011) A note on the learning automata based algorithms for adaptive parameter selection in PSO. Appl Soft Comput 11:689–705. doi:10.1016/j.asoc.2009.12.030

    Article  Google Scholar 

  43. Moghiss V, Meybodi MR, Esnaashari M (2010) An intelligent protocol to channel assignment in wireless sensor networks: learning automata approach. In: International conference on information networking and automation, pp V1-338–V1-343

  44. Esnaashari M, Meybodi MR (2011) A cellular learning automata-based deployment strategy for mobile wireless sensor networks. J Parallel Distrib Comput 71:988–1001. doi:10.1016/j.jpdc.2010.10.015

    Article  MATH  Google Scholar 

  45. Akbari Torkestani J, Meybodi MR (2011) A cellular learning automata-based algorithm for solving the vertex coloring problem. Expert Syst Appl 38:9237–9247. doi:10.1016/j.eswa.2011.01.098

    Article  Google Scholar 

  46. Barzegar S, Davoudpour M, Meybodi MR et al (2011) Formalized learning automata with adaptive fuzzy coloured Petri net; an application specific to managing traffic signals. Sci Iran 18:554–565. doi:10.1016/j.scient.2011.04.007

    Article  Google Scholar 

  47. Akbari Torkestani J (2012) An adaptive learning automata-based ranking function discovery algorithm. J Intell Inf Syst 39:441–459. doi:10.1007/s10844-012-0197-4

    Article  Google Scholar 

  48. Pant M, Thangaraj R, Singh VP (2009) A new differential evolution algorithm for solving global optimization problems. In: International conference on advanced computer control, pp 388–392

  49. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  50. Suganthan PN, Hansen N, Liang JJ et al (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nanyang Technol. Univ., Singapore, IIT Kanpur, Kanpur, India, #2005005

  51. Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata

    Google Scholar 

  52. Singh HK, Ray T (2011) Performance of a hybrid EA-DE-memetic algorithm on CEC 2011 real world optimization problems. In: IEEE congress on evolutionary computation, pp 1322–1326

  53. Bandaru S, Tulshyan R, Deb K (2011) Modified SBX and adaptive mutation for real world single objective optimization. In: IEEE congress on evolutionary computation, pp 1335–1342

  54. Elsayed SM, Sarker RA, Essam DL (2011) Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In: IEEE congress on evolutionary computation, pp 1041–1048

  55. Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM (2011) Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: IEEE congress on evolutionary computation, pp 1551–1556

Download references

Acknowledgments

The authors would like to thank A. Rezvanian for his excellent insights, constructive comments and helpful suggestions on the initial version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javidan Kazemi Kordestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordestani, J.K., Ahmadi, A. & Meybodi, M.R. An improved Differential Evolution algorithm using learning automata and population topologies. Appl Intell 41, 1150–1169 (2014). https://doi.org/10.1007/s10489-014-0585-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0585-2

Keywords

Navigation