Skip to main content
Log in

Solving portfolio selection models with uncertain returns using an artificial neural network scheme

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a neural network model for solving two models for portfolio selection in which the securities are assumed to be uncertain variables. The main idea is to replace the portfolio selection models with linear programming (LP) problems. According to the convex optimization theory and some concepts of ordinary differential equations, a neural network model for solving LP problems is presented. The equilibrium point of the proposed model is proved to be equivalent to the optimal solution of the original problem. It is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the portfolio selection problem with uncertain returns. Two illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelaziz FB, Aouni B, Fayedh RE (2007) Multi-objective stochastic programming for portfolio selection. Eur J Oper Res 177:1811–1823

    Article  MATH  Google Scholar 

  2. Arenas-Parra M, Bilbao-Terol A, Rodríguez-Uría MV (2001) A fuzzy goal programming approach to portfolio selection. Eur J Oper Res 133:287–297

    Article  MATH  Google Scholar 

  3. Bazaraa MS, Jarvis JJ, Sherali HD (1990) Linear Programming and Network Flows. Wiley, New York

    MATH  Google Scholar 

  4. Bian W, Chen X (2012) Smoothing neural network for constrained non- Lipschitz optimization with applications. IEEE Trans Neural Netw Learn Syst 23 (3):399–411

    Article  Google Scholar 

  5. Bilbao-Terol A, Pérez-Gladish B, Arenas-Parra M, Rodríguez-Uría VRU (2006) Fuzzy compromise programming for portfolio selection. Appl Math Comput 173:251–264

    Article  MATH  MathSciNet  Google Scholar 

  6. Carlsson C, Fullér R, Majlender P (2002) A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets Syst 131:13–21

    Article  MATH  Google Scholar 

  7. Chen XW, Liu B (2010) Existence and uniqueness theorem for uncertain differential equations. Fuzzy Optim Decis Making 9:69–81

    Article  MATH  Google Scholar 

  8. Cheng L, Hou Z , Tan M (2008) A neutral-type delayed projection neural network for solving nonlinear variational inequalities. IEEE Trans Circ Syst II: Exp Briefs 55 (8):806–810

    Article  Google Scholar 

  9. Corazza M, Favaretto D (2007) On the existence of solutions to the quadratic mixed-integer meanvariance portfolio selection problem. Eur J Oper Res 176:1947–1960

    Article  MATH  Google Scholar 

  10. De Cooman G (1997) Possibility theory IIII. Int J Gen Syst 25:291–371

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubois D, Prade H (1988) Possibility theory: An approach to computerized processing of uncertainty. Plenum, New York

    Book  MATH  Google Scholar 

  12. Effati S, Nazemi AR (2006) Neural network models and its application for solving linear and quadratic programming problems . Appl Math Comput 172:305–331

    Article  MATH  MathSciNet  Google Scholar 

  13. Facchinei F, Jiang H, Qi L (1999) A smoothing method for mathematical programs with equilibrium constraints. Math Program 85:107–134

    Article  MATH  MathSciNet  Google Scholar 

  14. Forti M, Nistri P, Quincampoix M (2004) Generalized neural network for nonsmooth nonliner programming problems. IEEE Trans Circ and Syst I Regular Pap 51 (9):1741–1754

    Article  MathSciNet  Google Scholar 

  15. Forti M, Nistri P, Quincampoix M (2006) Convergence of neural networks for programming problems via nonsmooth Lojasiewica inequality. IEEE Trans Neural Netw 17 (6):1487–1499

    Article  Google Scholar 

  16. Friesz TL, Bernstein DH, Mehta NJ, Tobin RL, Ganjlizadeh S (1994) Day-to-day dynamic network disequilibria and idealized traveler information systems. Oper Res 42:1120–1136

    Article  MATH  MathSciNet  Google Scholar 

  17. Gao X (2009) Some properties of continuous uncertain measure. Int J Uncertain, Fuzziness Knowl-Based Syst 17:419–426

    Article  MATH  Google Scholar 

  18. Gao X, Gao Y, Ralescu DA (2010) On Liu’s inference rule for uncertain systems. Int J Uncertain, Fuzziness Knowl-Based Syst 18:1–11

    Article  MATH  MathSciNet  Google Scholar 

  19. Gao X, Liao L, Qi L (2005) A novel neural network for variational inequalities with linear and nonlinear constraints. IEEE Trans Neural Netw 16 (6):1305–1317

    Article  Google Scholar 

  20. Gupta P, Mehlawat MK, Saxena A (2008) Asset portfolio optimization using fuzzy mathe matical programming. Inf Sci 178:1734–1755

    Article  MATH  MathSciNet  Google Scholar 

  21. Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52:141–152

    MATH  MathSciNet  Google Scholar 

  22. Hosseini A, Wang J, Mohamma S (2013) A recurrent neural network for solving a class of generalized convex optimization problems. Neural Netw 44:78–86

