Skip to main content
Log in

Discrete gbest-guided artificial bee colony algorithm for cloud service composition

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The widespread application of cloud computing creates massive application services on the Internet, which is a new challenge for the models and algorithms of cloud service composition. This paper proposes a new method for cloud service composition. Time attenuation function is added into the service composition model, and service composition is formalized as a nonlinear integer programming problem. Moreover, the Discrete Gbest-guided Artificial Bee Colony (DGABC) algorithm is proposed, which simulates the search for the optimal service composition solution through the exploration of bees for food. Experiments show that the service composition model with the time attenuation function can make the quality of service more consistent with the current characteristics of services. Compared with other algorithms, the DGABC algorithm has advantages in terms of the quality of solution and efficiency, especially for the large-scale data, and it can obtain a near-optimal solution within a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) QoS-aware middleware for web services composition. IEEE Trans Software Eng 30(5):311–327

    Article  Google Scholar 

  2. Ardagna D, Pernici B (2007) Adaptive service composition in flexible processes. IEEE Trans Software Eng 33(6):369–384

    Article  Google Scholar 

  3. Zheng Z, Zhang Y, Lyu MR (2010) Distributed qos evaluation for real-world web services. In: Proceeding of the 2010 IEEE International Conference on Web Services (ICWS),Miami, FL, pp 83-90

  4. Al-Masri E, Mahmoud QH (2007) Qos-based discovery and ranking of web services. In: Proceeding of the 16th International Conference on Computer Communications and Networks, Honolulu, HI, pp 529-534

  5. Hu J, Guo C, Wang H, Zou P (2005) Quality driven web services selection. In: Proceeding of the IEEE International Conference on e-Business Engineering, Beijing,China, pp 681-688

  6. Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware service composition, In: Proceeding of the 18th International Conference on World Wide Web Madrid, Spain, pp 881-890

  7. Ma Y, Zhang C (2008) Quick convergence of genetic algorithm for QoS-driven web service selection. Comput Netw 52(5):1093–1104

    Article  Google Scholar 

  8. Gao H, Yan J, Mu Y (2014) Trust oriented QoS aware composite service selection based on genetic algorithms, Concurrency and Computation. Pract Experience 26(2):500–515

    Article  Google Scholar 

  9. Wang S, Zhu X, Yang F (2014) Efficient QoS management for QoS–aware web service composition. Int J Web Grid Serv 10(1):1–23

    Article  MathSciNet  Google Scholar 

  10. Tao F, Zhao D, Hu Y, Zhou Z (2008) Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system. IEEE Trans Ind Inform 4(4):315–327

    Article  Google Scholar 

  11. Wu Q, Zhu Q (2013) Transactional and QoS-aware dynamic service composition based on ant colony optimization. Futur Gener Comput Syst 29(5):1112–1119

    Article  MathSciNet  Google Scholar 

  12. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Erciyes University, Engineering Faculty, Computer Engineering Department. Technical Report: TR06, Kayseri

  13. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687– 697

    Article  Google Scholar 

  14. Zhang P, Liu H, Ding Y (2013) Dynamic bee colony algorithm based on multi-species co-evolution. Appl Intell 40(3):427– 440

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang SG, Sun QB, Yang FC (2010) Towards Web Service selection based on QoS estimation. Int J Web Grid Serv 6(4):424–443

    Article  Google Scholar 

  16. Zhu R, Wang HM, Feng DW (2011) Trustworthy services selection based on preference recommendation. J software 22(5):852–864

    Article  Google Scholar 

  17. Wang SG, Sun QB, Yang FC (2012) Reputation evaluation approach in Web service selection. J Software 23(6):1350– 1367

    Article  Google Scholar 

  18. Kil H, Nam W (2013) Efficient anytime algorithm for large–scale QoS–aware web service composition. Int J Web Grid Serv 9(1):82–106

    Article  Google Scholar 

  19. Ludwig H, Keller A, Dan A, King RP, Franck R (2003) Web service level agreement (WSLA) language specification. IBM Corp:815–824

  20. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

    Article  MATH  Google Scholar 

  21. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MATH  MathSciNet  Google Scholar 

  22. Pan Q, Fatih Tasgetiren M, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Info sci 181(12):2455– 2468

    Article  Google Scholar 

  23. Kashan MH, Nahavandi N, Kashan AH (2012) DisABC: A new artificial bee colony algorithm for binary optimization. Appl Soft Comput 12(1):342–352

    Article  Google Scholar 

  24. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. App Math Comput 217(7):3166–3173

    Article  MATH  MathSciNet  Google Scholar 

  25. Karaboga D, Gorkemli B (2011) A combinatorial artificial bee colony algorithm for traveling salesman problem. In: Proceeding of the Innovations in Intelligent Systems and Applications (INISTA), 2011, International Symposium on, IEEE, pp 50– 53

  26. Al-Masri E, Mahmoud QH (2007a) Discovering the best web service. In: Proceeding of the 16th International Conference on World Wide Web, Banff, Alberta, Canada, pp 1257-1258

  27. Al-Masri E Mahmoud QH (2008) Investigating web services on the world wide web. Beijing, China, pp 795–804

  28. Mardukhi F, NematBakhsh N, Zamanifar K, Barati A (2013) QoS decomposition for service composition using genetic algorithm. Appl Soft Comput 13(7):3409–3421. doi:10.1016/j.asoc.2012.12.033

    Article  Google Scholar 

  29. Zou G, Lu Q, Chen Y, Huang R, Xu Y, Xiang Y (2014) QoS-aware dynamic composition of Web services using numerical temporal planning. IEEE Trans Serv Comput 7(1):1–14

    Article  MATH  Google Scholar 

  30. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66– 72

    Article  Google Scholar 

  31. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceeding of the 6th International Symposium on Micro Machine and Human Science, Nagoya, pp 39– 43

  32. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J global optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang SG, Sun QB, Zou H, Yang FC (2013) Particle Swarm Optimization with Skyline Operator for Fast Cloud-based Web Service Composition. Mobile Networks Appl 18(1):116– 121

    Article  Google Scholar 

  34. Deng S, Huang L, Tan W, Wu Z (2014) Top- k automatic service composition: a parallel method for large-scale service sets. IEEE Trans Autom Sci Eng 11(3):891–905

    Article  Google Scholar 

  35. Wu Y, Yan C, Ding Z, Liu G, Wang P, Jiang C, Zhou M (2013) A Novel Method for Calculating Service Reputation. IEEE Trans Autom Sci Eng 10(3):634–642

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61403206, National Natural Science Foundation for Youth of China under Grant No. 61202351, the National Postdoctoral Fund under Grant No. 2011M500124, Natural Science Foundation of Jiangsu Province under Grant No. BK20141005, Funding of Jiangsu Innovation Program for Graduate Education and the Fundamental Research Funds for the Central Universities under Grant No. CXZZ13_0171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Zhuang, Y., Gu, J. et al. Discrete gbest-guided artificial bee colony algorithm for cloud service composition. Appl Intell 42, 661–678 (2015). https://doi.org/10.1007/s10489-014-0617-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0617-y

Keywords

Navigation