    Article  MATH  Google Scholar 

  23. Hu X, Wang J (2006) Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans Neural Netw 17 (6):1487–1499

    Article  Google Scholar 

  24. Hu X, Wang J (2007) Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems. IEEE Trans Syst, Man and Cybern, Part B (Cybernetics) 37 (5):1414–1421

    Article  Google Scholar 

  25. Huang X (2008a) Risk curve and fuzzy portfolio selection. Comput Math Appl 55:1102–1112

    Article  MATH  MathSciNet  Google Scholar 

  26. Huang X (2008b) Mean-semivariance models for fuzzy portfolio selection. J Comput Appl Math 217:1–8

    Article  MATH  MathSciNet  Google Scholar 

  27. Huang X (2008c) Portfolio selection with a new definition of risk. Eur J Oper Res 186:351–357

    Article  MATH  Google Scholar 

  28. Huang X (2009) A review of credibilistic portfolio selection. Fuzzy Optim Decis Making 8:263–281

    Article  MATH  Google Scholar 

  29. Huang X (2011) Mean-risk model for uncertain portfolio selection. Fuzzy Optim Decis Making 10:71–89

    Article  MATH  Google Scholar 

  30. Huang X (2012a) Mean-variance models for portfolio selection subject to experts estimations. Expert Syst Appl 39:5887–5893

    Article  Google Scholar 

  31. Huang X (2012b) A risk index model for portfolio selection with returns subject to experts’ estimations. Fuzzy Optim Decis Making 11:451–463

    Article  MATH  Google Scholar 

  32. Ida M (2002) Mean-variance portfolio optimization model with uncertain coefficients. Proc IEEE Int Conf Fuzzy Sys 3:1223–1226

    Google Scholar 

  33. Inuiguchi M, Ramík J (2000) Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst 111:3–28

    Article  MATH  Google Scholar 

  34. Kaufman A, Gupta MM (1985) Introduction to fuzzy arithmetic: Theory and applications. Van Nostrand Reinhold, New York

    Google Scholar 

  35. Kennedy MP, Chua LO (1988) Neural networks for nonlinear programming. IEEE Trans Circ Syst 35 (5):554–562

    Article  MathSciNet  Google Scholar 

  36. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: Theory and applications. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  37. Lacagnina V (2006) A stochastic soft constraints fuzzy model for a portfolio selection problem. Fuzzy Sets and Systems 157:1317–1327

    Article  MATH  MathSciNet  Google Scholar 

  38. León T, Liern V, Vercher E (2002) Viability of infeasible portfolio selection problems: A fuzzy approach. Eur J Oper Res 139:178–189

    Article  MATH  Google Scholar 

  39. Lin CC, Liu YT (2008) Genetic algorithm for portfolio selection problems with minimum transaction lots. Eur J Oper Res 185:393–404

    Article  MATH  Google Scholar 

  40. Liu B (2007) Uncertainty theory, 2nd ed. Springer, Berlin

    MATH  Google Scholar 

  41. Liu B (2009b) Theory and practice of uncertain programming, 2nd ed. Springer, Berlin

    Book  MATH  Google Scholar 

  42. Liu B (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Book  Google Scholar 

  43. Liu Q , Cao J, Chen G (2010) A novel recurrent neural network with finite-time convergence for linear programming. Neural Comput 22:2962–2978

    Article  MATH  MathSciNet  Google Scholar 

  44. Liu Q, Dang C, Huang T (2013) A one-layer recurrent neural network for real-time portfolio optimization with probability criterion. IEEE Trans Cybern 43 (1):14–23

    Article  Google Scholar 

  45. Liu Q, Guo Z, Wang J (2012) A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for portfolio optimization. Neural Netw 26 (1):99–109

    Article  MATH  Google Scholar 

  46. Liu Q, Wang J. (2011) A one-layer recurrent neural network for constrained nonsmooth optimization. IEEE Trans Syst, Man Cybern, Part B (Cybernetics) 41 (5):1323–1333

    Article  Google Scholar 

  47. Liu Q, Wang J (2013) A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints. IEEE Trans Neural Netw Learn Syst 24 (5):812–824

    Article  Google Scholar 

  48. Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  49. Markowitz H (1959) Portfolio selection: efficient diversification of investments. Wiley, New York

    Google Scholar 

  50. Miller RK, Michel AN (1982) Ordinary Differential Equations. Academic Press, New York

    MATH  Google Scholar 

  51. Nahmias S (1978) Fuzzy variables. Fuzzy Sets and Systems 1:97–110

    Article  MATH  MathSciNet  Google Scholar 

  52. Nazemi AR (2011) A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul 17 (4):1696–1705

    Article  MathSciNet  Google Scholar 

  53. Nazemi AR (2012) A dynamical model for solving degenerate quadratic minimax problems with constraints. J Comput Appl Math 236 (6):1282–1295

    Article  MathSciNet  Google Scholar 

  54. Nazemi AR (2014) A neural network model for solving convex quadratic programming problems with some applications. Eng Appl Artif Intell 32:54–62

    Article  Google Scholar 

  55. Nazemi AR, Nazemi M (2014) A gradient-based neural network method for solving strictly convex quadratic programming problems. Cognitive Computation, (In press)

  56. Nazemi AR (2013) A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul 17:1696–1705

    Article  MathSciNet  Google Scholar 

  57. Nazemi AR, Omidi F (2012) A capable neural network model for solving the maximum flow problem. J Comput Appl Math 236:3498–3513

    Article  MATH  MathSciNet  Google Scholar 

  58. Nazemi AR, Omidi F (2013) An efficient dynamic model for solving the shortest path problem. Transp Res C 26:1–19

    Article  Google Scholar 

  59. Ortega TM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in Several variables. Academic Press , New York

    MATH  Google Scholar 

  60. Peng ZX, Iwamura K (2010) A sufficient and necessary condition of uncertainty distribution. J Interdiscip Math 13:277–285

    Article  MATH  MathSciNet  Google Scholar 

  61. Quarteroni A, Sacco R, Saleri F (2007) Numerical mathematics. Springer-Verlag, Berlin

    MATH  Google Scholar 

  62. Tank DW, Hopfield JJ (1986) Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming pircuit. IEEE Trans Circ Syst 33 (5):533–541

    Article  Google Scholar 

  63. Tanaka H, Guo P (1999) Portfolio selection based on upper and lower exponential possibility distributions. Eur J Oper Res 114:115–126

    Article  MATH  Google Scholar 

  64. Tanaka H, Guo P, Türksen B (2000) Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets Syst 111:387–397

    Article  MATH  Google Scholar 

  65. Tiryaki F, Ahlatcioglu M (2005) Fuzzy stock selection using a new fuzzy ranking and weighting algorithm. Appl Math Comput 170:144–157

    Article  MATH  MathSciNet  Google Scholar 

  66. Vegas JM, Zufiria PJ (2004) Generalized neural networks for spectral analysis: dynamics and Liapunov functions. Neural Netw 17 (2):233–245

    Article  MATH  Google Scholar 

  67. Vercher E, Bermúdez JD, Segura JV (2007) Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets Syst 158:769–782

    Article  MATH  Google Scholar 

  68. Wang J (1993) Analysis and design of a recurrent neural network for linear programming. IEEE Trans Circ Syst I: Fundam Theory Appl 40 (9):613–618

    Article  MATH  Google Scholar 

  69. Watada J (1997) Fuzzy portfolio selection and its applications to decision making, vol 13. Tatra Mountains Mathematical Publication, pp 219–248

  70. Xia Y (1996a) A new neural network for solving linear programming problems and its application. IEEE Trans Neural Netw 7 (2):525–529

    Article  Google Scholar 

  71. Xia Y (1996b) A new neural network for solving linear and quadratic programming problems. IEEE Trans Neural Netw 7 (6):1544–1547

    Article  Google Scholar 

  72. Xia Y, Wang J (1995) Neural network for solving linear programming problems with bounded variables. IEEE Trans Neural Netw 6 (2):515–519

    Article  Google Scholar 

  73. Xia Y, Wang J (2004) A one-layer recurrent neural network for support vector machine learning. IEEE Trans Syst, Man Cybern, Part B (Cybernetics) 34 (2):1–10

    Google Scholar 

  74. You C (2009) Some convergence theorems of uncertain sequences. Math Comput Model 49:482–487

    Article  MATH  Google Scholar 

  75. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  76. Zadeh L (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    Article  MATH  MathSciNet  Google Scholar 

  77. Zhang WG, Nie ZK (2004) On admissible efficient portfolio selection problem. Appl Math Comput 159:357–371

    Article  MATH  MathSciNet  Google Scholar 

  78. Zhang WG, Wang YL, Chen ZP, Nie ZK (2007) Possibilistic mean-variance models and efficient frontiers for portfolio selection problem. Inf Sci 177:2787–2801

    Article  MATH  MathSciNet  Google Scholar 

  79. Zhu Y (2010) Uncertain optimal control with application to a portfolio selection model. Cybern Syst 41:535–547

    Article  MATH  Google Scholar 

  80. Zimmermann HJ (1985) Fuzzy set theory and its applications. Kluwer Academic Publisher, Boston

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farahnaz Omidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazemi, A., Abbasi, B. & Omidi, F. Solving portfolio selection models with uncertain returns using an artificial neural network scheme. Appl Intell 42, 609–621 (2015). https://doi.org/10.1007/s10489-014-0616-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0616-z

Keywords

Navigation